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Abstract. Testing for structural stability has attracted a lot of attention in
theoretical and applied research. Oftentimes the test is based on the supremum
of, for example, the Wald statistic when the break is assumed to be in the
interval [�n] < s < n � [�n] for some � > 0 and where n denotes the sample
size. More recently there has been some work to allow the possibility that
the break lies at the end of the sample, i.e. when s 2 (n��s; n) for some
�nite number �s. However, the previous setups do not include the important
intermediate case when s 2 (�s; [�n])[(n� [�n] ; n��s), or more generally when
we do not wish to assume any prior knowledge on the location of the break.
The aim of the paper is thus to extend existing results on stability tests in the
later scenario for models useful in economics such as nonlinear simultaneous
equations and transformation models. Letting the time of the break to be
anywhere in the sample might not only be more realistic in applied research,
but it avoids also the unpleasant need to choose either � or �s. In addition we
show that, contrary to the conventional tests, the tests described and examined
in the paper are consistent irrespective of the location of the break.

JEL Classi�cation: C21, C23.

1. INTRODUCTION

Since the work of Chow (1960) and Quandt (1960), testing for structural stability
has been a very active topic of theoretical and applied research. The bulk of the
research has focused on the situation when the exact time of the break s is not
known but the researcher assumes that s lies in the �middle�of the sample. That
is, s 2 ([n� ] ; n� [n� ]) for some trimming quantity � > 0, and where herewith n
denotes the sample size. See Andrews (1993) or the latest review article by Perron
(2006). In this scenario, the location of the break is often parameterized as the
fraction � = s=n 2 (� ; 1� �), and it has been shown that the supremum of, for
instance, the Wald (W) or Lagrange Multiplier (LM) statistics (denoted herewith
as conventional statistics) converge to the supremum of a Gaussian process. More
recently, there has been some interest in the case where the break occurs at the
�end�of the sample. For example, Andrews (2003) or Andrews and Kim (2006),
and references therein, examined the case when s 2 (n��s; n) for some �nite value
�s. In this situation, we know that, although the tests are not consistent and their
distributions depend on �s, it is still possible to make inferences as it was shown
by Andrews (2003). What has not been studied is the case when s 2 (�s; [n� ]) or
(n� [n� ] ; n��s), or more importantly, when we do not wish to impose any prior
knowledge on the location of the break, avoiding the need to choose � or �s:
The paper thus considers the problem of testing for structural stability over the

whole sample span s = 1; :::; n. That is, when no previous information about the
location of the break is available. The test does not involve a trimming quantity
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and it can be applied to models useful in economics, such as nonlinear simultaneous
equations and transformation models under general conditions on the dependence
structure of the variables of the model. In particular, we do not need to assume
that the data, for instance the regressors and error term in a regression model,
are covariance stationary. In this way, we substantially extend Horvath�s (1993)
results who only examines this problem for the mean of otherwise independent and
normally distributed random variables.
In our setup, Andrews (1993) showed that the conventional tests diverge to in-

�nity without trimming, signalling that the trimming was not only imposed for
technical convenience but it was also crucial to obtain a proper asymptotic distrib-
ution. We show that the reason for his �nding is because the normalization that we
require for the statistic is di¤erent to that for the conventional tests. We also show
that the asymptotic distribution of our tests is di¤erent to that of the conventional
test. More speci�cally, we show that, after appropriate normalization, which is only
a simple function of the sample size n and the number of parameters subject to
break, the sups=1;:::;nW (s) and sups=1;:::;n LM (s) test statistics converge to the
Type I Extreme Value Distribution or Gumbel distribution.
It is also worth mentioning that as Andrews and Ploberger (1994) discussed, to

obtain their optimality results, we need to be away from (or not too close to) the
beginning or the end of the sample. Indeed, the Monte-Carlo experiment in Sec-
tion 4 suggests that when we compare the power of the conventional tests against
the power of our tests in Sections 2 and 3, the assumptions made in Andrews
and Ploberger (1994) were not innocuous. More speci�cally, as Section 2.3 shows,
the conventional tests are not consistent when the break occurs at time s � n1=2

or n � n1=2 < s, whereas our tests are always consistent irrespective of the loca-
tion of the break. In addition, we show that when the break falls in the region

s 2
�
n1=2; n= (log log n)

1=2
�
, the conventional tests have zero asymptotic relative

e¢ ciency compared to ours, in the sense that our tests are able to detect local
alternatives that, for instance, the �optimal conventional tests�would not do. It is
worth mentioning that our tests are similar as that of Brown, Durbin and Evans
(1975), in the sense that they do not trim. However, the latter work su¤ers from
the same lack of power just described for the conventional tests.
We �nish this section discussing some theoretical and practical issues regarding

our tests in Sections 2 or 3 below when they are compared with conventional tests.
From a practical point of view, our tests have the bene�t that the practitioner
does not need to choose the rather arti�cial quantities � or �s when performing the
test. Moreover, we avoid the rather undesirable outcome that, even when using the
same data set, two practitioners may lead to contradictory conclusions by choosing
two di¤erent values of � . This is con�rmed in the small Monte-Carlo experiment
described in Section 4, which suggests that the choice of � is not irrelevant by
observing that the size and power of the test vary with the choice of � . In fact, if
we followed the recommendation given by some authors of taking � = :15, see for
instance Andrews (1993), the power of the conventional test is much lower when
it is compared to our test or when we choose � = :05, although when the break is
towards the end of the sample our test is preferable.
The remainder of the paper is organized as follows. For exposition purposes,

next section describes and establishes the asymptotic distribution of the tests in
a linear regression model, whereas Section 3 extends the results to more general
models useful in econometrics such as nonlinear simultaneous equation systems and
transformation models. Section 4 describes a Monte-Carlo experiment to examine
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the �nite sample performance of our tests and how they compare with the conven-
tional tests for some values of � . Finally, Section 5 gives the proofs of our main
results in Sections 2 and 3.

2. TESTS FOR BREAKS

This section examines, for exposition purposes, tests for breaks in the linear
regression model

(2.1) yt = �+ �0xt + �
0zt (s) + ut, t = 1; :::; n

where, denoting 1 (�) as the indicator function,

(2.2) zt (s) = xt11 (t � s)

being xt1 a p1 subvector of the p-dimensional vector xt = (x0t1; x
0
t2)

0 and where
futgt2Z is a zero mean sequence of errors. Our null hypothesis H0 of interest is
that the parameter � is zero for all s. That is,

(2.3) H0 : � = 0 8s : p� < s � n� p�,

where p� = p+p1+1, being the alternative hypothesis H1 the negation of the null,
that is

H1 : 9s : p� < s � n� p�; � 6= 0.
Notice that when p1 = p (and zt also includes the intercept), we have that (2:3)

corresponds to the so-called pure structural break hypothesis testing. We consider
the situation under the alternative of a one-time structural break, although as we
will see in Section 2.3 below, the tests have non-trivial power when the break is
gradual and it takes some periods for the model or parameters to reach its new
regime. In addition, we have assumed for simplicity that the intercept is constant.
It goes without saying that our results follow if we allow the intercept to be subject
to a possible break. The only di¤erence lies in the computation of the test and more
speci�cally on the estimation of the asymptotic covariance matrix of the estimator
of the intercept. The same comments would apply if the regression model had a
time trend subject to a possible break.
We now describe the estimators and present some notation to be used throughout

the paper. Herewith C denotes a generic �nite positive constant. For a generic
sequence fwtgnt=1, we write f ewtgnt=1 =: fwt � wgnt=1, where w = n�1

Pn
t=1 wt.

Also,

(2.4) Wn = ( ew1; :::; ewn)0 ,
which may have a partition Wn =

�
W1n

...W2n

�
. For a �xed s 2 (p�; n�p�], Wn (s)

indicates that ewt is obtained from wt1 (t � s) and we denote the least squares
estimator of

�
�0; �0

�0
in (2:1) by

(2.5)

 b�(s)b�(s)
!
=

�
Z 0n (s)Zn (s) Z 0n (s)Xn

X 0
nZn (s) X 0

nXn

��1�
Z 0n (s)Yn
X 0
nYn

�
.

We should mention that if, for example, the matrix Z 0n (s)Zn (s) were singular,
in the computation of our estimates and/or tests, we would use the generalized
inverse instead of the inverse. This will not a¤ect any of the conclusions of the
paper. Similar comments apply elsewhere below.
We now introduce the following assumptions.
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A1: fxtgt2Z and futgt2Z are two linear processes de�ned by

xt = �x +
1X
i=0

�i"t�i,
1X
i=0

k�ik
1=&

<1 and �0 = Ip

ut =
1X
i=0

�i�t�i,
1X
i=0

j�ij
1=&

<1 and �0 = 1,

for some & � 3=2, where f"tgt2Z and f�tgt2Z are mutually independent
sequences of independently distributed zero mean random variables such
that E

�
�2t
�
= �2� and E ("t"0t) = �" and supt E kxtk

4
+ supt E jutj

4
< 1,

where kAk denotes the Euclidean norm of the matrix A and Ip is the p-
dimensional identity matrix.

Denote Ms =
Ps
t=1 extex0t. Then,

A2: s�1Ms !s!1 � > 0.

A1 is restrictive in the assumption of linearity, although as we shall see in the
next section, we can relax this requirement to allow for more general sequences of
random variables. The condition on the rate of convergence to zero of f�igi�0 and
f�igi�0 is minimal and it implies that �i and �i are o

�
i�3=2

�
. The assumption of

identical second moments is not essential for the results to follow, but for exposi-
tional purposes we have assumed that the sequences fxtgt2Z and futgt2Z are covari-
ance stationary. In fact, we can allow the sequences fxtgt2Z and futgt2Z to exhibit
heterogeneity, so that we could allow for heteroscedastic errors E

�
u2t jxt

�
= �2 (xt),

and hence we do not need to assume that the sequences fxtgt2Z and futgt2Z are mu-
tually independent. More explicitly, see Andrews (1993) or Bai and Perron (1998)
among others, it would su¢ ce to assume that

(2.6) V ar

0@n�1=2 [n�2]X
t=[n�1]+1

(xt � �x)ut

1A! (�2 � �1) �,

where � = limn!1 n�1 var (
Pn
t=1 (xt � �x)ut). We keep nevertheless in this sec-

tion Assumption A1 as it stands for pedagogical reasons to make the proof of
Proposition 1 below clearer while, at the same time, keeping the main steps for
more general type of data and models examined in Section 3. We shall nevertheless
emphasize that we do not assume anywhere that the sequences fxtgt2Z or futgt2Z
are stationary.
Before we present the test for the null hypothesis H0 in (2:3), we put forward a

proposition which plays a key role in the proof of Theorem 1 below.

Proposition 1. Under A1 and A2 , we can construct on a probability space a
p-dimensional Wiener process B (k) with independent components such that

(2.7) Pr

(
sup

1�k�n







kX
t=1

(xt � �x)ut � �
1=2
k B (k)






 > a

)
� Ca�2n

�+2
2(�+1) ,

for some 1 < � < 2, and where �k = k�1 var
�Pk

t=1 (xt � �x)ut
�
.

Proposition 1 extends previous results by Einmahl (1989) who considered partial
sums of a vector sequence of independent identically distributed random variables
or those in Götze and Zaitsev (2007) for nonidentically distributed sequences of
independent random variables. The latter work is an extension to vector sequences
of results due to Sakhanenko, see for instance Shao (1995). Observe that the rate
of the approximation in (2:7) is worse than the �standard�n1=4 for linear sequences
of random variables or scalar nonlinear sequences of random variables, as shown
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respectively by Wang, Lin and Gulati (2003) and Wu (2007). It is worth indicat-
ing that if the sequence fxtgt2Z were deterministic, we would have the standard
conclusion of the order of approximation to be n1=4.
We now comment on the key role that Proposition 1 plays on our results. Take for

example the Wald statistic in (2:10) or (2:12) below. Inspecting its formulation and
using the notation Ss =

Ps
t=1 (xt � �x)ut, the asymptotic distribution depends on

that of (n= (n� s))1=2 s�1=2e�(s), which is governed by the behaviour of�
n

n� s

�1=2
1

s1=2

�
Ip1
...0p1�p�p1

�n
Ss �

s

n
Sn

o
=

�
Ip1
...0p1�p�p1

�(�
n� s
ns

�1=2
Ss �

�
s

n (n� s)

�1=2
(Sn � Ss)

)
.(2.8)

Next, noticing that�
s

n (n� s)

�1=2
(Sn � Ss)

d
=

�
n��s
n�s

�1=2 �sX
t=1

(x�t � �x)u�t

where (x�t � �x)u�t = (xn�t+1 � �x)un�t+1 and �s = n � s, we conclude that the
asymptotic distribution of the Wald test in (2:12) below is a continuous functional
of the asymptotic distribution of

Sn = max
1�s�n





�Ip1 ...0p1�p�p1� 1

s1=2
Ss





 ,
which is much more delicate to obtain than the (asymptotic) distribution of

eSn = max
1�s�n





�Ip1 ...0p1�p�p1� 1

n1=2
Ss





 .
One of the reasons is that Sn attains its maximum for relatively small values of s
and the usual crude application of the central limit theorem will not work. On the
other hand, Proposition 1 suggests that the distribution of Sn, and thus that of the
tests, will be governed by the asymptotic distribution of

= = sup
p�<s�n�p�






 1

s1=2

sX
t=1

�t






 ,
where f�tgt2Z is a p1-dimensional vector of independent normally distributed ran-
dom variables. Notice that for scalar f�tgt2Z, the distribution of = was examined
by Darling and Erdös (1956). Finally, we shall draw to our attention that when we
assume that the break may occur in the �middle�of the sample, the (asymptotic)
distribution of the conventional tests are a functional of (Brownian) eSn.
Before we describe the tests for the null hypothesis H0, we discuss the estimators

of the asymptotic covariance matrix � := limk!1 �k of the least squares estimators
in (2:5). Notice that A1 and A2 imply that � is a �nite and positive de�nite matrix.
An estimator of �n is b�n, where
(2.9) b�m = b
xm (0) b
um (0) + m�1X

j=1

�b
xm (j) + b
x0m (j)� b
um (j) ; m = p� + 1; :::; n;

being b
xm (j) and b
um (j) the estimators respectively of E�(xt � �x) (xt+j � �x)0	
and E (utut+j) such that

b
xm (j) = 1

m

m�jX
t=1

extex0t+j ; b
um (j) = 1

m

m�jX
t=1

bu(s)t bu(s)t+j .
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Here or elsewhere
nbu(s)t on

t=1
is a sequence of residuals which depends on the es-

timator of the parameters that we have employed. For instance, if we employed

the least squares estimator in (2:5), we would compute the residuals
nbu(s)t on

t=1
as

bu(s)t = eyt � b�(s)0ext + b�(s)0ezt (s). Furthermore, to simplify the notation we have
deliberately suppressed the dependence on s of b
um (j).
Notice that b�n is the time domain formulation of Robinson�s (1998) estimator

of �. Following Robinson (1998), we know that b�n is a consistent estimator of �
under A1, so that we do not need any kernel spectral density estimator to obtain a
consistent estimator of � nor to choose a bandwidth parameter to perform the test.
However, it is true that A1 is slightly stronger than we need. Indeed, Robinson
(1998) showed that for the consistency of b�n, it su¢ ces to assume that

E ("t"0t jFt�1 [ Gt ) = �"; E
�
�2t jFt [ Gt�1

�
= �2�,

where Ft and Gt are respectively the sigma-algebras generated by f"v : v � tg and
f�v : v � tg. However, because f"tgt2Z and f�tgt2Z are sequences of independent
random variables, the last displayed expressions become E ("t"0t jGt ) = �" and
E
�
�2t jFt

�
= �2�, so that A1 is not much stronger than assuming the latter.

If we would have allowed the intercept � in (2:1) to have a break, we had that
� = limn!1 n�1

Pn
t1;t2=1

E
�
wt1w

0
t2ut1ut2

�
, where w0t =

�
1; (xt � �x)

0�. In this
case, the analogue estimator of (2:9) corresponding to the component � (1; 1), i.e.
the asymptotic variance of the least squares estimator of �, is

b�n (1; 1) = b
un (0) + 2 n�1X
j=1

b
un (j) .
However, contrary to b�n in (2:9), b�n (1; 1) is not a consistent estimator of � (1; 1).
So, in this situation, we would employ e�m = b
un (0) + 2Pm�1

j=1 b
un (j) for some
m = o (n), which is a consistent estimator under Assumptions A1 and A2 as it has
been shown by Andrews (1991) among others. It is worth mentioning that instead
of b�n given in (2:9) we might have been tempting to employ

e�n = b
vn (0) + n�1X
j=1

�b
vn (j) + b
v0n (j)� ,
where b
vn (j) = n�1

Pn�j
t=1 b�tb�t+j , with b�t = extbu(s)t . However, in this case, contrary

to b�n, e�n would not be a consistent estimator for �, although it is the standard
kernel spectral density estimator e�m for some m = o (n) : Observe that if the errors
and regressors were not mutually independent, i.e. futgt2Z is a heteroscedastic
sequence but satisfying (2:6), the estimator (2:9) would be inconsistent for �. In
this case, we should employ e�n to estimate � consistently.
We now describe the test statistics.

2.1. The Wald statistic.
Suppose that we are �rst interested to test H0 against the alternative hypothesis

H1 (s) de�ned, for some p� < s � n� p�, as

H1 (s) : � 6= 0.

In this case the Wald statistic is based on whether b�(s) is signi�cantly di¤erent
than zero. Recalling our notation in (2:4) and denoting Z 0n (s)Xn = AMs with
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A =

�
Ip1
...0p1�p�p1

�
, using standard algebra we write

b�(s) = B�1n (s)A
�
X 0
n (s)Yn �MsM

�1
n X 0

nYn
	

= B�1n (s)A
�
X 0
n (s)Un �MsM

�1
n X 0

nUn
	
,

under H0, where
Bn (s) = A

�
Ms �MsM

�1
n Ms

	
A0.

Thus, we write the Wald statistic for H0 against H1 (s) as

(2.10) W (s) = e�(s)0 �AbVn (s)A0��1 e�(s),
where e�(s) = Bn (s)b�(s) andbVn (s) = sb�s + nMsM

�1
n
b�nM�1

n Ms � sMsM
�1
n
b�s � sb�sM�1

n Ms;

with b�s given in (2:9). We should bear in mind that in the computation of bVn (s),
we have ignored an estimator of E

�Ps
t=1 extutPn

t=1+s extut�. The reason is because
the latter expression is asymptotically negligible when we compare it with either
s�s or n�n.
On the other hand, if we wish to test for a break when the time of the break

�s�is unknown, we employ the standard union-intersection principle. That is, the
alternative hypothesis becomes H1 = [n�p

�

s=p�+1H1 (s), so that the hypothesis testing
becomes

(2.11) H0 against H1.

In this case, and because the dimension of the parameter vectors � and � are
respectively p and p1, we might consider the statistic fW = maxp�<s�n�p�W (s).
Now, if we use the same estimator of �, for example b�n, and we replace Ms by its
�limit�s�, we can simplify fW as

(2.12) W = max
p�<s�n�p�

�
n

n� s

�
1

s
e�(s)0 �Ab�nA0��1 e�(s).

2.2. The LM statistic.
We now describe the Lagrange Multiplier test. As we did with theWald statistic,

suppose that we wish to test H0 against the alternative hypothesis H1 (s). In this
case, the test would be based on whether or not the �rst order derivatives

bF (s)n =
sX
t=1

ext1 �eyt � ex0te��
are signi�cantly di¤erent than zero, where e� is the least squares estimator of feytgnt=1
on fextgnt=1. Now, observing thatbF (s)n = Bn (s)b�(s),
we obtain the Lagrange Multiplier as

LM (s) =

�
n

n� s

�
1

s
bF (s)0n

�
Ab�nA0��1 bF (s)n ,

where we now employ the restricted least squares residuals but = eyt � ex0te� instead
of bu(s)t to obtain b
un (j), j = 0; :::; n� 1, when computing b�n in (2:9).
Next for the hypothesis testing (2:11), the Lagrange Multiplier statistic is

(2.13) LM = max
p�<s�n�p�

LM (s) .
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The LM statistic only requires estimation under the null hypothesis and hence
we do not need to estimate the model for each point of the sample. So, in situations
where the computation of estimates of the parameters of the model is computing
intensive (such as the GMM estimator in the next section), it appears to be more
appropriate to employ (2:13).
Let�s introduce some notation. We denote log2 x = log log x and log3 x =

log log log x and T a random variable distributed as a (double) Gumbel random
variable, i.e.

(2.14) Pr fT � xg = exp
�
�2e�x

�
.

Theorem 1. Assuming A1 and A2, under H0 we have that

(a) anW1=2�bn
d! T ; (b) anLM1=2�bn

d! T ,

where an = (2 log2 n)
1=2, bn = 2 log2 n+

p1
2 log3 n� log � (p1=2), and where � (�) is

the gamma function.

Remark 1. The proof of Theorem 1 indicates that if instead of looking for the
maximum in the region p� < s � n� p�, we had considered the maximum in either
n=2 � s � n � p� or p� < s < n=2, the asymptotic distribution of the test would
have been the Gumbel distribution T1, i.e.

Pr fT1 � xg = exp
�
�e�x

�
.

2.3. Power of the Test.
This section examines the behaviour of our tests (2:12) and (2:13) under �xed

and local alternatives. For that purpose, we consider a sequence of models

(2.15) yt = �+ �0xt + g
0
nxt11 (t � s0) + ut, t = 1; :::; n

where the sequence fgngn2N only depends on n, to be made more precise below.
For simplicity of arguments, we have chosen a one-time structural break model,
although the conclusions in Theorems 2 and 3 hold true under more general type
of breaks such as when it is a gradual one or there are more than one.
We �rst examine the behaviour of our tests under �xed alternatives.

Theorem 2. Assuming A1 and A2, under model (2:15) with gn = �, we have that

Pr
n
anS1=2�bn � x

o
! 0; x 2 R

if hn � s0 � n� hn, where h�1n = o
�
log�12 n

�
, an and bn are as in Theorem 1 and

S is either the W and LM statistics in (2:12) and (2:13).

Theorem 2 shows that our tests are e¤ectively consistent irrespective of the
location of the break since log2 n < p� for the typical samples sizes n that we
encounter in real examples. Notice that, for instance when p� = 3, log2 n > p� if
n > 53� 107, which is a sample size that we do not encounter even with �nancial
data. This implies that our tests are e¤ectively consistent in contrast with the
conventional tests. Indeed, let�s consider the conventional Wald statistic

(2.16) �W = sup
[�n]�s�n�[�n]

W (s)

for some 0 < � < 1=2. Because the noncentrality parameter (function) of W (s) is

(2.17) �n (s; s0) =

�
n

n� s

�1=2
1

s1=2
g0n

(
sX
t=1

1 (t � s0)�
s

n

nX
t=1

1 (t � s0)

)
,
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apart from a constant as seen in the proof of Theorem 2, we have that when
s0 2 [[�n] ; n� [�n]],

(2.18) �n (s; s0) = O
�
n1=2 kgnk

�
.

So, recalling that we are under �xed alternatives, i.e. gn = �, (2:18) implies that
�W is a consistent test when the break is in the middle of the sample. On the other
hand, when s0 < [�n] or n� [�n] < s0, this is not always the case. Indeed consider
the case when s0 < [�n]. Because s0 < s as [�n] � s � n � [�n], the right side of
(2:17) is bounded in absolute value by

(2.19) C
1

s1=2
s0

�
n� s
n

�1=2
1 (s0 � s) � C

1

n1=2
s0

and hence if s0 = o
�
n1=2

�
, the last expression converges to zero uniformly in

[�n] � s � n� [�n]. The latter implies that, if s0 = o
�
n1=2

�
, the conventional tests

have the same asymptotic distribution as under the null hypothesis. By symmetry,
it is evident that we can draw the same conclusions when n�s0 = o

�
n1=2

�
. Hence,

the conventional tests are inconsistent when the time of the break s0 is such that
s0 = o

�
n1=2

�
or n � s0 = o

�
n1=2

�
, whereas our tests W and LM in (2:12) and

(2:13) are still consistent in those regions.
We now investigate the behaviour of our tests under local alternatives.

Theorem 3. Assuming A1 and A2, under model (2:15) we have that

(a) Pr
�
anS1=2�bn � x

	
! 0, if g�1n = o

�
s
1=2
0 log

�1=2
2 n

�
(b) Pr

�
anS1=2�bn � x

	
! exp (�2e�x) , if gn = o

�
s
�1=2
0 log

1=2
2 n

�
(c) 0 � Pr

�
anS1=2�bn � x

	
� 1, otherwise,

where an and bn are as in Theorem 1 and S is either the W and LM statistics.

We now comment on the results of Theorem 3. The theorem indicates that the
tests have non-trivial power against local alternatives of the type

(2.20) Ha : gn = �
�
log

1=2
2 n=s

1=2
0

�
.

That is, as long as the size of the break gn satis�es g�1n = o
�
s
1=2
0 log

�1=2
2 n

�
, our

tests (2:12) and (2:13) reject with probability 1 as n!1. This is in clear contrast
with conventional tests. We already know by looking at (2:17) that when the break
occurs in the �middle�of the sample, the conventional tests have non-trivial power
against local alternatives of order O

�
n�1=2

�
. However, when the break occurs at

time s0 < [n� ], the latter does not follow as we now discuss. (The treatment
and conclusions when s0 > n � [n� ] are identical and so they are not explicitly
discussed.)
Indeed, when s0 < [n� ], because s0 < s, (2:17) implies that

C�1
� s0
n1=2

�
gn � j�n (s; s0)j � C

� s0
n1=2

�
gn.

So, when the time of the break satis�es Cn1=2 < s0 < [n� ] (we already know that
when s0 = o

�
n1=2

�
the conventional tests are not consistent), we easily conclude

that �W in (2:16) has nontrivial power when gn = O
�
n1=2=s0

�
, see (2:19). The latter

implies that the conventional tests have zero relative e¢ ciency compared to ours
when s0 = o (n= log2 n) as the right side of (2:20) is o

�
s�10 n1=2

�
. On the other hand,

conventional tests are more e¢ cient when [n� ] � s0 � n� [n� ], although Theorems
2 and 3 indicate that the penalty, if at all, to pay to allow the break to be anywhere
in the sample is very negligible. Indeed, as mentioned after Theorem 2, our tests
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are e¤ectively consistent irrespective of the location of the break. Moreover, and
perhaps more importantly, there is no need to choose the value of � (or �s) to
compute the test. The latter point is relevant for practical purposes as we avoid
the undesirable property that with the same data set, two di¤erent practitioners
may conclude di¤erently by choosing two di¤erent values of � in the de�nition of
�W, as the Monte-Carlo experiment in Section 4 illustrates.

3. TESTING FOR BREAKS IN NONLINEAR MODELS

It is often the case that the relationship among economic variables occur in non-
linear form. When the nonlinearity decomposes into a function of the explanatory
variables plus an additive disturbance error term, we have the standard nonlin-
ear regression model. It is however common that the endogenous variables of the
model are subject to nonlinearities. The latter is the case with nonlinear simulta-
neous equation systems and with nonlinear transformation models. To be speci�c,
for t = 1; :::; n, let yt be a G� 1 vector of endogenous variables, xt a N � 1 vector
of explanatory variables and ut a G� 1 vector of disturbance terms such that
(3.1) ut = u (yt; xt; �t; '0) ,

for a vector-valued function u (y; x; �; '), where � and ' are a p1- and p2-dimensional
vectors of unknown parameters, respectively. By (nonlinear) transformation models
we mean that u (yt; xt; �; ') takes the form

u (yt; xt; �; ') = uy (yt; �; ')� ux (xt; �; ') .
One of these transformations is the well-known Box-Cox model, for which

uy (yt; �; ') =
�
y�t � 1

�
=�,

where � is a component of the vectors � and '. Another transformation of interest
is given in Burbidge, Magee and Robb (1988), where now

uy (yt; �; ') = arcsinh (�yt) =�,

whereas when uy (yt; �; ') = yt we have the standard nonlinear regression model.
As in Section 2, we consider the one-time structural break model, where

�t = �0 + �01 (t � s) ,

for some s 2 (1; n). We are interested in the constancy of the parameter �t, that is
�t = �0 for all t � 1, so that the null hypothesis of interest becomes
(3.2) H0 : �0 = 0 for all s: p� < s � n� p�,
where p� = 2p1 + p2. Again if p2 = 0, we would have the pure structural break
hypothesis. The alternative hypothesis H1 is the negation of the null, that is

H1 : For some s : p� < s � n� p�, �0 6= 0.
We now introduce the following regularity conditions.
A3: fxtgt2Z and futgt2Z are two sequences of random variables such that
xt = hx (�xt) and ut = �1=2 (xt)hv (�vt), where

�xt =
1X
i=0

�i"t�i,
1X
i=0

k�ik
1=&

<1 and �0 = IN

�vt =
1X
i=0

�i�t�i,
1X
i=0

k�ik
1=&

<1 and �0 = IG,

for some & � 3=2, where the sequences f"tgt2Z and f�tgt2Z satisfy As-
sumption A1. hx (�) and hv (�) are di¤erentiable vector-valued functions
everywhere in their domain of de�nition such that fxtgt2Z and fhv (�vt)gt2Z
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are L4-NED (Near Epoch Dependent) sequences of size � > 1. That is, for

a generic random variable wt, denoting kwtk4 =
�
E kwtk4

�1=4
,

kxt � E (xt j"t; :::; "t�m )k4 = O
�
m���

hv (�vt)� E �hv (�vt) ���t; :::; �t�m �

4 = O
�
m��� .

Assumption A3 relaxes the assumption of linearity of fxtgt2Z and futgt2Z in A1,
allowing for very general type of dependence. Notice that A3 allows futgt2Z to be
not only serially dependent but also heteroscedastic. A3 implies that E (ut 
 P (xt)) =
0, where P (�) is an M � 1 column vector of known functions for M � p�, and �
�
denotes the Kronecker product. Moreover, it is also true that provided enough
�nite moments on P (xt), (2:6) holds true under standard arguments.
We now give an extension of Proposition 1.

Proposition 2. Assuming A3 , we can construct on a probability space a GM -
dimensional Wiener process B (k) with independent components such that

(3.3) Pr

(
sup

1�k�n







kX
t=1

(ut 
 P (xt))��1=2k B (k)





 > a

)
� Ca�2n

�+2
2(�+1) ,

for some 1 < � < 2, and where �k = k�1 var
�Pk

t=1 ut 
 P (xt)
�
.

A common procedure to obtain estimators of the parameters is to exploit the
assumption that the disturbance error term ut is orthogonal to P (xt). That is,

E (u (yt; xt; �0 + �0; '0)
 P (xt)) = 0; t = 1; :::; s,

E (u (yt; xt; �0; '0)
 P (xt)) = 0; t = s+ 1; :::; n.

As elsewhere, see Hansen (1982), Chamberlain (1987) or Robinson (1988) among
others, we estimate the parameters by GMM for each s. To describe the estimation
procedure, some notation is useful. Let # =

�
�0; '0

�0
,  =

�
�0; #0

�0 2 � � Rp� ,
(3.4) g

(s)
t ( ) =

�
u (yt; xt; � + �; ')
 P (xt)
u (yt; xt; �; ')
 P (xt)

if 1 � t � s
if s < t � n,

with the convention that gt (#) = u (yt; xt; �; ')
 P (xt) and

�g(s)n ( ) =
nX
t=1

�
1 (t � s)
1 (s < t)

�

 g(s)t ( ) .

We de�ne for a �xed s, the GMM estimator of  , b (s), as
(3.5) b (s) = argmin

 2�
�g(s)0n ( )�(s)n �g(s)n ( ) ,

where �(s)n is a 2GM � 2GM symmetric and positive de�nite matrix
It is well-known how we can choose the weighting matrix �(s)n optimally and

then to construct the test statistics such as Wald and LM statistics for the null
hypothesis. However for expositional arguments, we follow conventional methods
as in e.g. Andrews (1993) to construct our tests. Indeed with the notation in (3:1),
let b�(s) be an estimator of the �long-run�variance of gt (#0),
(3.6) � = lim

k!1
�k =

1X
j=�1

E
�
(ut+j 
 P (xt+j)) (ut 
 P (xt))0

�
.

Then, we shall use in our analysis

�(s)n = diag

 � s
n
b�(s)��1 ;�n� s

n
b�(s)��1! ,
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which �(s)n !P diag
��
(��)

�1
; ((1� �)�)�1

��
. We compute b�(s) as

(3.7) b�(s) = b
(s) (0) + m�1X
`=1

�b
(s) (`) + b
(s)0 (`)� ,
where m is a bandwidth parameter such that m�1 +m=n! 0 as n!1 and

b
(s) (`) = 1

n

n�X̀
t=1

�
g
(s)
t

�e � g(s)t+` �e �0� ,
where e is a consistent estimator of  0. For instance that given in (3:5) but with
�
(s)
n replaced by the identity matrix. Notice that because we do not assume that

E (utu0tjxt) = � (xt) = � and/or EP (xt) = 0, we cannot compute b�(s) as in (2:9)
to obtain a consistent estimator of �.
Next, let

G� = E
�
@

@�0
g
(s)
t ( 0)

�
for � = �; '; �, 

and observe that when t � s, we have that @
@�0 g

(s)
t ( ) = @

@�0 g
(s)
t ( ) so that G� =

G�. Also, for any s, consider three di¤erent estimators of G�. One is given by

(3.8) bG0� = 1

n

nX
t=1

�
@

@�0
g
(s)
t

�
�#
��

,

where �# is the restrictive estimator of #0,

(3.9) �# = argmin
#2�

 
nX
t=1

u (yt; xt;#)
 P (xt)
!0 b��1 nX

t=1

u (yt; xt;#)
 P (xt)
!
:

The others are

bG1� = 1

s

sX
t=1

�
@

@�0
g
(s)
t

�b (s)�� ; bG2� = 1

n� s

nX
t=s+1

�
@

@�0
g
(s)
t

�b (s)�� .
Standard arguments yield that the asymptotic variance of b (s) can be estimated
by
��

s
n

��1 bG10 b��1 bG1 + �n�sn ��1 bG20 b��1 bG2 ��1, whose submatrix corresponding
to � is denoted by bV (s).
Now, we present some regularity conditions on fgtgnt=1 and thus on futg

n
t=1.

A4: (i) For 0 � �1 < �2 � 1, var
�
n�1=2

P[�2n]
t=[�1n]+1

gt (#0)
�
! (�2 � �1)�

and n�1=2
P[�2n]
t=[�1n]+1

gt (#0)
d�! N (0; (�2 � �1)�).

(ii) gt (#) is continuously di¤erentiable with probability one and

E
h
sup#2� k@gt (#) =@#k

1+"
i
<1 for some " > 0.

Assumption A4 is common in the literature, see for instance Andrews (1993).
This follows by A3 together with some smoothness conditions on u (yt; xt; � + �; ')
and moment conditions on P (xt).

3.1. The Wald and LM statistics.
We begin with the Wald test. Suppose that we were �rst interested to test H0

in (3:2) against H1 (s) de�ned as

H1 (s) : For a given s : p� < s � n� p� �0 6= 0.

In this case the Wald statistic is based on whether b�(s) in (3:5) is signi�cantly
di¤erent than zero. We write the Wald statistic for H0 against H1 (s) as W (s) =
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nb�(s)0 bV (s)�1b�(s). Now, as in Section 2.1, for the hypothesis testing in (2:11) we
employ the statistic

W = max
p�<s�n�p�

W (s) .

We now discuss and present the Lagrange Multiplier test. As we did with the
Wald statistic, suppose that we wish to test H0 against H1 (s) for a given s. In
this case, the test is based on the �rst order conditions

(3.10)
�
@

@�
�g(s)0n

�
� 
��

�(s)n �g(s)n

�
� 
�
,

where � =
�
0; �#

0�
and �# is de�ned in (3:9). Since @

@� g
(s)
t

�
� 
�
= 0 for t > s, replac-

ing bG1# by bG0# in the left side of (3:10), and setting lm (s) = A bG0# b��1Ps
t=1 gt

�e#�,
the LM statistic becomes LM (s) = n

n�s
1
s lm (s)

0
�
A bG0# b��1 bG00#A0��1 lm (s).

Now for the hypothesis testing in (2:11), we compute

LM = max
p�<s�n�p�

LM (s) .

We have now the following result.

Theorem 4. Assuming A3�A4, under H0,

(a) anW1=2�bn
d! T , (b) anLM1=2�bn

d! T ,
where an and bn are as de�ned in Theorem 1 and T is de�ned in (2:14).

4. MONTE-CARLO EXPERIMENT

This section examines the �nite sample properties of our tests as well as their rel-
ative performance when they are compared with the conventional statistics. For the
Monte-Carlo experiment we have chosen the same design of Krämer and Sonnberger
(1986) or Andrews (1992). That is, the linear regression model

(4.1) yt = �0xt + �
0xt11 ft � sg+ � (wt3)ut, t = 1; :::; n,

where futgt2Z is a sequence of independentN (0; 1) random variables, x0t1 =
�
1; (�1)t

�
and xt = (x0t1; w

0
t)
0 with fwtgt2Z a 5-dimensional vector sequence of independent

N (0; I5) random variables. The function � (�) is the same as that employed in
Hidalgo (1992), that is � (wt3) = 1 + exp (a+ bwt3). The purpose of the latter
is to examine the in�uence of the heteroscedasticity into the �nite sample per-
formance of the tests. The sample sizes for all models in the experiment were
n = 100; 200; 300; 500; 1000. Finally, to keep the number of tables manageable, we
only present the results for the Wald statistic and (a; b) = (0; 0) and (0:125; 0:4),
which we will denote respectively by �0 and �1 in Tables 4.1 to 4.4. below.
Although our main interest is to compare the performance of the statistic W

given in (2:10) to the conventional statistic

W� = max
[n� ]<s�n�[n� ]

W (s)

we have also considered the popular Brown, et al.�s (1975) CUSUM test and the
�optimal� Chow test as a benchmark. We have chosen two trimming quantities
� = :05 and :15, which we shall denote herewith asW:05 andW:15. In the de�nition
of bVn (s) we compute b�s as b�s = s�1

Ps
t=1 xtx

0
tbu2t , where fbutgnt=1 are the least

squares residuals. The estimator b�n corresponds to the White�s (1980) standard
heteroskedasticity-robust variance estimator.
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Table 4.1 describes the performance of the test using the asymptotic critical
values under the null hypothesis H0 at the 5% nominal level. The value chosen for
� in (4:1) was � = 0.

TABLE 4.1 ABOUT HERE

The results presented in Table 4.1 indicate that the statistics W, W:05 and
W:15 tend to over-reject the null hypothesis even for moderately large sample sizes.
Also Table 4.1 suggests that the choice of the trimming quantity � can have the
undesirable consequence that a researcher can draw di¤erent conclusions about H0

even with the same data set. On the other hand, the CUSUM test tends to under-
reject the null hypothesis, whereas for the �optimal� Chow test, we observe the
same type of reservations as with the conventional tests, that is, the outcome of the
test appears to depend greatly on the choice of the break point when computing the
statistic. For example, when the assumed time of the break is n1=2, the empirical
size is much higher than when the break is assumed at time n=2.
Because of the poor performance of the tests using the asymptotic critical values,

we decided to perform a bootstrap algorithm to compute the tests. Because we
allow for heteroscedasticity in our regression model (4:1), we shall distinguish the
scenarios (a; b) = (0; 0) and (a; b) = (0:125; 0:4) when computing the bootstrap.
In the case of homoscedasticity, that is (a; b) = (0; 0), we compute the standard
residual based Efron�s bootstrap. That is,

STEP 1: Compute the least squares residuals but = yt�b�0xt�b�0xt11 ft � bsg,
t = 1; ::; n, where bs is the value that minimizes the residual sum of squares.

STEP 2: Obtain a random sample of size n from the empirical distribution
function of fbutgnt=1. (Observe that as the regression model has an intercept,Pn
t=1 but = 0. Denote the random sample by fu�t g

n
t=1.

STEP 3: Compute the regression model

y�t =
b�0xt + u�t , t = 1; :::; n.

STEP 4: Compute the bootstrap statistics W�, W�
:05, W�

:15, CUSUM
� and

Chow test as with the original data, but using instead of (4:1),

y�t =
b�0xt + �0xt11 ft � sg+ u�t , t = 1; :::; n.

With heteroscedastic errors, that is when (a; b) = (0:125; 0:25), we need to modify
STEPS 2 to 4 as follows.

STEP 2�: Obtain a random sample of size n, f��t g
n
t=1, from the distribution

Pr f��t = 1g = Pr f��t = �1g = 1=2

STEP 3�: Setting ht = x0t (X
0
nXn)

�1
xt, we compute the regression model

y�t =
b�0xt + jbutj

(1� ht)
��t , t = 1; :::; n.

STEP 4�: Compute the bootstrap statistics W�, W�
:05, W�

:15, CUSUM
� and

Chow test as with the original data, but using instead of (4:1)

y�t =
b�0xt + �0xt11 ft � sg+ jbutj

(1� ht)
��t , t = 1; :::; n.

Because the distribution of, for instance, W� is not known, we approximate it
using the WARP algorithm as proposed by Giacomini, Politis and White (2007),
which we now describe. For each of the k = 1; :::;K Monte-Carlo samples, we draw
one bootstrap sample and compute the statistic, for instance W�

k , k = 1; :::;K.
Then the critical value at the 5% level is obtained from the empirical distribution
of T �k , where T �k is the statistic under consideration, for instance W�

k . We set
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K = 1000 in this Monte-Carlo study. Note that we do not need to renormalize and
recenter the statistics W and W� by an and bn: The results are given in Table 4.2.

TABLE 4.2 ABOUT HERE

Table 4.2 illustrates that there is a substantial improvement in the empirical
size, being now much closer to the nominal one of 5%. This improvement is uni-
form across all the sample sizes, models and statistics employed to test the null
hypothesis. Because of that, we decided to examine the power for the di¤erent
statistics using the bootstrap algorithm. As in Andrews (1992), the coe¢ cient(s)
subject to change are those corresponding to the trend regressors xt1. That is, we
examine the power in the model

yt = �0xt + �
0xt11 ft � sg+ � (wt3)ut, t = 1; :::; n,

as in (4:1) but with � 6= 0. We consider three scenarios, namely � = (�1; 0)0, (�1; �1)0
and (0; �1)

0 for �1 = 1:0 and 1:5. We denote the three scenarios respectively as
� = 0; �=4 and �=2 in Tables 4.3 and 4.4 below. Moreover, to gain some light about
the performance of W relative to, for example, W:05 or W:15, we have explored two
situations regarding the time of the break s. In the �rst one, the break lies in the
�middle�of the sample, whereas in the second one, the break occurs towards the
end of the sample. In particular, in Table 4.3 we present the results when s = [n� ]
for � = 1=2; 3=4; 9=10 and 19=20, whereas in Table 4.4 the break occurs at time
s = n� cn1=2, with c = 1; 2=3; 1=2 and 1=3.

TABLES 4.3 AND 4.4 ABOUT HERE

We now comment on Tables 4.3 and 4.4. Both tables appear to indicate that
the power function is independent of � although the power seems to be a¤ected
by the heteroscedasticity, being lower when (a; b) = (0:125; 0:4). Also, the tables
suggest that the power increases with the size of the break as one would expect
that the power should increase as the alternative hypothesis becomes far apart
from the null. In particular, Table 4.3 suggests that our test does not perform
worse than the conventional ones when the break is in the �middle�and the power
is very comparable to that of W:05 for all �n�and values of � , although when the
break is towards the end of the sample our test performs better than W:05. On
the other hand, W seems to perform better than W:15 in moderate sample sizes
when � � 9=10, being the deterioration of the power of the latter even bigger when
� = 19=20. Observe that when � = 9=10, the time of the break is beyond the
interval at which we compute the statistic W:15. The latter might indicate that
W:15, and in general conventional tests, is not a very useful statistic to detect a
break when it occurs towards the end (beginning) of the sample.
Next, Table 4.4 suggests thatW outperformsW:15 and alsoW:05 when the break

is at the �end�of the sample although in less degree withW:05. Notice also that the
power function is smaller with W:15 than with W:05. But more importantly, as we
can expect from the results of Section 2.3, the power function of the conventional
statistics does not appear to converge to 1, but on the contrary the power seems to
remain constant with the sample size. On the other hand, the power ofW increases
with the sample size which corroborates the consistency of W even when the break
occurs towards the end (or beginning) of the sample. So, the main conclusion that
we could draw from Tables 4.3 and 4.4 is that the statistic W appears to be more
desirable than conventional tests, not only because its power behaviour appears to
be superior but also as we do not need to choose � to compute the statistic, we avoid
the unpleasant feature that depending on � we might obtain di¤erent conclusions
with the same data set.
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5. PROOFS OF RESULTS

5.1. Proof of Proposition 1.
Let q = 6& � 3 and assuming, without loss of generality, that �x = 0, we de�ne

the sequences f _xtgt2Z and f _utgt2Z as

_xt =
X

0�i�Ct1=q
�i"t�i; _ut =

X
0�i�Ct1=q

�i�t�i,

where C is a large enough positive constant but �xed. Note that f _xtgt2Z and
f _utgt2Z behave as MA

�
Ct1=q

�
sequences. So, abbreviating f _xt _utgt2Z by f _�tgt2Z,

_�t is independent of _�s if s < t and t� s > Ct1=q. However, contrary to fxtgt2Z or
futgt2Z, f _�tgt2Z is not covariance stationary as E k _�tk

2 depends on t.
We �rst show that

(5.1) E sup
1�k�n







kX
t=1

�t �
kX
t=1

_�t






 = o
�
n

�+2
4(�+1)

�
,

where fxtutgt2Z =: f�tgt2Z. (5:1) implies that it su¢ ces to show (2:7) with f _�tgt2Z
replacing f�tgt2Z there. To that end, denote f�t � _�tgt2Z by f��tgt2Z, and likewise
f�xtgt2Z and f�utgt2Z. Assuming, without loss of generality, that n = 2d, Wu�s
(2007) Proposition 1 implies that the left side of (5:1) is bounded by
(5.2)

dX
p=0

2642d�pX
r=1

E








2prX

t=2p(r�1)+1

��t








2
375
1=2

� C
dX
p=0

2
p
3

242d�pX
r=1

r�1=3

35 1
2

= O
�
n1=3 log n

�
as we now show. Because ��t = ��xt�ut + xt�ut + �xtut, by standard inequalities, it
su¢ ces to show (5:2) with ��t replaced by, for instance, xt�ut. Now, for t1 � t2, A1
implies that

kE (xt1 �ut1xt2 �ut2)k = kE (�ut1 �ut2)E (xt1xt2)k � Ct
�1=3
1

1X
j=1

j�& (t2 � t1 + j)�&

because jE (�ut1 �ut2)j � C
P1
j=1+Ct

1=q
1

j�& (t2 � t1 + j)�& . So, because q = 6& � 3
and & > 3=2,

E








2prX

t=2p(r�1)+1

xt�ut








2

� C

2prX
t=2p(r�1)+1

t�1=3 � C22p=3r�1=3,

and (5:2) follows because n = 2d. Notice that V ar (�ut) and V ar (�xt) are O
�
t�1=3

�
.

To show that (2:7) holds true for f _�tgt2Z, we employ standard blocking argu-
ments. For that purpose, consider blocks A` =

�
t : n`�1 < t � n`�1 + `

1=�
	
and

B` =
�
t : n`�1 + `

1=� < t � n`
	
, where by de�nition n` = n`�1 + `

1=� + `1=q; ` � 1,
for some 1 < � < 2, and the sequences

�` =
X
t2A`

_�t; �` =
X
t2B`

_�t.

Notice that
Pn`
t=1 _�t =

P`
j=1

�
�j + �j

�
. Let ` be the value such that n`�1 < n � n`,

so C�1 � `n��=(�+1) � C. We �rst show that

(5.3) Pr

(
sup
1�`�`







nX̀
t=1

_�t � �1=2n`
B (n`)






 > z

)
� Cz�4n

�+2
(�+1) .
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By construction and A1, f�`g`�1 is a sequence of independently distributed random
variables with �nite 4th moments. So, by Götze and Zaitsev�s (2007) Theorem 4
(Proposition 1), we can �nd a sequence of iid normal random variables f�jgj�1
such that

Pr

8<: sup
1�`�`








X̀
j=1

�j �
X̀
j=1

E1=2
�
�j�

0
j

�
�j







 > z

9=; � Cz�4
n�=(�+1)X
j=1

E


�j

4

= Cz�4n
�+2
(�+1)

because E


�j

4 = O

�
j2=�

�
and ` � Cn�=(�+1). Next, because f�jgj�1 is a sequence

of independent random variables with �nite fourth moments, by the law of iterated

logarithms (LIL), lim1�`�`




P`
j=1 �j=`

(q+1)=2q log2 `



 = 1 a.s. by Shao�s (1995)

Theorem 3.2. So, sup1�`�`




P`
j=1 �j




 = o
�
n

�+2
4(�+1)

�
a:s: and we conclude that

(5.4) Pr

8<: sup
1�`�`








nX̀
t=1

_�t �
X̀
j=1

E1=2
�
�j�

0
j

�
�j







 > z

9=; � Cz�4n
�+2
(�+1) .

Now using the notation E
�P

t2Aj
�t
P
t2Aj

�0t

�
= E

�P
t2Aj

�t

�2
, because pro-

ceeding as with the proof of (5:2),�������E
�
�j�

0
j

�
� E

0@X
t2Aj

�t

1A2
������� � C

nj�1+j
1=�X

t=nj�1+1

t�1=3 � Cj(2��)=3�

as nj =
Pj
h=1

�
h1=� + h1=q

�
� Cj(�+1)=� , we have that

Pr

8><>: sup
1�`�`









X̀
j=1

8><>:E1=2 ��j�0j�� E1=2
0@X
t2Aj

�t

1A2
9>=>; �j








 > z

9>=>; � Cz�4n
�+2
(�+1)

using that (a� b)2 � a2�b2 for a > b > 0 and Levy�s inequality, which also implies

that Pr
n
sup1�`�`




P`
j=1 E1=2

�
�j�

0
j

�
�j




 > z
o
� Cz�4n

�+2
(�+1) . So, we conclude that

in (5:4) we can replace E1=2
�
�j�

0
j

�
by
�
E
�P

t2Aj
�t

�2
+ E

�P
t2Bj

�t

�2�1=2
and

standard arguments imply that

Pr

8>><>>: sup
1�`�`










nX̀
t=1

_�t �
X̀
j=1

0B@E
0@ X
t2Aj[Bj

�t

1A2
1CA
1=2

�j









 > z

9>>=>>; � Cz�4n
�+2
(�+1) .

However because A1 implies that E
�P

t2Aj[Bj
�t

�2
= �j1=q+j1=�

�
j1=q + j1=�

�
and

�nj � �j1=q+j1=�

 = O

�
j�1=2�

�
, by Levy�s inequality again,

Pr

8>><>>: sup
1�`�`










X̀
j=1

8>><>>:
0B@E

0@ X
t2Aj[Bj

�t

1A2
1CA
1=2

� �1=2n`

�
j1=q + j1=�

�1=29>>=>>; �j









 > z

9>>=>>;
� Cz�4n

�+2
(�+1)
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and because nj =
Pj
h=1

�
h1=� + h1=q

�
, we obtain that

�1=2n`

X̀
j=1

�
j1=q + j1=�

�1=2
�j

d
= �1=2n`

nX̀
j=1

�j ,

where � d=�denotes �distributed as�. This concludes the proof of (5:3), and that of
(2:7), when the supremum is taken over those values of k for which there exists a
k satisfying nk = k.
Hence, to �nish the proof we need to examine the approximation when n` < k <

n`+1. But by Csörgo and Révész�s (1981) Theorem 1.2, we know that

max
n`�1�j�n`

jB (n`�1)� B (j)j = O
�
`1=2� log

1=2
2 `

�
a.s.

and because E



Ps�t�r �t




4 = O
�
(r � s)2

�
, the Borel Cantelli�s theorem implies

that maxn`�1�j�n`



Pj�t�n` �t




 = O
�
n

�+2
4(�+1)

�
a.s.. This concludes the proof. �

5.2. Proof of Theorem 1.
We begin with part (a). First, recall that e�(s) is
A

(
sX
t=1

�t �MsM
�1
n

nX
t=1

�t

)
�A

(
1

s

sX
t=1

xt

sX
t=1

ut �MsM
�1
n

1

n

nX
t=1

xt

nX
t=1

ut

)
.

Because LIL implies that sups�1
���(s log2 s)�1=2Ps

t=1 wt

��� = O (1) a.s., for either

wt = xt or ut, and also that

sup
p�<s






 Ms � s�
(2s log2 s)

1=2






 = O (1) a.s.,

implies that supp�<s
s1=2

log2 s




Ms

s

�
Mn

n

��1 � Ip


 = O (1) a.s.. So uniformly in s,

(5.5) e�(s) = A

(
sX
t=1

�t �
s

n

nX
t=1

�t

 
1 +O

 
log

1=2
2 s

s1=2

!!)
a.s..

Next, because Proposition 1 and then LIL implies that supp�<s�logn


s�1=2Ps

t=1 �t


 =

op

�
log

1=2
2 n

�
, we obtain that

(5.6) an sup
p�<s<logn







�

n

(n� s) s

�1=2( sX
t=1

�t �
s

n

nX
t=1

�t

)




� bn P! �1,

whereas

(5.7) an sup
n�logn<s�n�p�







�

n

(n� s) s

�1=2( sX
t=1

�t �
s

n

nX
t=1

�t

)




� bn P! �1,

because the expression inside the absolute value is (s (n� s) =n)�1=2
Pn
t=s+1 �t +

(sn= (n� s))�1=2
Pn
t=1 �t and by LIL with �

�
t = �n�t+1,

(5.8)

sup
n�logn<s�n�p�






 1

(n� s)1=2
nX

t=s+1

�t






 = sup
p�<s<logn






 1

s1=2

sX
t=1

��t






 = op

�
log

1=2
2 n

�
.

So, proceeding as above and recalling that Robinson (1998) implies that b�n �
�n = Op

�
n�1=2 log

1=2
2 n

�
, we observe that the asymptotic distribution of anW1=2�
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bn is that of

(5.9) �W = an max
logn�s�n�logn

�W (s)
1=2 � bn,

where

�W (s) =

 
n

(n� s) s

(
sX
t=1

�t1 �
s

n

nX
t=1

�t1

)0
���1n

(
sX
t=1

�t1 �
s

n

nX
t=1

�t1

)!
,

and where A�t = �t1, that is the �rst p1 components of �t and ��n = A�nA
0.

However, after noticing that by A1,



��n ���s


 = O

�
s�1=2

�
, Proposition 1 im-

plies that

���1=2n

1

s1=2

(
sX
t=1

�t1 �
s

n

nX
t=1

�t1

)
=

1

s1=2

(
sX
t=1

�t �
s

n

nX
t=1

�t

) 
1 + op

 
1

log
1=2
2 n

!!
,

uniformly in log n � s � n� log n. Thus, we conclude that the asymptotic distrib-
ution of �W in (5:9), and that of anW1=2 � bn, is governed by that of
(5.10)

an max
logn�s�n�logn

 
n

(n� s) s

(
sX
t=1

�t �
s

n

nX
t=1

�t

)0( sX
t=1

�t �
s

n

nX
t=1

�t

)!1=2
� bn.

On the other hand, by standard functional central limit theorem (FCLT) and the
continuous mapping theorem, for any % > 0,

an sup
logn�s<n�[n%]






� sn�1=2 1

(n� s)1=2
nX

t=s+1

�t






� bn P! �1(5.11)

an sup
[n%]<s�n�logn







�
n� s
n

�1=2
1

s1=2

sX
t=1

�t






� bn P! �1.(5.12)

So, abbreviating
�
n�s
ns

�1=2
by {n (s), (5:11)� (5:12) imply that the (asymptotic)

distribution of (5:10) is that of

anmax

8<: sup
logn�s<[n%]

�����{n (s)
sX
t=1

�t

�����
2

; sup
logn�s<[n%]

�����{n (s)
sX
t=1

��t

�����
2
9=;
1=2

� bn

using (5:8) and where the sequences f�tgt�1 and f��t gt�1 are independent sequences
of mutually independent N (0; 1) random variables. However, because f�tgt�1 is a
sequence of iid Gaussian random variables, we know that

(5.13) sup
n= logn�s<[n%]

�����{n (s)
sX
t=1

�t

����� = Op (log3 n) ,

which implies that �W in (5:9) is

anmax

8<: sup
logn�s< n

logn

�����{n (s)
sX
t=1

�t

�����
2

; sup
logn�s< n

logn

�����{n (s)
sX
t=1

��t

�����
2
9=;
1=2

�bn+op (1) .

But, suplogn�s<n= logn
�����n�sn �1=2�� 1��� = O

�
log�1 n

�
, so we can conclude that

�W =anmax

8<: sup
logn�s< n

logn

����� 1s1=2
sX
t=1

�t

�����
2

; sup
logn�s< n

logn

����� 1s1=2
sX
t=1

��t

�����
2
9=;
1=2

�bn+op (1)
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Denoting by U (s�) the Ornstein-Uhlenbeck process, by the change of time s! es
�
,

we obtain that

sup
logn�s<n= logn

1

s1=2

sX
t=1

�t = sup
log2 n<s

��logn�log2 n
U (s�) .

From here the proof follows by Lemma 2.2 of Horváth (1993).
Next part (b). The proof proceeds as that of part (a) after observing that by

Robinson (1998), bF (s)n = e�(s)and b�n � � = op (1). This concludes the proof of the
theorem. �

5.3. Proof of Theorem 2.
First of all, proceeding as in the proof of Theorem 1, it su¢ ces to examine the

behaviour of

(5.14) Qn = an sup
p�<s�n�p�

Q1=2n (s)� bn,

where Qn (s) = (Un (s) + �n (s; s0))
0
(A�A0)

�1
(Un (s) + �n (s; s0)) with

(5.15) Un (s) =

�
n

n� s

�1=2
1

s1=2

 
sX
t=1

�t1 �
s

n

nX
t=1

�t1

!
,

and �n (s; s0) given in (2:17).
Now, taking for simplicity E (extex0t1) = IpA

0, we have that
(5.16)

�n (s; s0) = gn
s0
s1=2

�
n� s
n

�1=2
1 (s0 � s) + gn

� s
n

�1=2 n� s0
(n� s)1=2

1 (s < s0) ,

so that when s�10 = o
�
log�12 n

�
, because kgnk < C we can easily conclude that

j�n (s; s0)j = C
n
s0s

�1=21 (s0 � s) + s1=21 (s < s0)
o

which implies that an supp�<s�n�p� j�n (s; s0)j�bn !1. Similarly, when (n� s0)�1 =
o
�
log�12 n

�
, we also have that an supp�<s�n�p� j�n (s; s0)j � bn ! 1. From here,

the conclusion of the theorem is standard. �
Before we give the proof of Theorem 3, we shall give a lemma.

Lemma 1. Under the assumptions of Theorem 3, if supp�<s<[n=2] j�n (s; s0)j =
o
�
b
�1=2
n

�
,

Pr

(
an sup

p�<s<[n=2]

jUn (s) + �n (s; s0)j � bn < x

)

= Pr

(
an sup

p�<s<[n=2]

jUn (s)j � bn < x

)
+ o (1) .

Proof. The proof is immediate. Indeed, we have that

an sup
p�<s<[n=2]

jUn (s) + �n (s; s0)j � bn = bn

 
sup

p�<s<[n=2]

����anbn Un (s) + o �b�1n �
����� 1

!
:

Now, using the inequality jaj � jbj � ja+ bj � jaj+ jbj, the conclusion of the lemma
is standard. �
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5.4. Proof of Theorem 3.
By symmetry, we can focus on the situation when the break occurs at time

s0 � [n=2]. We shall prove parts (a), (b) and (c) simultaneously. Again, as in the
proof of Theorem 2, it su¢ ces to examine the behaviour of Qn in (5:14). The proof
will be done in three steps. Namely, when s0 lies in the interval (i) [n� ] � s0 < [n=2],
(ii) [n= log n] � s0 < [n� ] and when (iii) log2 n � s0 < [n= log n].
We begin with case (i). Because by standard arguments, sup[n� ]�s<[n=2] jUn (s)j =

Op (1) with Un (s) de�ned in (5:15), we conclude that when g�1n = o
�
s
1=2
0 = log

1=2
2 n

�
and using (5:16),

sup
[n� ]�s<[n=2]

jUn (s) + �n (s; s0)j = Op (1) +O
�
a1=2n cn

�
,

where c�1n = o (1). So, Q�1n !P 0 which implies that the test rejects with proba-
bility 1 as n increases to in�nity.

Next, proceeding as above, when gn = o
�
log

1=2
2 n=s

1=2
0

�
we obtain that

sup
[n� ]�s<[n=2]

jUn (s) + �n (s; s0)j = Op (1) + o
�
a1=2n

�
so that Qn !P �1, which implies that the �max�in the de�nition of Qn is when
s < [n� ]. Now because s < [n� ] and hence s0 > s, we obtain that

(5.17) �n (s; s0) = O

 
gn

� s
n

�1=2 n� s0
(n� s)1=2

!
= o

 �
s log2 n

n

�1=2!
.

So, an sup[n= logn]<s<[n� ] j�n (s; s0)j = o (bn) and proceeding as in the proof of The-
orem 1, cf. (5:13), we have that the �max�of Qn is achieved when s < [n= log n].

But in this region, uniformly in s, (5:17) = o
�
(log2 n= log n)

1=2
�
= o

�
b
�1=2
n

�
, so

by Lemma 1, we conclude part (b) of the theorem. From parts (a) and (b), we easily
conclude part (c) and so it is omitted. This �nishes the proof of (i).
Next we examine case (ii). By de�nition of �n (s; s0), we have that

sup
p�<s<[n= logn]

j�n (s; s0)j � Cgn
s0
n1=2

log1=2 n.

So, when g�1n = o
�
s
1=2
0 = log

1=2
2 n

�
the last displayed inequality implies that

g�1n
n1=2

s0 log
1=2 n

= o

 �
n

s0 log n log2 n

�1=2!
= o

�
b�1=2n

�
.

Hence jan�n (s; s0)j�1 = o
�
b�1n
�
, which implies that the test rejects with probabil-

ity 1 as n increases to in�nity. Next, when gn = o
�
log

1=2
2 n=s

1=2
0

�
, we have that

sup[n� ]<s<[n=2] j�n (s; s0)j = o
�
gn

s0
n1=2

�
= o

�
b
1=2
n

�
as is sup[n= logn]<s�[n� ] j�n (s; s0)j

as we now show. Indeed,
(5.18)

j�n (s; s0)j = o

 �s0
s

�
log

1=2
2 n1 (s0 < s) +

� s
n

�1=2�n� s0
s0

�1=2
log

1=2
2 n1 (s � s0)

!
,

so that sup[n= logn]<s�[n� ] j�n (s; s0)j = o
�
b
1=2
n

�
. Thus, proceeding as in the proof

of Theorem 1, cf. (5:13), we have that the �max�in Qn is when p� < s < [n= log n].

But in that region, supp�<s<[n= logn] j�n (s; s0)j = o
�
b
�1=2
n

�
and by Lemma 1, we
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conclude part (b) of the theorem. Part (c) follows easily from parts (a) and (b) and
so it is omitted.
Finally, we examine case (iii). If s0 � s, we know that j�n (s; s0)j = Cgns0=s

1=2.

So, we have that when g�1n = o
�
s
1=2
0 = log

1=2
2 n

�
,

j�n (s; s0)j�1 = o
�
(s=s0)

1=2
log

�1=2
2 n

�
which implies that inf j�n (s; s0)j�1 = o

�
log

�1=2
2 n

�
= o

�
b
�1=2
n

�
. So Q�1n !P 0

and hence the test rejects with probability 1 as n increases to in�nity. Next, when

gn = o
�
log

1=2
2 n=s

1=2
0

�
, the proof proceeds as in cases (i) or (ii) and so it is omitted.

Part (c) as before follows from the results of parts (a) and (b). �

5.5. Proof of Proposition 2.
First we notice that we can assume without loss of generality that E (utu0tjxt) =

�. Indeed, if E (utu0tjxt) = � (xt), it implies that by A3,

ut 
 P (xt) = hv (�vt)�
1=2 (xt)
 P (xt) =: hv (�vt)
 eP (xt) ,

where under suitable regularity conditions on � (xt) and P (xt), we have thateP (xt) is also a L4-NED sequence of size � > 1. See for instance Davidson
(1994, Sec. 17.3). So, from now on, we assume that � (xt) = �. The proof proceeds
similarly to that of Proposition 1. Let �g

�
�t; :::; �t�Ct1=q

�
= E

�
ut
���t; :::; �t�Ct1=q �,

�P
�
"t; :::; "t�Ct1=q

�
= E

�
P (xt)

��"t; :::; "t�Ct1=q �, f�tgt2Z = fut 
 P (xt)gt2Z and
f��tgt2Z = f�t � _�tgt2Z with _�t =�g

�
�t; :::; �t�Ct1=q

�

 �P

�
"t; :::; "t�Ct1=q

�
.

Now, A4 implies that E



Pk

t=1 ��t




2 � C
Pk
t=1 t

�2�=q. So, proceeding as in Propo-

sition 1, cf. (5:1)� (5:2), we obtain that

E sup
1�k�n







kX
t=1

��t







2

�
dX
p=0

2642d�pX
r=1

E

������
2prX

t=2p(r�1)+1

��t

������
2
375
1=2

= O
�
n1=3 log n

�
.

So, it su¢ ces to consider the strong approximation of

kX
t=1

�gu
�
�t; :::; �t�Ct1=q

�

 �P

�
"t; :::; "t�Ct1=q

�
=

kX
t=1

_�t.

But the latter follows proceeding as we did in the proof of Proposition 1 after we
observe that �gu

�
�t; :::; �t�Ct1=q

�
and �P

�
"t; :::; "t�Ct1=q

�
are MA

�
Ct1=q

�
and A3

implies that f_�tgt2Z satis�es the same conditions of f _�tgt2Z in Proposition 1. �

5.6. Proof of Theorem 4.
Because the proof of parts (a) and (b) are similarly handled, we shall explicitly

prove part (b). For that purpose, we �rst notice that

(5.19) b�(s) �� = Op

�
m�1=2

�
= op (1)

(5.20) G
�
�#
�
=: sup

p�<s








Ps
t=1

@
@#gt

�
�#
�
� sG#

s1=2 log
1=2
2 s







 = Op (1)



TESTING FOR STRUCTURAL BREAKS 23

as we now show. (5:20) holds true because mean value theorem implies that

1

s

sX
t=1

@

@#
gt

�
�#
�

=
1

s

sX
t=1

@

@#
gt (#0) +

1

s

sX
t=1

�
@

@#
gt

�
�#
�
� @

@#
gt (#0)

�

=
1

s

sX
t=1

@

@#
gt (#0) +Op

�
n�1=2

�
.

But A3, LIL and Proposition 2 imply that G (#0) = Op (1). From here, (5:20)
follows by straight arguments.
We now examine the behaviour of ((n� s) =n)1=2 s�1=2lm (s). By (5:19) and

standard procedures using
�e#� #0� and the mean value theorem for gt

�e#�,
lm� (s) =

�
n� s
ns

�1=2
A bG0#��1 sX

t=1

gt

�e#�
=

�
n� s
ns

�1=2
A bG0#��1

(
sX
t=1

gt (#0)�
s

n

nX
t=1

gt (#0)

)
.

Now proceeding as with the proof of Theorem 1,

an sup
p�<s<logn

klm� (s)k � bn
P! �1

because by (5:20), LIL and Proposition 2,

sup
p�<s<logn




 bG0# �G#


+ sup
p�<s<logn






s�1=2
sX
t=1

gt (#0)






 = op

�
log

1=2
2 n

�
.

Next, we examine the behaviour in the region n� log n < s � n� p�. But here,
(5:20) implies that an supn�logn<s�n�p� klm� (s)k � bn is governed by

an sup
n�logn<s�n�p�







�
n� s
ns

�1=2
G#�

�1

(
sX
t=1

gt (#0)�
s

n

nX
t=1

gt (#0)

)




� bn
which diverges in probability to �1 arguing as with (5:7). Now, in the region
log n � s � n � log n the proof proceeds as in Theorem 1 because (5:20) implies
that it su¢ ces to examine

sup
logn�s�n�logn







�
n� s
ns

�1=2
AG#�

�1

(
sX
t=1
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n
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 ,
which is essentially the same as (5:5). This concludes the proof of the theorem. �
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For all the tables below, �0 and �1 means respectively that � (wt3) = 1 and
1 + exp (:125 + :4wt3) and bootstrap critical values are computed based on the
WARP algorithm.

W W:05 W:15 CUSUM CHOWn1=2 CHOWn=2

n �0 �1 �0 �1 �0 �1 �0 �1 �0 �1 �0 �1

100 0.10 0.09 0.35 0.34 0.28 0.29 0.01 0.00 0.17 0.16 0.08 0.08
200 0.15 0.12 0.40 0.38 0.22 0.21 0.02 0.02 0.13 0.13 0.06 0.06
300 0.13 0.12 0.28 0.28 0.18 0.17 0.02 0.02 0.10 0.10 0.05 0.06
500 0.18 0.16 0.25 0.24 0.18 0.18 0.03 0.03 0.11 0.10 0.06 0.06
1000 0.18 0.16 0.22 0.21 0.18 0.18 0.03 0.04 0.10 0.09 0.05 0.05

Table 4.1
Proportion of rejections, in 1000 Monte-Carlo experiments, under H0

using the asymptotic critical values

W W:05 W:15 CUSUM CHOWn1=2 CHOWn=2

n �0 �1 �0 �1 �0 �1 �0 �1 �0 �1 �0 �1

100 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.07 0.04 0.03 0.07 0.06
200 0.07 0.06 0.06 0.07 0.06 0.07 0.05 0.08 0.06 0.04 0.05 0.05
300 0.05 0.05 0.04 0.04 0.04 0.05 0.05 0.07 0.03 0.03 0.04 0.04
500 0.06 0.06 0.04 0.04 0.05 0.04 0.06 0.07 0.05 0.05 0.05 0.05
1000 0.04 0.06 0.06 0.04 0.05 0.04 0.06 0.05 0.06 0.05 0.06 0.04

Table 4.2
Proportion of rejections, in 1000 Monte-Carlo experiments, under H0

using the bootstrap critical values.
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W W:05 W:15 CUSUM CHOW
s = [n� ] � �0 �1 �0 �1 �0 �1 �0 �1 �0 �1

50 1 0.82 0.20 0.82 0.20 0.96 0.28 0.77 0.22 0.99 0.46
1.5 1.00 0.42 1.00 0.42 1.00 0.57 0.98 0.43 1.00 0.82

75 1 0.69 0.16 0.69 0.16 0.86 0.22 0.16 0.08 0.96 0.38
1.5 0.99 0.36 0.99 0.36 1.00 0.48 0.35 0.10 1.00 0.70

90 1 0.44 0.12 0.44 0.12 0.25 0.10 0.04 0.06 0.57 0.17
1.5 0.77 0.22 0.77 0.22 0.47 0.14 0.02 0.05 0.91 0.30

95 1 0.12 0.07 0.12 0.07 0.09 0.07 0.05 0.06 0.28 0.08
1.5 0.17 0.09 0.17 0.09 0.12 0.07 0.04 0.06 0.50 0.12

100 1 1.00 0.22 1.00 0.26 1.00 0.60 0.99 0.42 1.00 0.81
1.5 1.00 0.67 1.00 0.78 1.00 0.94 1.00 0.77 1.00 0.99

150 1 0.96 0.21 0.97 0.27 1.00 0.48 0.48 0.14 1.00 0.65
1.5 1.00 0.57 1.00 0.63 1.00 0.86 0.86 0.25 1.00 0.95

180 1 0.68 0.17 0.70 0.19 0.56 0.14 0.07 0.08 0.95 0.32
1.5 0.98 0.34 0.99 0.38 0.88 0.27 0.07 0.09 1.00 0.61

190 1 0.43 0.14 0.43 0.14 0.14 0.06 0.04 0.07 0.64 0.17
1.5 0.78 0.24 0.79 0.25 0.25 0.09 0.04 0.07 0.92 0.31

150 1 1.00 0.45 1.00 0.64 1.00 0.79 1.00 0.58 1.00 0.92
1.5 1.00 0.93 1.00 0.99 1.00 0.99 1.00 0.93 1.00 1.00

225 1 1.00 0.34 1.00 0.51 1.00 0.69 0.73 0.21 1.00 0.85
1.5 1.00 0.83 1.00 0.92 1.00 0.97 0.99 0.40 1.00 0.99

270 1 0.82 0.20 0.96 0.26 0.79 0.20 0.08 0.07 0.99 0.50
1.5 1.00 0.47 1.00 0.63 0.98 0.43 0.15 0.08 1.00 0.86

285 1 0.56 0.15 0.67 0.14 0.16 0.08 0.04 0.07 0.83 0.23
1.5 0.91 0.29 0.97 0.34 0.33 0.13 0.03 0.07 0.99 0.53

250 1 1.00 0.59 1.00 0.93 1.00 0.97 1.00 0.82 1.00 0.99
1.5 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00

375 1 1.00 0.40 1.00 0.80 1.00 0.90 0.97 0.31 1.00 0.98
1.5 1.00 0.95 1.00 1.00 1.00 1.00 1.00 0.64 1.00 1.00

450 1 0.95 0.20 1.00 0.43 0.97 0.29 0.20 0.08 1.00 0.74
1.5 1.00 0.55 1.00 0.89 1.00 0.66 0.43 0.10 1.00 0.98

475 1 0.65 0.17 0.91 0.19 0.33 0.09 0.07 0.06 0.98 0.42
1.5 0.99 0.35 1.00 0.52 0.63 0.15 0.08 0.06 1.00 0.80

500 1 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
1.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

750 1 1.00 0.86 1.00 0.99 1.00 1.00 1.00 0.59 1.00 1.00
1.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00

900 1 1.00 0.42 1.00 0.85 1.00 0.60 0.50 0.09 1.00 0.98
1.5 1.00 0.94 1.00 1.00 1.00 0.95 0.91 0.17 1.00 1.00

950 1 0.96 0.20 1.00 0.53 0.71 0.17 0.10 0.05 1.00 0.75
1.5 1.00 0.58 1.00 0.91 0.98 0.32 0.19 0.05 1.00 0.97

Table 4.3
Proportion of rejections, in 1000 Monte-Carlo experiments,

under H1 for middle-of-sample breaks when � = 0
using the bootstrap critical values.
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W W:05 W:15 CUSUM CHOW
s = [n� ] � �0 �1 �0 �1 �0 �1 �0 �1 �0 �1

50 1 0.83 0.17 0.83 0.17 0.94 0.26 0.39 0.12 0.99 0.48
1.5 1.00 0.38 1.00 0.38 1.00 0.54 0.70 0.22 1.00 0.81

75 1 0.71 0.15 0.71 0.15 0.87 0.21 0.10 0.08 0.97 0.38
1.5 0.98 0.32 0.98 0.32 1.00 0.46 0.14 0.08 1.00 0.74

90 1 0.39 0.11 0.39 0.11 0.19 0.09 0.04 0.06 0.56 0.13
1.5 0.74 0.20 0.74 0.20 0.29 0.11 0.03 0.05 0.88 0.26

95 1 0.11 0.08 0.11 0.08 0.10 0.06 0.05 0.07 0.25 0.06
1.5 0.14 0.09 0.14 0.09 0.11 0.07 0.04 0.06 0.46 0.11

100 1 1.00 0.25 1.00 0.32 1.00 0.58 0.74 0.23 1.00 0.80
1.5 1.00 0.68 1.00 0.75 1.00 0.95 0.98 0.43 1.00 0.99

150 1 0.95 0.23 0.97 0.27 1.00 0.47 0.21 0.10 1.00 0.64
1.5 1.00 0.56 1.00 0.63 1.00 0.82 0.42 0.13 1.00 0.95

180 1 0.64 0.17 0.67 0.19 0.49 0.15 0.05 0.07 0.93 0.32
1.5 0.96 0.32 0.96 0.37 0.74 0.25 0.05 0.08 1.00 0.59

190 1 0.37 0.13 0.38 0.15 0.13 0.07 0.04 0.07 0.57 0.19
1.5 0.70 0.21 0.71 0.24 0.19 0.07 0.04 0.07 0.89 0.29

150 1 1.00 0.39 1.00 0.62 1.00 0.80 0.93 0.33 1.00 0.91
1.5 1.00 0.90 1.00 0.97 1.00 0.99 1.00 0.62 1.00 1.00

225 1 1.00 0.30 1.00 0.51 1.00 0.64 0.35 0.12 1.00 0.82
1.5 1.00 0.77 1.00 0.91 1.00 0.96 0.71 0.21 1.00 0.99

270 1 0.76 0.17 0.92 0.25 0.67 0.17 0.05 0.07 0.99 0.46
1.5 0.99 0.42 1.00 0.57 0.94 0.34 0.06 0.07 1.00 0.82

285 1 0.48 0.13 0.62 0.14 0.16 0.08 0.04 0.07 0.79 0.22
1.5 0.86 0.28 0.94 0.31 0.27 0.12 0.03 0.07 0.99 0.47

250 1 1.00 0.56 1.00 0.91 1.00 0.96 1.00 0.46 1.00 0.99
1.5 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.84 1.00 1.00

375 1 1.00 0.40 1.00 0.81 1.00 0.88 0.67 0.15 1.00 0.98
1.5 1.00 0.94 1.00 1.00 1.00 1.00 0.97 0.33 1.00 1.00

450 1 0.92 0.22 1.00 0.43 0.95 0.28 0.10 0.07 1.00 0.71
1.5 1.00 0.57 1.00 0.85 1.00 0.58 0.18 0.07 1.00 0.97

475 1 0.65 0.18 0.89 0.21 0.28 0.07 0.05 0.06 0.97 0.39
1.5 0.97 0.34 1.00 0.51 0.54 0.13 0.05 0.06 1.00 0.75

500 1 1.00 0.97 1.00 1.00 1.00 1.00 1.00 0.77 1.00 1.00
1.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00

750 1 1.00 0.85 1.00 1.00 1.00 1.00 0.98 0.26 1.00 1.00
1.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.63 1.00 1.00

900 1 1.00 0.41 1.00 0.86 1.00 0.59 0.21 0.06 1.00 0.96
1.5 1.00 0.90 1.00 1.00 1.00 0.94 0.50 0.09 1.00 1.00

950 1 0.95 0.21 1.00 0.51 0.63 0.15 0.07 0.05 1.00 0.73
1.5 1.00 0.59 1.00 0.88 0.92 0.30 0.09 0.05 1.00 0.97

Table 4.3 (Continuation)
Proportion of rejections, in 1000 Monte-Carlo experiments,
under H1 for middle-of-sample breaks when � = �=4

using the bootstrap critical values.
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W W:05 W:15 CUSUM CHOW
s = [n� ] � �0 �1 �0 �1 �0 �1 �0 �1 �0 �1

50 1 0.84 0.17 0.84 0.17 0.95 0.25 0.02 0.07 0.99 0.49
1.5 1.00 0.42 1.00 0.42 1.00 0.58 0.01 0.05 1.00 0.84

75 1 0.72 0.15 0.72 0.15 0.87 0.21 0.03 0.07 0.96 0.41
1.5 0.99 0.37 0.99 0.37 1.00 0.48 0.01 0.05 1.00 0.72

90 1 0.47 0.12 0.47 0.12 0.27 0.08 0.04 0.07 0.60 0.16
1.5 0.81 0.24 0.81 0.24 0.47 0.14 0.02 0.06 0.92 0.30

95 1 0.11 0.07 0.11 0.07 0.10 0.06 0.05 0.07 0.27 0.07
1.5 0.16 0.09 0.16 0.09 0.12 0.07 0.04 0.07 0.52 0.09

100 1 1.00 0.23 1.00 0.31 1.00 0.61 0.02 0.05 1.00 0.79
1.5 1.00 0.69 1.00 0.75 1.00 0.95 0.00 0.05 1.00 0.98

150 1 0.96 0.20 0.97 0.27 1.00 0.48 0.03 0.06 1.00 0.67
1.5 1.00 0.59 1.00 0.64 1.00 0.85 0.01 0.05 1.00 0.95

180 1 0.66 0.14 0.67 0.19 0.55 0.14 0.04 0.07 0.95 0.28
1.5 0.98 0.34 0.99 0.41 0.90 0.26 0.03 0.06 1.00 0.61

190 1 0.44 0.14 0.42 0.15 0.14 0.07 0.05 0.07 0.60 0.19
1.5 0.78 0.23 0.77 0.24 0.24 0.08 0.04 0.07 0.93 0.34

150 1 1.00 0.32 1.00 0.62 1.00 0.78 0.02 0.06 1.00 0.90
1.5 1.00 0.89 1.00 0.98 1.00 1.00 0.01 0.05 1.00 1.00

225 1 1.00 0.29 1.00 0.46 1.00 0.64 0.02 0.06 1.00 0.81
1.5 1.00 0.78 1.00 0.91 1.00 0.97 0.01 0.05 1.00 0.99

270 1 0.82 0.16 0.93 0.24 0.74 0.18 0.03 0.06 1.00 0.46
1.5 1.00 0.39 1.00 0.57 0.99 0.37 0.02 0.06 1.00 0.84

285 1 0.51 0.11 0.62 0.13 0.17 0.07 0.03 0.07 0.79 0.19
1.5 0.90 0.26 0.97 0.30 0.32 0.10 0.03 0.06 0.99 0.47

250 1 1.00 0.57 1.00 0.89 1.00 0.96 0.02 0.06 1.00 0.99
1.5 1.00 0.99 1.00 1.00 1.00 1.00 0.01 0.05 1.00 1.00

375 1 1.00 0.37 1.00 0.80 1.00 0.89 0.03 0.06 1.00 0.97
1.5 1.00 0.94 1.00 1.00 1.00 1.00 0.01 0.05 1.00 1.00

450 1 0.95 0.21 1.00 0.46 0.96 0.28 0.04 0.06 1.00 0.69
1.5 1.00 0.53 1.00 0.86 1.00 0.64 0.02 0.06 1.00 0.97

475 1 0.64 0.18 0.92 0.20 0.31 0.09 0.06 0.07 0.98 0.41
1.5 0.98 0.34 1.00 0.51 0.64 0.14 0.05 0.06 1.00 0.76

500 1 1.00 0.97 1.00 1.00 1.00 1.00 0.03 0.04 1.00 1.00
1.5 1.00 1.00 1.00 1.00 1.00 1.00 0.01 0.03 1.00 1.00

750 1 1.00 0.85 1.00 1.00 1.00 1.00 0.03 0.04 1.00 1.00
1.5 1.00 1.00 1.00 1.00 1.00 1.00 0.02 0.03 1.00 1.00

900 1 1.00 0.35 1.00 0.85 1.00 0.60 0.04 0.04 1.00 0.97
1.5 1.00 0.92 1.00 1.00 1.00 0.94 0.03 0.04 1.00 1.00

950 1 0.97 0.21 1.00 0.53 0.70 0.15 0.05 0.05 1.00 0.72
1.5 1.00 0.58 1.00 0.90 0.97 0.34 0.04 0.04 1.00 0.99

Table 4.3 (Continuation)
Proportion of rejections, in 1000 Monte-Carlo experiments,
under H1 for middle-of-sample breaks when � = �=2

using the bootstrap critical values.
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W W:05 W:15 CUSUM CHOW
s =n� cn1=2 � �0 �1 �0 �1 �0 �1 �0 �1 �0 �1

90 1 0.44 0.12 0.44 0.12 0.25 0.10 0.04 0.06 0.57 0.17
1.5 0.77 0.22 0.77 0.22 0.47 0.14 0.02 0.05 0.91 0.30

94 1 0.19 0.08 0.19 0.08 0.12 0.07 0.04 0.06 0.40 0.10
1.5 0.37 0.10 0.37 0.10 0.20 0.09 0.03 0.06 0.75 0.18

95 1 0.12 0.07 0.12 0.07 0.09 0.07 0.05 0.06 0.28 0.08
1.5 0.17 0.09 0.17 0.09 0.12 0.07 0.04 0.06 0.50 0.12

97 1 0.09 0.07 0.09 0.07 0.07 0.07 0.05 0.07 0.25 0.10
1.5 0.12 0.07 0.12 0.07 0.09 0.06 0.04 0.06 0.45 0.12

186 1 0.58 0.16 0.58 0.18 0.31 0.10 0.05 0.07 0.85 0.24
1.5 0.93 0.31 0.93 0.32 0.57 0.15 0.05 0.07 1.00 0.48

191 1 0.43 0.14 0.43 0.14 0.14 0.06 0.04 0.07 0.64 0.17
1.5 0.78 0.24 0.79 0.25 0.25 0.09 0.04 0.07 0.92 0.31

193 1 0.31 0.11 0.24 0.09 0.11 0.06 0.04 0.08 0.47 0.13
1.5 0.57 0.18 0.44 0.15 0.15 0.07 0.04 0.08 0.81 0.24

196 1 0.11 0.06 0.11 0.07 0.07 0.06 0.05 0.07 0.24 0.08
1.5 0.15 0.08 0.15 0.08 0.09 0.06 0.05 0.07 0.41 0.11

283 1 0.63 0.16 0.78 0.18 0.25 0.10 0.04 0.07 0.91 0.29
1.5 0.96 0.34 0.99 0.43 0.53 0.16 0.03 0.06 1.00 0.64

289 1 0.45 0.15 0.38 0.10 0.11 0.07 0.04 0.07 0.75 0.17
1.5 0.83 0.25 0.67 0.20 0.21 0.10 0.03 0.07 0.98 0.40

292 1 0.35 0.12 0.19 0.06 0.07 0.06 0.04 0.07 0.52 0.14
1.5 0.72 0.20 0.31 0.10 0.11 0.07 0.04 0.07 0.86 0.26

295 1 0.14 0.08 0.09 0.05 0.04 0.06 0.04 0.07 0.30 0.11
1.5 0.21 0.10 0.13 0.05 0.06 0.06 0.04 0.07 0.54 0.18

478 1 0.63 0.17 0.83 0.16 0.26 0.08 0.06 0.06 0.97 0.41
1.5 0.98 0.33 0.99 0.40 0.53 0.13 0.06 0.06 1.00 0.73

486 1 0.50 0.15 0.28 0.07 0.12 0.06 0.06 0.07 0.79 0.22
1.5 0.89 0.28 0.58 0.13 0.21 0.06 0.06 0.06 0.99 0.48

489 1 0.39 0.14 0.16 0.06 0.09 0.05 0.06 0.07 0.61 0.21
1.5 0.76 0.26 0.33 0.08 0.14 0.06 0.05 0.07 0.95 0.41

493 1 0.24 0.11 0.07 0.04 0.06 0.05 0.06 0.07 0.42 0.13
1.5 0.44 0.18 0.11 0.05 0.08 0.05 0.06 0.07 0.74 0.27

969 1 0.80 0.17 0.82 0.17 0.30 0.09 0.07 0.05 1.00 0.55
1.5 1.00 0.40 0.99 0.43 0.58 0.15 0.08 0.05 1.00 0.87

979 1 0.61 0.12 0.43 0.09 0.16 0.04 0.06 0.05 0.98 0.38
1.5 0.97 0.25 0.73 0.15 0.29 0.08 0.06 0.05 1.00 0.71

985 1 0.46 0.12 0.18 0.07 0.10 0.04 0.06 0.05 0.90 0.23
1.5 0.89 0.18 0.39 0.09 0.15 0.05 0.06 0.05 1.00 0.48

990 1 0.36 0.11 0.10 0.05 0.07 0.03 0.06 0.05 0.61 0.16
1.5 0.74 0.18 0.15 0.07 0.10 0.03 0.06 0.05 0.93 0.30

Table 4.4
Proportion of rejections, in 1000 Monte-Carlo experiments,

under H1 for end-of-sample breaks when � = 0
using the bootstrap critical values.



30 JAVIER HIDALGO AND MYUNG HWAN SEO

W W:05 W:15 CUSUM CHOW
s =n� cn1=2 � �0 �1 �0 �1 �0 �1 �0 �1 �0 �1

90 1 0.39 0.11 0.39 0.11 0.19 0.09 0.04 0.06 0.56 0.13
1.5 0.74 0.20 0.74 0.20 0.29 0.11 0.03 0.05 0.88 0.26

94 1 0.21 0.08 0.21 0.08 0.14 0.07 0.04 0.06 0.41 0.10
1.5 0.30 0.11 0.30 0.11 0.18 0.09 0.03 0.06 0.73 0.20

95 1 0.11 0.08 0.11 0.08 0.10 0.06 0.05 0.07 0.25 0.06
1.5 0.14 0.09 0.14 0.09 0.11 0.07 0.04 0.06 0.46 0.11

97 1 0.08 0.06 0.08 0.06 0.08 0.06 0.05 0.07 0.20 0.07
1.5 0.08 0.06 0.08 0.06 0.09 0.05 0.04 0.07 0.43 0.10

186 1 0.54 0.17 0.56 0.18 0.30 0.11 0.04 0.07 0.85 0.24
1.5 0.90 0.28 0.92 0.34 0.49 0.17 0.04 0.07 1.00 0.46

191 1 0.37 0.13 0.38 0.15 0.13 0.07 0.04 0.07 0.57 0.19
1.5 0.70 0.21 0.71 0.24 0.19 0.07 0.04 0.07 0.89 0.29

193 1 0.18 0.10 0.20 0.10 0.10 0.06 0.04 0.08 0.44 0.14
1.5 0.27 0.12 0.28 0.14 0.13 0.08 0.04 0.07 0.75 0.24

196 1 0.10 0.08 0.11 0.08 0.07 0.06 0.04 0.07 0.20 0.07
1.5 0.11 0.08 0.11 0.09 0.10 0.07 0.04 0.07 0.38 0.12

283 1 0.55 0.14 0.69 0.17 0.21 0.09 0.04 0.07 0.86 0.28
1.5 0.90 0.31 0.96 0.38 0.36 0.14 0.03 0.07 1.00 0.60

289 1 0.39 0.12 0.25 0.08 0.10 0.06 0.04 0.07 0.67 0.17
1.5 0.74 0.22 0.42 0.15 0.15 0.07 0.03 0.07 0.96 0.35

292 1 0.34 0.11 0.15 0.06 0.06 0.06 0.04 0.07 0.52 0.12
1.5 0.67 0.19 0.24 0.09 0.09 0.06 0.03 0.07 0.82 0.22

295 1 0.09 0.06 0.07 0.05 0.05 0.05 0.04 0.07 0.29 0.09
1.5 0.09 0.07 0.07 0.05 0.05 0.06 0.04 0.07 0.48 0.15

478 1 0.63 0.17 0.78 0.16 0.24 0.07 0.06 0.06 0.97 0.37
1.5 0.96 0.34 0.98 0.39 0.44 0.12 0.05 0.06 1.00 0.68

486 1 0.46 0.16 0.27 0.07 0.11 0.05 0.06 0.07 0.76 0.21
1.5 0.84 0.27 0.45 0.12 0.17 0.06 0.05 0.06 0.99 0.45

489 1 0.37 0.15 0.14 0.05 0.08 0.04 0.06 0.07 0.56 0.21
1.5 0.71 0.23 0.20 0.07 0.10 0.05 0.05 0.06 0.91 0.36

493 1 0.15 0.11 0.06 0.05 0.05 0.05 0.06 0.07 0.40 0.16
1.5 0.19 0.14 0.07 0.05 0.07 0.05 0.05 0.07 0.69 0.25

969 1 0.75 0.17 0.73 0.18 0.25 0.07 0.06 0.05 1.00 0.51
1.5 0.99 0.38 0.95 0.39 0.47 0.13 0.06 0.05 1.00 0.86

979 1 0.57 0.13 0.33 0.10 0.14 0.05 0.06 0.05 0.98 0.39
1.5 0.94 0.29 0.57 0.17 0.23 0.07 0.06 0.05 1.00 0.68

985 1 0.45 0.12 0.16 0.06 0.09 0.05 0.06 0.05 0.87 0.25
1.5 0.82 0.20 0.26 0.09 0.14 0.06 0.06 0.05 0.99 0.49

990 1 0.37 0.12 0.10 0.05 0.07 0.04 0.06 0.05 0.64 0.17
1.5 0.71 0.17 0.13 0.07 0.10 0.05 0.06 0.05 0.92 0.36

Table 4.4 (continuation)
Proportion of rejections, in 1000 Monte-Carlo experiments,

under H1 for end-of-sample breaks when � = �=4
using the bootstrap critical values.
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W W:05 W:15 CUSUM CHOW
s =n� cn1=2 � �0 �1 �0 �1 �0 �1 �0 �1 �0 �1

90 1 0.47 0.12 0.47 0.12 0.27 0.08 0.04 0.07 0.60 0.16
1.5 0.81 0.24 0.81 0.24 0.47 0.14 0.02 0.06 0.92 0.30

94 1 0.20 0.09 0.20 0.09 0.14 0.07 0.05 0.07 0.42 0.10
1.5 0.35 0.13 0.35 0.13 0.23 0.09 0.04 0.06 0.75 0.21

95 1 0.11 0.07 0.11 0.07 0.10 0.06 0.05 0.07 0.27 0.07
1.5 0.16 0.09 0.16 0.09 0.12 0.07 0.04 0.07 0.52 0.09

97 1 0.09 0.06 0.09 0.06 0.09 0.06 0.05 0.07 0.22 0.08
1.5 0.12 0.07 0.12 0.07 0.09 0.06 0.04 0.07 0.44 0.10

186 1 0.57 0.14 0.56 0.17 0.31 0.10 0.05 0.07 0.86 0.22
1.5 0.93 0.32 0.93 0.34 0.58 0.14 0.04 0.06 1.00 0.47

191 1 0.44 0.14 0.42 0.15 0.14 0.07 0.05 0.07 0.60 0.19
1.5 0.78 0.23 0.77 0.24 0.24 0.08 0.04 0.07 0.93 0.34

193 1 0.32 0.12 0.23 0.10 0.11 0.06 0.05 0.07 0.47 0.15
1.5 0.57 0.18 0.40 0.14 0.16 0.06 0.04 0.07 0.80 0.26

196 1 0.11 0.08 0.10 0.08 0.07 0.06 0.05 0.07 0.20 0.09
1.5 0.14 0.08 0.13 0.08 0.08 0.07 0.04 0.07 0.41 0.12

283 1 0.57 0.13 0.73 0.17 0.24 0.09 0.03 0.07 0.89 0.26
1.5 0.95 0.31 0.99 0.35 0.49 0.14 0.03 0.06 1.00 0.56

289 1 0.46 0.12 0.34 0.08 0.11 0.05 0.04 0.07 0.70 0.17
1.5 0.84 0.21 0.68 0.18 0.20 0.08 0.03 0.07 0.97 0.33

292 1 0.36 0.10 0.15 0.06 0.07 0.05 0.04 0.07 0.50 0.12
1.5 0.71 0.18 0.31 0.09 0.12 0.06 0.04 0.07 0.85 0.23

295 1 0.14 0.07 0.08 0.05 0.06 0.05 0.04 0.07 0.29 0.09
1.5 0.21 0.09 0.10 0.05 0.06 0.05 0.04 0.07 0.57 0.15

478 1 0.63 0.17 0.81 0.18 0.26 0.08 0.06 0.06 0.97 0.38
1.5 0.98 0.33 0.99 0.41 0.52 0.11 0.05 0.06 1.00 0.70

486 1 0.48 0.13 0.29 0.08 0.12 0.06 0.06 0.07 0.79 0.21
1.5 0.86 0.28 0.58 0.14 0.21 0.07 0.05 0.06 0.99 0.45

489 1 0.39 0.12 0.16 0.07 0.08 0.06 0.06 0.07 0.58 0.20
1.5 0.79 0.22 0.33 0.10 0.13 0.07 0.06 0.06 0.94 0.40

493 1 0.23 0.11 0.09 0.05 0.06 0.05 0.06 0.07 0.40 0.14
1.5 0.46 0.17 0.14 0.07 0.07 0.06 0.06 0.07 0.74 0.24

969 1 0.81 0.18 0.80 0.21 0.30 0.08 0.05 0.05 1.00 0.56
1.5 1.00 0.41 0.99 0.43 0.60 0.13 0.05 0.04 1.00 0.88

979 1 0.63 0.16 0.40 0.11 0.16 0.05 0.06 0.05 0.98 0.39
1.5 0.97 0.28 0.73 0.21 0.29 0.07 0.06 0.04 1.00 0.75

985 1 0.50 0.14 0.21 0.07 0.10 0.05 0.06 0.05 0.90 0.24
1.5 0.90 0.21 0.37 0.11 0.17 0.06 0.05 0.05 1.00 0.54

990 1 0.39 0.13 0.12 0.05 0.07 0.05 0.06 0.05 0.65 0.18
1.5 0.76 0.22 0.18 0.07 0.09 0.05 0.06 0.05 0.95 0.35

Table 4.4 (continuation)
Proportion of rejections, in 1000 Monte-Carlo experiments,

under H1 for end-of-sample breaks when � = �=2
using the bootstrap critical values.
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