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Abstract

We analyze a simple dynamic framework where sellers are capacity constrained over the length of
the game. Buyers act strategically in the market, knowing that their purchases may affect future
prices. The model is examined when there are single and multiple buyers, with both linear and
non-linear pricing. We find that, in general, there are only mixed strategy equilibria and that sellers
get a rent above the amount needed to satisfy the market demand that the other seller cannot meet.
Buyers would like to commit not to buy in the future or hire agents with instructions to always buy
from the lowest priced seller. Furthermore, sellers’ market shares tend to be maximally asymmetric
with high probability, even though they are ex ante identical.

JEL numbers: D4, L1
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1 Introduction

In many durable goods markets, sellers who have market power and intertemporal capacity con-

straints face strategic buyers who make purchases over time to match their demands. There may

be a single buyer, as in the case of a government that purchases military equipment or awards

construction projects, such as for bridges, roads, or airports, and chooses among the offers of a few

large available suppliers. Or, there may be a small number of large buyers, such as in the case of

airline companies that order aircraft or that of shipping companies that order cruise ships, where

the supply could come only from a small number of large, specialized companies.1 The capacity

constraint may be due to the production technology: a construction company that undertakes to

build a highway today may not have enough engineers or machinery available to compete for an

additional large project tomorrow, given that the projects take a long time to complete; a similar

constraint is faced by an aircraft builder that accepts an order for a large number of aircraft. Or,

the capacity constraint may simply correspond to the flow of a resource that cannot exceed some

level: thus, if a supplier receives a large order today, he will be constrained on what he can offer in

the future. This effect may be indirect, if the resource is a necessary ingredient for a final product,

with no substitutes (as often in the case of pharmaceuticals). Cases like the ones mentioned above

suggest a need to study dynamic oligopolistic price competition under capacity constraints, when

buyers are also strategic. Although this topic is both important and interesting, it has not been

treated yet in the literature.

To obtain some first insights into the problem, consider the following simple setting. Take two

sellers of some homogeneous product, say aircraft, to fix ideas. Each seller cannot supply more

than a given number of aircraft over two periods. Suppose that there is only one large buyer in this

market, this may be the defense department, with a demand that exceeds the capacity of each seller

but not that of both sellers combined. Let the period one prices be lower for one seller than the

1Anton and Yao (1990) provide a critical survey of the empirical literature on competition in defense
procurement - see also Burnett and Kovacic (1989) for an evaluation of relevant policies. In an empirical
study of the defense market, Greer and Liao (1986, p.1259) find that “the aerospace industry’s capacity
utilization rate, which measures propensity to compete, has a significant impact on the variation of defense
business profitability and on the cost of acquiring major weapon systems under dual-source competition”.
Ghemawat and McGahan (1998) show that order backlogs, that is, the inability of manufacturers to supply
products at the time the buyers want them, is important in the U.S. large turbine generator industry and
affects firms’ strategic pricing decisions. Likewise, production may take significant time intervals in several
industries: e.g., for large cruise ships, it can take three years to build a single ship and an additional two years
or more to produce another one of the same type. Jofre-Bonet and Pesendorfer (2003) estimate a dynamic
procurement auction game for highway construction in California - they find that, due to contractors’ capacity
constraints, previously won uncompleted contracts reduce the probability of winning further contracts.
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other. Then, if the buyer’s purchases exhaust the capacity of the low priced seller, only the other

seller will remain active in the second period and, unconstrained from any competition, he will

charge the monopoly price. A number of questions arise. Anticipating such behavior, how should

the buyer behave? Should he split his orders in the first period, in order to preserve competition

in the future, or should he get the best deal today? Given the buyer’s possible incentives to split

orders, how will the sellers behave in equilibrium? Should sellers price in a way that would induce

the buyer to split or not to split his purchases between the sellers? How do sellers’ equilibrium

profits compare with the case of only a single pricing stage? Does the buyer have an incentive to

commit to not making purchases in the future? Are there incentives for the buyer to vertically

integrate with a seller?

An additional set of questions emerges when there is more than one buyer. Would the buyers

like to coordinate their purchases? Is buyer coordination possible in equilibrium? Are the seller

equilibrium market shares identical, since the sellers are identical?

We consider a set of simple dynamic models with the following key features. There are two

sellers, each with fixed capacity over two periods. Sellers set first-period prices and then buyers

decide how many units they wish to purchase from each seller. The situation is repeated in the

second period, given the remaining capacity of the firms; sellers set prices and buyers decide which

firm to purchase from. We examine the cases of a single and of two buyers. In each case, we

consider linear, as well as non-linear pricing.

Our main results are as follows. Under monopsony and linear pricing, a pure strategy subgame

perfect equilibrium fails to exist. This is due to a combination of two phenomena. First, the

buyer has an incentive to split his orders in the first period if the prices are close in order to keep

competition alive in the second period. This in turn, gives the sellers incentives to raise their prices.

Second, if prices get “high”, each seller has a unilateral incentive to lower his price, and sell all his

capacity. We characterize the mixed strategy equilibrium and show that the buyer may have a strict

incentive to split his orders, in equilibrium. Also, the sellers make a positive economic rent above

the profits of serving the buyer’s residual demand, if the other seller sold all of his units. There

are three main implications that follow from this result. First, the buyer would like to commit

to not make purchases in the second period, so as to induce strong price competition in the first

period. This is consistent with the practice in the airline industry, where airliners have options to

buy airplanes in the future. Second, the buyer has the incentive to instruct its purchasing agents

to always buy from the lowest priced firm. This is consistent with many government procurement
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rules that do not allow discretion to its purchasing officers. In other words, in equilibrium, the

buyer is hurt by his ability to behave strategically over the two periods and would like to commit

to myopic behavior, if possible. Finally, the firm has a strict incentive to vertically integrate with

one of the suppliers. Under non-linear pricing, we show that the ability of each seller to price each

of his units separately allows us to derive a pure strategy equilibrium where the sellers make no

rents and the buyer does not have an incentive to commit not to buy in the future. These results

are due to the fact that the seller’s profitability on each unit can be separated with non-linear

pricing. We study both linear and non-linear pricing to understand the subtle potential differences

that may arise from different seller pricing strategies. We do not attempt to pick what type of

pricing will arise in equilibrium.

In the duopsony case, we find that it is now the buyers that must play a mixed strategy,

randomizing between which of the two sellers they should buy from in period 1 using either linear

or non-linear prices, while it is not required that they split orders in equilibrium. There must be the

potential of buyers not coordinating their orders in period one, despite the fact that buyers would

like to coordinate and split their orders evenly among sellers to maximize competition between the

sellers in period two: competition in period two is most stiff when sellers’ period two capacities

are close. This inability of buyers to coordinate in equilibrium, makes it highly likely that sellers’

markets shares in both the first period and for the entire game can be quite asymmetric, even

though sellers are ex ante identical. In particular, we show that there is a 50% chance that the

final market shares will be extreme, in the sense that one of the sellers will sell all of his capacity,

while half of the other seller’s capacity will not be used. This is due to the fact that the buyers

are strategic and have to play a mixed strategy in equilibrium. We also find, as in the single buyer

case, that the sellers make positive rents if the buyers cannot commit not to buy in the future.

Our paper is related to a few distinct literatures. First, to the literature on pricing with capacity

constraints. It is already known from the classic work of Edgeworth (1897) that capacity constraints

may dramatically alter the nature of price competition in oligopolistic markets, possibly leading to

a “nonexistence of equilibrium” or, as sometimes described, “cycles”.2 Mixed strategy pricing equi-

libria under capacity constraints are derived in Beckmann (1965), Levitan and Shubik (1972) and

Osborne and Pitchik (1986).3 Dudey (1992) derives the price equilibrium when capacity-constrained

2Maskin and Tirole (1988) provide game theoretic foundations for “Edgeworth cycles” in a somewhat
different setting, without capacity constraints.

3Kirman and Sobel (1974) prove equilibrium existence in a dynamic oligopoly model with inventories.
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sellers face buyers that arrive to the market sequentially. There is a well-known literature on firms

that choose their capacities, in anticipation of an oligopoly competition stage; see e.g. Dixit (1980),

Spulber (1981), Kreps and Scheinkman (1984), Davidson and Deneckere (1986a), Deneckere and

Kovenock (1996), and Allen, Deneckere, Faith, and Kovenock (2000).4 Relative to these papers,

a crucial difference in our analysis is that we consider strategic behavior also on the buyers’ side

and that sellers have intertemporal capacity constraints. In particular, we examine how the sellers’

capacities evolve over time, as interrelated with their pricing strategies and the buyers’ decisions.

A second related set of papers examines when a monopsonist influences the degree of competition

among (potential) suppliers, in particular they focus on the buyer’s incentives to act strategically

when facing competing sellers, as in the context of “split awards” and “dual-sourcing”. Rob (1986)

studies procurement contracts that would allow selection of an efficient supplier, while also providing

incentives for product development. Anton and Yao (1987, 1992) consider models where a buyer

can buy either from one seller or split his order and buy from two sellers. They find conditions

under which a buyer will split his order and characterize seemingly collusive equilibria. Related

studies on dual-sourcing are offered by Riordan and Sappington (1987) and Demski, Sappington

and Spiller (1987). Our work differs in two important ways. The intertemporal links are at the

heart of our analysis: the key issue is how purchasing decisions today affect the sellers’ remaining

capacities tomorrow. In contrast, the work mentioned above focuses on static issues and relies

on cost asymmetries. Strategic purchases from competing sellers and a single buyer in a dynamic

setting are also studied under “learning curve” effects; see e.g. Cabral and Riordan (1994) and

Lewis and Yildirim (2002, and 2004 for switching costs). One general difference that should be

noted is that, in our case, by buying a larger quantity from one seller you make that seller less

competitive in the following period (at the extreme case: inactive) - in the learning curve case, the

more you buy from a seller, the more competitive you make that seller, as his unit cost decreases.5

Gehrig (1990, ch.2) studies non-linear pricing with capacity constrained sellers. Lang and Rosenthal (1991)
characterize mixed strategy price equilibria in a game where contractors face increasing cost for each addi-
tional unit they supply.

4A number of papers have also analyzed the effect of capacity constraints on collusion - see e.g. Brock
and Scheinkman (1985), Davidson and Deneckere (1986b), Lambson (1987), Rotemberg and Saloner (1989),
and Compte, Jenny and Rey (2002), to mention a few.

5Bergemann and Välimäki (1996, 2002) examine models where in each period sellers set prices and
buyers choose which seller to purchase from. Buyers’ decisions affect how competitive each seller could be
in subsequent periods, however this is in a different setting where the action comes from experimentation
and learning, not from capacities. Strategic competition with capacity constraints is also part of Yanelle’s
(1997) model of financial intermediation.
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Finally, our analysis has implications related to vertical integration strategies and is, thus, related

to the literature on the issue (see e.g. Innes and Sexton, 1994, on strategic buyers and exclusionary

contracts, Ma, 1997, for an analysis of vertical integration under option contracts, and Rey and

Tirole, 2003, on foreclosure).

A third set of papers that our work is related to is on bilateral oligopolies, where both sellers

and buyers are large players and act strategically. While in many important markets players have

significant power on both sides of the market, such situations have not generally received enough

attention.6 In our analysis, with two sellers, we examine both the case of a single and that of

multiple buyers and we emphasize that the sellers’ behavior changes qualitatively when we move

from the former case to the latter.

The remainder of the paper is organized as follows. The model is set up in Section 2. Section

3 characterizes the equilibrium with one buyer and linear pricing. In Section 4 we characterize the

equilibrium with one buyer and non-linear pricing. The duopsony case is presented in Section 5,

first under linear and then under non-linear prices. We conclude in Section 6. Some proofs, not

required for the continuity of the presentation, and other material, not directly related to the core

arguments, are relegated to an Appendix.

2 The basic model

The game lasts two periods. There are N + 2 firms in total, two sellers and N buyers. We will

consider the case of monopsony (N = 1) and that of duopsony (N = 2). The product is perfectly

homogeneous and the sellers are identical. Each seller has a capacity to produce, for the two

periods, a total of 2N units at marginal cost of 0.7 The goods are durable over the lifetime of the

model. A buyer values each the first two units V in each of the periods and a third unit at V3 in

period 2. We assume that V ≥ V3 > 0.8 The key features about the relative demands of consumers
and potential supplies by firms is that no firm can supply the entire market, but the total available

6Different aspects of bilateral oligopoly have been studied in a small but growing literature - see e.g. Horn
and Wolinsky (1988), Dobson and Waterson (1997), Bloch and Ghosal (1997), Hendricks and McAfee (2000)
and Inderst and Wey (2003).

7This is independent of when these units are supplied during the two periods.

8This specification is consistent with growing demand. In general, the first and second units could have
different values (say V1 ≥ V2). Also, we could allow the demand of the third unit to be random. It is
straightforward to introduce either of these cases in the model, with no real change in the results, only at
the cost of some additional notation.
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capacity by the two sellers is larger than the potential market demand of the buyers. The basic

economic results would survive in more general environments with these features.

In each period, each of the sellers sets a price for each of his available units of capacity.9 We

consider competition both with linear and with non-linear pricing. For simplicity, we assume non-

discriminatory pricing by sellers.10 Each buyer chooses how many units he wants to purchase from

each seller at the price specified, as long as the seller has enough capacity. If the demand by buyers

is greater than a seller’s capacity, then they are rationed. The rationing rule that we use is that

each buyer is equally likely to get his order filled. The rationed buyers can buy from the other

seller as many units as they want.11 We assume that sellers commit to their prices and that all

information is common knowledge and symmetric. All firms have a common discount factor δ. In

each case examined, we are looking for a symmetric subgame perfect equilibrium.12

The interpretation of the timing of the game is straightforward in case the sellers’ supply comes

from an existing stock (either units that have been already produced, or some natural resource that

the firm controls). In case there is production taking place in every period, there are more than

one possible interpretations of the intertemporal capacity constraint, depending on the details of

the technology. One simple way to understand the timing, in such a case, is illustrated in Figure

1. The idea here is that actual production takes time. Thus, orders placed in period one are not

9Regarding the assumption that sellers set prices, note that, even in a monopsony situation, we often see
the sellers making offers, like when the department of defense (DOD) is purchasing weapon systems. The
DOD may do this to solve possible agency problems between the agent running the auction and the DOD.
If an agent can propose offers, it is much easier for sellers to bribe the agent to make high offers than if
sellers make offers, which can be observed by the regulator. This is because the sellers can bribe the agent
to make high offers to each of them, but competition between the sellers would give each seller an incentive
to submit a bid to grab all the sells and it would be quite difficult for the agent to accept one offer that was
much higher than another. Further, when there are more than one buyers, this assumption seems the most
natural.

10Clearly, this assumption does not matter when there is a single seller. The flavor of our results would
be the same if discriminatory pricing was allowed with multiple buyers.

11Our results would not change qualitatively if the sellers could choose which buyer to ration, as long as
each buyer has a positive probability of being rationed.

12To clarify, given the discounting and demand structure, the maximum value that a buyer could obtain
over both periods and evaluated at the beginning of the first period is equal to 2V (1 + δ) + δV3 (if the units
were sold at zero price). It is also convenient to observe, before proceeding to the analysis, that negative
prices cannot be part of an equilibrium. Suppose in equilibrium some seller charged a negative price in some
period. Then, either a buyer would have a strict incentive to buy all the available units of that seller or
would choose to wait and purchase those units at a later time if the relevant price was expected to be even
lower. Either way, this seller could do better by increasing his price to zero, thus increasing his profit from a
negative level to zero. This observation allows us to simplify the presentation of the arguments, by focusing
on non-negative prices.
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Production of units ordered at t = 1

   Production of units ordered at t = 2

t = 0 t = 1 t = 2

Sellers
set
prices

Buyers place
their orders.
Production of
units ordered in
period 1 starts.

Buyers place their
orders.
Production of
units ordered in
period 2 starts.

Sellers
set
prices

Figure 1: Timing

completed before period two orders arrive. Since each seller has the capacity to only work on a

limited number of units at a time, units ordered in period one restrict how many units could be

ordered in period two. In such a case, since our interpretation involves delivery after the current

period, the buyers’ values specified in the game should be understood as the present values for

these future deliveries (and the interpretation of discounting should be also accordingly adjusted).

3 Monopsony with linear pricing

We first examine the single buyer case (N = 1), that is, monopsony and consider competition

when the two sellers are restricted to linear pricing. We then allow for non-linear pricing under

monopsony in the next section.

We are constructing a subgame perfect equilibrium, and thus we work backwards by starting

from period 2.

3.1 Second period

There are several cases to consider, depending on how many units the buyer has bought from each

seller in period one. We will use, throughout the paper, the convention of calling a seller with i

units of remaining capacity seller i.

Buyer bought two units in period 1. If the buyer bought a unit from each of the sellers in period

1, then the price in period 2 would be 0, due to Bertrand competition. If the buyer bought both

units from the same firm, then the other firm would be a monopolist in period 2 and charge V3.

Thus, period 2 equilibrium profit of a seller that has one remaining unit of capacity is 0 and that

of a seller with two remaining units of capacity is V3.
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Buyer bought one unit in period 1. In this case, the buyer has demand for two units, one of

the sellers has capacity of 1 unit, seller 1, while the other has a capacity of 2 units, seller 2. We

demonstrate that there is no pure strategy equilibrium in period 2 by the following Lemma.

Lemma 1 If the buyer bought one unit in period 1 in the linear pricing monopsony model, then

there is no pure strategy equilibrium in period 2.

P roof. First, notice that the equilibrium cannot involve seller 2 charging a zero price: that

seller could increase his profit by raising his price (as seller 1 does not have enough capacity to

cover the buyer’s entire demand). Thus, seller 1 would also never charge a price of zero. Suppose

now that both sellers charged the same positive price. One, if not both, sellers have a positive

probability of being rationed. A rationed seller could defect with a slightly lower price and raise

his payoff. Suppose that the prices are not equal: pi < pj ≤ V3. Clearly, seller i could increase his
payoff by increasing his price since he still sells the same number of units. Similarly, seller i can

improve his payoff by increasing his price if pi < V3 ≤ pj . Finally, if V3 ≤ pi < pj , seller j makes 0
profit and can raise his payoff by undercutting firm i0s price.

There is a unique mixed strategy equilibrium which we provide in the following Lemma (see

also Figure 2 for an illustration).

Lemma 2 If the buyer bought one unit in period 1 in the linear pricing monopoly model, then

there is a unique mixed strategy equilibrium. Both sellers mix on the interval [V3/2,V3] . Seller 10s

price distribution is F1(p) = 2− V3
p , with an expected profit of V3/2. Seller 2 has price distribution

F2(p) = 1 − V3
2p for p < V3, with a mass of 1/2 at price V3, and expected profit equal to V3. Seller

2’s price distribution first order stochastically dominates seller 1’s distribution.

P roof. See Appendix A1.

By Lemma 2, we obtain two key insights that run throughout the paper. The first concerns the

calculation of the equilibrium sellers’ profits and the second regards the ranking of the sellers’ price

distributions. The seller with two units of capacity can always guarantee himself a payoff of at least

V3, since he knows that, no matter what the other seller does, he can always charge V3 and sell

at least one unit. This is the high-capacity seller’s security profit level. The high-capacity seller’s

security profit puts a lower bound on the price offered in period 2. In the situation examined at

Lemma 2, the lowest price is V3/2: the seller will never charge a lower price because he can at
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Figure 2: Mixed strategy equilibrium

most sell two units and would do better by selling one unit at V3. This puts a lower bound of

V3/2 on the period 2 profit of seller 1, the low-capacity seller; this, in turn, is equal to the profit

that the low-capacity seller can guarantee to himself, given that the high-capacity seller will not

choose a strictly dominated price.13 Competition between the two sellers fixes their profits at their

respective security levels.14

The second insight deals with the incentives for aggressive pricing. We find that the seller with

larger capacity will price less aggressively than the seller with smaller capacity in period 2. The

larger capacity seller knows that he will make sales even if he is the highest price seller, while the

smaller capacity seller makes no sales if he is the high price seller. So the low capacity seller always

has incentives to price more aggressively. More precisely, the high-capacity seller prices distribution

first-order stochastically dominates the price distribution of the low capacity seller. This general

property has important implications for market shares of the entire game.

We now examine the remaining period-two case (subgame).

Buyer bought no units in period 1. Each seller enters period 2 with 2 units of capacity, while

the buyer demands 3 units. Using arguments similar to the ones in Lemma 1, we can show that

there is no pure strategy equilibrium. There is a unique symmetric mixed strategy equilibrium.

13Note that, while V3/2 is not the “security” profit of the low-capacity seller, it becomes that after one
round of elimination of strictly dominated strategies.

14We can generalize the analysis presented just above for any case where there is a low-capacity seller that
cannot cover the demand and a high-capacity seller that can cover the demand. Suppose in period 2 there is
demand for B units with value V3 and the capacity of the low-capacity seller is C, with C < B. Then there
is no pure strategy equilibrium. In the unique mixed strategy equilibrium, the high-capacity seller’s profit is
V3(B −C) and the low capacity seller’s profit is C V3(B−C)

B . The support of the prices is from V3(B −C)/B
to V3. We provide further details and discussion in Appendix A5.
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Each player’s expected second-period equilibrium payoff is V3; this is the security profit of each

seller. Using arguments similar to those in Lemma 2, we find that the players mix on the intervalh
V3
2 , V3

i
, with no mass points or gaps. The buyer’s demand is always met and he buys two units

from the lowest priced seller and one from the highest priced seller. The sellers’ distribution of

prices satisfies15

p [F (p) + 2(1− F (p))] = V3, (1)

or

F (p) = 2− V3
p
. (2)

The equilibrium behavior in the second period is now summarized:

Lemma 3 Second period competition for a monopsonist facing linear pricing falls into one of three

categories. (i) If only one seller is active (the rival has zero remaining capacity), that seller sets the

monopoly price, V3, and extracts the buyer’s entire surplus. (ii) If each seller has enough capacity

to cover by himself the buyer’s demand then there is (Bertrand) pricing at zero. (iii) If the buyer’s

demand exceeds the capacity of one seller but not the aggregate sellers’ capacity, then there is no

pure strategy equilibrium. In the mixed strategy equilibrium, a seller with two units of capacity has

expected profit equal to V3 and a seller with one unit of capacity has expected profit equal to V3/2.

Note that case (i) in the above Lemma occurs when the buyer bought two units from the same

seller in period 1; then the seller that has remaining capacity sets his price equal to V3. Case (ii)

occurs when the buyer bought one unit from each seller in period 1. Case (iii) occurs when the

buyer bought one unit in period 1 or when the buyer bought no units in period 1.

3.2 First period

Now, we go back to period 1. First, we demonstrate that the buyer will always buy two units

in equilibrium and that there is no pure strategy equilibrium. We then characterize equilibrium

payoffs and discuss the properties of equilibria.

Proposition 1 The buyer buys two units in period 1.

15The analysis underlying this expression is along similar lines to that of the subgame above (see Appendix
A1 for details) and is, thus, omitted.
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We sketch the proof here; the formal proof is in Appendix A2. First, prices must be positive,

since the seller knows that even if he does not sell a unit in period 1, he will make positive profits

in period 2. We then show that a buyer will never buy three units in period 1. For the buyer to

buy three units, he must buy two units from the low priced seller at a positive price and one from

the other seller. If he only buys one unit from each seller in period 1, the price for the third unit

bought in period 2 is zero due to Bertrand competition, thus the buyer will never buy three units.

We next argue that there is a maximal price by the highest price seller such that the buyer prefers

buying one unit from each seller as opposed to only one unit from the low priced seller and that

the sellers always set prices less than this price. This is because this price is greater than δV3, a

seller’s expected profit in period 2 if he makes no sales in period 1. Thus, two units will always be

purchased in any equilibrium.

A feature of the equilibrium is the incentive of the buyer to split his order. This is captured by

the following result.

Lemma 4 The buyer prefers to buy one unit from each seller as opposed to buying two units from

the lowest priced seller if the difference in prices is less than δV3.

This is an important result. It says that a buyer prefers to split his order if the discounted

price differential is lower than the discounted price of a third unit when facing a monopolist. The

price of a third unit when splitting an order is zero, while if the buyer does not split an order it is

V3. This value is the expected discounted payoff to a seller of not selling a unit in period 1, which

makes sense since the third unit will always be bought by the buyer so there is no efficiency loss.

The next proposition demonstrates that there is no pure strategy equilibrium (symmetric or

asymmetric) in the entire game.

Proposition 2 There is no pure strategy equilibrium in the monopsony, linear pricing model.

P roof. See Appendix A3.

The result of no pure strategy equilibrium is due to two phenomena. First, as depicted in

Lemma 4, the buyer’s incentive to split his orders if the prices are close, within δV3. This gives the

sellers incentives to raise price. On the other hand, if prices get “high”, then sellers have incentives

to drop their prices, and sell two units immediately. This cycling feature is common in games with

capacity constraints.
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Prices:

Units 
accepted:

p p+δV3 p-δV3
- p-

1 or 2 0, 1 or 2 0 or 1

--

Figure 3: Period 1 acceptances as a function of prices

Thus far, we have proved there is no pure-strategy equilibrium and the buyer always buys two

units in period 1. Now we further characterize the (mixed-strategy) symmetric equilibria of the

game.16 First, we prove in Appendix A4 that the seller’s price distributions must be sufficiently

wide, so that the buyer will accept either 0, 1, or 2 units from a particular buyer. Figure 3 illustrates

what can happen with the equilibrium prices distributed on the interval
h
p, p

i
. If a seller sets a

price between p and p +δV3 he will sell either 1 or 2 units; the other buyer will never undercut his

price by more than δV3 so the seller will always sell at least one unit and if the other seller’s price

is greater than his price by more than δV3 he will sell two units. If the seller sets a price between

p +δV3 and p− δV3 he will sell either 0,1 or 2 units. If the prices are within δV3 of each other, the

buyer will want to split his order between the sellers. Otherwise, the buyer will buy two units from

the low priced seller. Finally, for prices between p− δV3 and p, the seller can never sell two units

since the other seller’s price will never be more than δV3 above his price. He will sell 1 unit if the

prices are within δV3, and 0 units otherwise.

In Appendix A4, we also prove the following Proposition.

Proposition 3 In the monopsony model with linear prices, the lowest price offered in equilibrium,

p, is greater than δV3. Thus, the expected profit of a seller is greater than δV3.

Thus, in equilibrium, the sellers receive rents above satisfying the residual demand after the

buyer bought the other seller’s capacity (or the static Bertrand competition), δV3. Why is this the

case? A seller knows that, if he makes no sells in period 1, his expected profit is δV3. This gives

a seller the incentive to raise his price above δV3 to take a chance of no sells in period 1, since by

Lemma 4 a seller knows that even if he has the highest price he will make a sell as long as the price

difference is less than δV3. Since there is no cost of increasing his price and a potential benefit, the

16Given that we have well defined payoffs in each of the period two subgames, we can guarantee existence of
(a mixed strategy) Nash equilibrium in period one prices and, consequently, of a subgame-perfect equilibrium
in the entire game, by use of arguments along the lines of Dasgupta and Maskin (1986a, 1986b).

12



seller can improve his payoff. Thus, there needs to be strategic uncertainty about what the buyer

will do for a given set of prices for the sellers to make an offer with probability 1 in equilibrium. By

not having any uncertainty about what a buyer will do, sellers can increase their expected payoff

over the static Bertrand competition.

That the equilibrium expected profit is greater than δV3 is an important property and we further

discuss some of its implications in the following subsection.

3.3 Equilibrium properties and analysis

As we saw above (Proposition 3), in the equilibrium of the linear pricing monopsony model each

seller’s profit exceeds δV3. Thus, the buyer’s total payment (to the sellers) exceeds 2δV3. We

illustrate three strategies that the buyer can use to reduce his expected payments and still preserve

efficiency. First, we show that the sellers obtain higher profit than the profit they would obtain if

the buyer were behaving myopically; the buyer has an incentive to commit to (myopic) period-by-

period minimization of his purchase costs. Second, the buyer benefits if he can commit to make all

his purchases at once, effectively making the game collapse into an one-shot interaction. Third, we

show that the buyer may benefit by merging with one of the sellers. These three observations help

to demonstrate the fundamental force that drives the equilibrium that we derived: due to strategic

considerations, the buyer does not always purchase from the lowest priced seller when he plans to

make further purchases, giving sellers the incentive to raise their prices above the static equilibrium

level.

Our first observation is as follows :

Corollary 1 The buyer would like to commit to myopic behavior and to make his purchases on the

basis of static optimization in each period.

Suppose that the buyer could commit to behaving myopically (that is, to not behaving strategi-

cally across periods). In other words, while valuations are the same as assumed in the model, now

the buyer does not recognize the link between the periods and views his purchases in each period

as a separate problem. Thus, the buyer within each period purchases a unit from the seller that

charges the lowest price (as long as this price is below his reservation price). There are two possible

ways to generate a pure strategy equilibrium for this model (but only slightly different). We could

have an equilibrium where each seller charges δV3/2 in the first period and the buyer randomizes

between purchasing two units from one or from the other seller. Then, the seller that has not sold
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his two units in the first period, charges a price of V3 in the second period and the buyer purchases

one unit from that seller. Thus, total profit for each seller (in present values terms) over both

periods is δV3 and total payment for the buyer is 2δV3. To establish that this is an equilibrium,

first note that the buyer indeed behaves optimally, on a period by period basis. Second, neither

seller has a profitable deviation. Clearly, the seller cannot increase his profit above V3 in period 2.

Now, in period 1, if a seller lowers his price below δV3/2, he then sells both units (since he becomes

the low priced seller) and obtains a profit below (at best, just a bit below) V3. If he raises his price,

he sells no units in the first period but obtains a profit equal to V3 in the second. Thus, there are

no profitable deviations and this is an equilibrium.

The possibility that the buyer may split his order (he is indifferent, given the myopia assumption,

between splitting his order and not splitting) may be viewed as a weakness of the equilibrium

described just above. But this can be easily addressed: there is an alternative way to generate a

pure strategy equilibrium in this case, if we introduce a smallest unit of account. We can assume

that there is a smallest unit of account, ∆, so that now the buyer has a strict preference for not

splitting his order. The equilibrium has one seller charging δV3/2−∆ and the other seller charging
δV3/2 in the first period and the buyer buying two units from the low priced seller. The seller that

made no sales in the first period, charges V3 in the second period and the buyer purchases one unit

from that seller. Thus, total payment in present value terms for the buyer is 2δV3− 2∆.17 Clearly,
the equilibrium payoffs are essentially the same under both approaches.

By combining this result with Proposition 3, we conclude that, when the buyer behaves strate-

gically and recognizes that his current purchasing decisions affect the intensity of competition in

the subsequent period, in equilibrium his surplus is lower than when he behaves myopically.

What drives this result is that now a seller knows that if he sets a higher price than his rival

he cannot sell a unit in period one (and can only obtain a second period profit of V3). The above

comparison may provide a rationale for purchasing policies that large buyers have in place that

17To establish that this is an equilibrium, first note that the buyer indeed behaves optimally, chooses the
lowest price in each period. Second, neither seller has a profitable deviation. Clearly, a seller cannot increase
his profit above V3 in period 2. In period 1, if the low price seller lowers his price below δV3/2−∆, he reduces
his profit. If the high priced seller reduces his price he either sells 0, 1, or 2 units if he charges δV3/2−∆ or 2
units at a lower price. In any case, his profits fall. Clearly, neither seller can gain by raising their price above
δV3/2. If the low priced seller raises his price to δV3/2, the equilibrium can have the buyer splitting his order
(as the prices would be equal) and lowering this seller’s profit. Thus, there are no profitable deviations.
We note that the equilibrium with a strategic buyer is not affected if there is a smallest unit of account,

since the buyer will want to split his order as long as the gap between the two prices is less than δV3. The
mixed strategy equilibrium would generate the same payoffs without this assumption.
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require purchasing at each situation strictly from the lowest priced seller. In particular a government

may often assume the role of such a large buyer. It is often observed that, even when faced with

scenarios like the one examined here, governments require that purchasing agents absolutely buy

from the low-priced supplier, with no attention paid to the future implications of these purchasing

decisions. While there may be other reasons for such a commitment policy (such as preventing

corruption and bribes for government agents), our analysis suggests that by “tying its hands” and

committing to purchase from the seller that sets the lowest current price, the government manages

to obtain a lower purchasing cost across the entire purchasing horizon. We find, in other words,

that delegation to such a purchasing agent that maximizes in a myopic way is beneficial, since it

ends up intensifying competition among sellers.18

A related observation is the following.

Corollary 2 In the monopsony model with linear prices, the buyer would like to commit to not

buying any units in period 2.

In other words, instead of breaking the link between the periods (as discussed in the previous

corollary), the buyer faces a lower purchasing price if he could make all his purchases at once (in

a single period) and rule out the possibility of purchasing a unit in the second period. The idea is

that the equilibrium profit level described in Proposition 3 is larger than in the static equilibrium

(when the buyer commits to buying all goods in period 1). Let us now show that the seller’s profit

level in that, one-shot, case would be equal to δV3. We found in Lemma 3 that the second-period

equilibrium, if no units are sold in period one, has each seller making an expected profit of V3. If now

all competition took place in one period, the sellers’ expected payoff would be again δV3, since the

strategic situation would be exactly the same as the last period with all sellers having full capacity

(and the buyer’s valuation for the third unit, as of period 1, equal to δV3). Thus, each seller’s profit

in the one-shot situation would be exactly δV3. Since the allocation is always efficient, lower seller

profit implies higher buyer profit. In the equilibrium of the game with purchases (potentially) over

two periods, the expected buyer’s payments is strictly above 2δV3 and, thus, strictly exceeds his

expected payment in case of competition in only the first period.

The behavior described in the Corollary above would require, of course, some vehicle of com-

18Strategic delegation has been also shown to be (unilaterally) beneficial by providing commitment to
some modified market behavior in other settings (see e.g. Fershtman and Judd, 1987, and Vickers, 1985).
In our case, the key is the separation from the subsequent period and the commitment to myopia.
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mitment that would make future purchases not possible. This is an interesting result and can

be viewed as consistent with the practice of airliners placing a large order that often involves the

option to purchase some planes in the future at the same price for firm orders placed now. Such

behavior is sometimes attributed to economies of scale - our analysis shows that such behavior may

emerge for reasons purely having to do with how sellers compete with one another.19

A further implication of Proposition 3 is:

Corollary 3 In the monopsony model with linear prices, the buyer has a strict incentive to buy

one of the sellers, that is, to become vertically integrated.

This result is based on the following calculations. By vertically integrating, and paying the

equilibrium profit of a seller, π, the total price that the buyer will pay is π + δV3 since the other

buyer would change the monopoly price V3 for a third unit (sold in period 2). This total payment

is strictly less than the total expected payment (2π) that he would otherwise make in equilibrium.

Thus, even though the other seller will be a monopolist, the buyer’s payments are lower, since the

seller that has not participated in the vertical integration now has lower profits.

4 Monopsony with non-linear pricing

In this section, we assume that a firm can offer a menu of prices in each period; a price if it sells

one good and a price if it sells two goods.

4.1 Second period

First, we consider equilibrium in the possible period 2 subgames.

Buyer bought two units in period 1. In this case, non-linear pricing is the same as linear pricing

(since at most one unit can be bought in period 2). If the buyer bought a unit from each seller in

19It is also easy to see that the buyer would be better off if he could commit to reduce his demand to only
two units. By committing to not purchasing a third unit (in any period), the value he obtains gets reduced by
δV3, while his payment gets reduced by an amount strictly higher than that (each seller’s equilibrium profit
drops from π > δV3 to zero). Still, it should be noted that commitment to such behavior may be difficult:
once the initial purchases have been made, the buyer would then have a strict incentive to “remember” his
demand for a third unit. A related point is that the sellers would have an incentive not to reveal some of
their available capacity, as such a strategic move (if credible) would lead to higher profit for them. Remarks
similar to the ones made just above about the (non) credibility of such strategies hold.
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period 1, the price that each seller charges in period 2 for a single unit is 0. If the buyer bought

two units from one of the sellers, then the price for a unit of the other seller is V3.

Buyer bought one unit in period 1. The equilibrium price triples satisfy {p1, p12, p22} = {0, k, V3},
where k ≥ V3. The firm that has one unit of capacity (seller 1) charges p1 = 0 for his unit and the

firm with two units of capacity (seller 2) charges V3 if the buyer buys two units (p22) from the seller

and a price that is not lower than that if the buyer buys one unit (p12). In equilibrium, the buyer

buys both units from seller 2.

First, we show that the above strategy profiles are an equilibrium, next we argue that these are

the unique pure strategy equilibrium payoffs. The buyer is indifferent between buying both units

from seller 2 or one unit from seller 1: either way, his net surplus is equal to V3. If seller 1 raises

his price, he will still sell no units and his profit remains at zero; lowering his price would result in

a loss. If seller 2 raises p22 he will sell nothing and his profit drops to zero (compared to the profit

of V3 at the candidate equilibrium). If seller 2 lowers either prices below V3, then the buyer will

accept one of them and the seller will have a payoff lower than V3. Thus, this is an equilibrium.

Now, we argue that the equilibrium payoffs are unique. First, in any equilibrium the buyer

will buy two units: if we had a candidate equilibrium where the buyer bought only one unit (from

either seller 1 or seller 2), then seller 2 could charge an incremental price of less than V3 and sell

his second unit, thus increasing his profit. Second, there cannot be an equilibrium where the buyer

gets one unit from each seller. For the buyer to buy one unit from each seller, it must be that

p1 + p
1
2 ≤ p22 and each price must not exceed V3. Seller 2, has a profitable deviation to setting p22

equal to the original p12 plus
p1
2 and setting the price for one unit so that the buyer will never buy

only one unit from him. Thus, seller 1 cannot sell a unit. This can only occur if p1 = 0. Finally, we

must have p22 = p1 + V3. Thus, we have unique equilibrium payoffs.

Buyer bought no units in period 1. The prices would be each seller charging V3 whether the

buyer buys one or two units and the buyer buys two units from one seller and one from the other.

The buyer’s net surplus is 2V + V3 − 2V3 and each seller’s profit is V3. Let us establish that this is
an equilibrium. If a seller increased his price he would sell no units. If a seller decreased either of

the prices he charges, this price would get accepted and the seller’s payoff would drop from V3 to

the new price level.

The equilibrium is unique. To see this, first note that we cannot have an equilibrium where

the buyer buys fewer than 3 units. This is because, if that were the case, one seller would have
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a strict incentive to lower one of his prices. Furthermore, a seller can always guarantee himself a

profit of V3 since the buyer is always willing to pay this amount for the third unit. Finally, using

simple arguments we can show that Bertrand competition will induce both sellers to price using

two part-tariffs with the fixed portion of V3 and marginal costs of 0.

Equilibrium behavior in period 2, under non-linear pricing, can be summarized as follows.

Lemma 5 Second period competition in the case of a monopsonist under non-linear pricing falls

into one of three categories. (i) If only one seller is active (the rival has zero remaining capacity),

that seller sets the monopoly price, V3, and extracts the entire seller’s surplus. (ii) If both sellers

have enough capacity to cover the buyer’s demand, there is (Bertrand) pricing at zero. (iii) If the

buyer’s demand exceeds the capacity of one seller but not the aggregate sellers’ capacity then there

is a pure strategy equilibrium: a seller with two units charges V3 for two units (and a price at least

as high for one unit) and a seller with one unit charges 0.

It follows from the above analysis that a seller gives up second-period profit V3 when, by selling

one (or two) units in period 1, his remaining capacity drops from 2 units to 1 (or 0, respectively).

Clearly, he would demand at least the discounted present value of that amount to sell one unit in

period one.

Discussion. Comparing competition under linear and non-linear pricing in period 2, we observe

that there is a critical difference in the case when the buyer’s demand exceeds the capacity of one

seller but not the aggregate sellers’ capacity. Under linear pricing, a pure strategy equilibrium

fails to exist because the seller with two units of capacity cannot prevent the price of the first unit

affecting his sales of a second unit, while he can achieve this under non-linear pricing. To see why,

suppose that under linear pricing, the seller with two units of capacity, seller 2, charges V3. The

seller with one unit of capacity, seller 1, would respond by charging V3− ² to guarantee a sell. But,
seller 2’s best reply would be to slightly undercut seller 1 and sell both units. This undercutting

process would take place until both prices reached V3/2 because, at that point, seller 2 would

prefer to sell only one unit at a price of V3. On the other hand, with non-linear prices, seller 2 can

implicitly keep the undercutting process going by bundling his two units. This, essentially, puts

the price of the first unit that each seller has to a zero price, while maintaining the price for seller

2’s second unit at his monopoly price of V3. To guarantee that the buyer buys seller 2’s bundle,

seller 2 raises the price of buying only a single unit to at least V3.
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4.2 First period

Now we go back to period 1. There is a unique pure strategy equilibrium price paid for the goods.

The equilibrium prices are for each seller to charge δV3 for both a single unit and two units. The

period 1 actions are that the buyer either buys one good from each seller, two units from one of

the sellers and none from the other, or two units from one seller and one unit from the other. The

total amount paid by the buyer and the revenue that each seller receives is the same, no matter

which of the three actions the buyer takes in period 1.

First, we argue that these strategy profiles constitute an equilibrium. If a seller raised his price

for a single unit, then the buyer would buy both units from the other seller in period 1. The seller

then becomes the only one with available capacity in period 2 and hence his overall payoff over

the two periods is δV3. Thus, there is no improvement in the seller’s payoff. Increasing the price

for two units to some level ep, has no effect on the buyer’s choice, since the buyer prefers buying
one unit from each seller and obtaining payoff to paying ep whenever ep > δV3. Thus, such a price

increase cannot improve the seller’s payoff. Clearly, lowering the price cannot improve a seller’s

payoff. Thus, this is an equilibrium.

Why are the equilibrium payoffs unique? Let us take a candidate equilibrium where each seller

demanded a different price for a single unit. It is easy to show that both prices are at least δV3.

Then either the lower price seller could increase his price, if the buyer split his order, or the higher

priced seller who got no orders could reduce his price and make a sell. So, each seller has to offer

the same price for a single unit.

Suppose now that each seller demanded a price p1 > δV3 for a single unit and p2 ≥ p1 for two
units. If the buyer buys one unit from each seller, his payoff over both periods is

2V (1 + δ)− 2p1 + δV3,

since second period competition implies he will then get the third unit at zero price. If the buyer

buys two units from the same seller, his payoff is

2V (1 + δ)− p2,

since the seller with remaining capacity will be a monopolist in period 2 and charge V3. The buyer’s

payoff is higher if he buys one unit from each seller if

p2 > 2p1 − δV3
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and he will buy two units from one of the sellers otherwise.

If p2 < 2p1 − δV3, the buyer would accept both units from one of the sellers. The other seller

would then have a payoff of δV3. He could improve his payoff by lowering his price for two units

and having the buyer accepting both his units, since p2 ≥ p1 > δV3. If p2 > 2p1 + δV3, the buyer

would split his order. A seller could improve his payoff by lowering the price for two units to some

price less than 2p1− δV3, the buyer will accept both his units and the seller will improve his payoff.

We summarize as follows:

Proposition 4 With a monopsonist under non-linear pricing, there are unique pure strategy equi-

librium payoffs. In period 1, both sellers charge δV3 for both a single unit and two units and the

buyer buys either two or three units. Period 2 equilibrium is as stated in Lemma 5.

The equilibrium involves a two-part tariff with the fixed fee equal to a seller’s discounted

monopoly profit in the next period and all units are priced at marginal cost, which we have nor-

malized to 0. This equilibrium was not possible with linear prices, because each seller would have

an incentive to raise his price to induce the buyer to split his order.

Remark. Unlike the case when linear prices are used, under non-linear prices the sellers make

no positive rents: their equilibrium payoffs, δV3, are equal to the profit from satisfying the residual

demand, after the buyer bought the other seller’s capacity. Further, the buyer has no incentive

to commit to not making purchases in period 2, and to hire an agent to commit to buy only a

single unit, and has no incentive to vertically integrate by buying one of the sellers. The reason for

these results in the monopsony case is that with non-linear pricing the sellers can price “as if” all

purchases are done in a single period. This makes competition more stiff and results in a better

outcome from the buyer’s point of view.

5 Duopsony

Now, we study strategic issues raised when there are two buyers. Each buyer has the same demand

as in the monopsony case, and each seller has now doubled his capacity to four units. A buyer

coordination issue which was not present in the monopsony case is now present. First, we examine

linear pricing. Then we show that a non-linear pricing equilibrium induces the same payoff as the

linear pricing equilibrium that we focus on.
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5.1 Linear pricing - second period

We first consider equilibrium behavior in the possible period-two subgames. Mixed strategy equilib-

ria arise in most cases (unless either both sellers can cover the market or one seller is a monopolist).

The construction of equilibria is similar to that for the monopsony case and their sketch is in Ap-

pendix A4. The key results from the period 2 analysis, required for our subsequent analysis of

period 1, are summarized in the following Lemma.

Lemma 6 In the second period of a duopsony under linear pricing (i) the highest expected payoff

for a seller with full capacity is 2V3; (ii) If one of the buyers bought 2 units in period 1 and the

other buyer bought none, then the expected price is more than V3/2 per unit in period 2; (iii) If

each buyer bought 2 units in period 1, with one of the sellers selling 3 units and the other 1 unit,

then the price in period 2 exceeds V3/2.

5.2 Linear pricing - first period

Now, we go to period 1. As in the monopsony case, there will be no pure strategy equilibrium, but

the equilibrium behavior will have a very different flavor. We focus on the following equilibrium.

Each seller asks δV3 for each unit and the buyers mix with equal probability between buying two

units from either seller. First, we argue why this is an equilibrium and then discuss its properties.

Suppose that one seller (say seller L) is charging pL per unit and the other seller (seller H) is

charging pH . Suppose that the buyers mix between buying two units from seller L with probability

α and buying two units from seller H with probability (1− α). The payoff of a buyer buying from

seller L is

2V (1 + δ)− 2pL + (1− α)δV3.

This expression is derived as follows. With probability α, the other buyer also buys from seller L,

in which case only seller H will have available capacity in period 2 and, acting as a monopolist will

leave the consumers with zero surplus. With probability 1−α, the other buyer buys from seller H,

in which case there is Bertrand competition between the two sellers in period 2, leaving surplus V3

to each of the buyers. Similarly, the payoff of a buyer buying from seller H can be calculated to be

2V (1 + δ)− 2pH + αδV3.

Thus, for the buyer to be indifferent between buying from seller L and H we must have

α =
pH − pL
δV3

+
1

2
.
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Note, that at equal prices buyers mix with probability 1/2. We will argue later why the buyers

cannot coordinate perfectly and choose different sellers even if the prices are the same.

Let f(pL) be the density of prices offered by seller L which range in some interval pL to pL.

Seller H’s expected payoff over the two periods is

πH(pH) = 2δV3

Z pL

p
L

α2f(pL)dpL + 2pH

Z pL

p
L

2α(1− α)f(pL)dpL + 4pH

Z pL

p
L

(1− α)2f(pL)dpL

The first term is the profit if both buyers buy from seller L in period 1, the second if the buyers buy

from different sellers, and the third if both buyers buy from seller H. Differentiating with respect

to pH , we find pH = δV3 for any density f(p). This is a local maximum, since πH is strictly concave

in pH . Furthermore, it is easy to show that no deviation by a seller that makes the probability of

acceptance either 0 or 1 will improve his payoff, which can be calculated in equilibrium to be equal

to 5δV3
2 . Hence, this is a global maximum for seller H. Since the same argument can be used for

seller L, it is a unique best response for the sellers to each ask δV3, given the buyers’ purchasing

strategies. In particular no seller can improve his payoff by deviating given the buyers’ symmetric

mixing probability as characterized by α.

We also need to make sure that each buyer is acting optimally, given the strategies of the other

players. Suppose that buyer 1 is following the putative equilibrium strategy. The payoff for buyer

2 from following the putative equilibrium strategy (that is, to “not split” his order - hence indexed

by ns) is

Sns = 2V (1 + δ)− 2δV3 + 1/2δV3, (3)

calculated as follows: the buyer obtains 2 units in period one, of total value 2V (1 + δ), paying

δV3 for each of these units; with probability 1/2 both buyers buy their first period 2 units from

the same seller and then their period two surplus is zero because the other seller has become a

monopolist; with probability 1/2 the two buyers buy 2 units in period one from different sellers

and then Bertrand competition in period two implies each buyer enjoys surplus V3. Let us now

compare this payoff to that of buyer 2 if he “split” his order (hence indexed by s), by buying one

unit from each seller, which is

Ss = 2V (1 + δ)− 2δV3 + δ(V3 −Ep2).

This payoff is calculated as follows. Again, the buyer obtains 2 units in period one for a total net

surplus of 2V (1+ δ)− 2δV3; now, entering period two, one seller has sold three units and the other
one unit: buyer 2 then obtains one unit at a net surplus of V3 − Ep2, where Ep2 is the expected
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price that the buyer will have to pay in period 2, given 1 unit of remaining capacity for one seller

and three for the other. Payoff Sns is larger than Ss, since Ep2 > δV3
2 by Lemma 6. It is also easy

to show that the buyer prefers to buy two units in period 1 to any other quantity. Thus, we have

an equilibrium.

We summarize as follows:

Proposition 5 In the linear pricing duopsony game, there is a symmetric equilibrium. In period

1, each seller demands δV3 per unit and the buyers mix equally between buying two units from one

or the other seller. In period 2, the prices are 0 per unit if the buyer bought from different sellers

and V3 if they bought from the same seller.

Properties of the equilibrium. Each seller obtains higher profit than what he would get by not

selling any units in period 1, and then becoming a monopolist in period 2. Such a strategy would

generate a profit of 2δV3, which is less than the equilibrium profit of 5δV32 . This is because the

buyers are mixing their purchasing decisions between the sellers. By mixing, there is the possibility

that the sellers sell 0 or 4 units with probability 1/4 and selling 2 units with probability 1/2. This

is desirable from the sellers’ points of view, since if they do not make a sell in period 1, then they

become a monopolist in period 2 and receive a payoff of 2δV3. Thus, the sellers like that the buyers

do not coordinate their behavior.

Thus, we need strategic uncertainty from the sellers’ points of view to get them to charge prices

equal to δV3. In contrast, it was not possible to have strategic uncertainty when there was only

a single buyer. This is because of two reasons. First, the single buyer did not have anyone to

“miscoordinate” with on purchases. Second, if the buyer mixed, then a seller could improve his

payoff by changing his price. Thus, sellers must mix to get an equilibrium with a single buyer.

From the above analysis (in particular, from the calculated sellers’ expected equilibrium profit),

we obtain two Corollaries, similar to these stated in the monopsony case.

Corollary 4 The buyers have a strict incentive to commit not to buy in the future.

Using similar arguments as in the monopsony model each seller’s equilibrium profit and, thus,

each buyer’s equilibrium payment, if buyers only buy in period 1 is 2δV3. This is lower than the

equilibrium payment, 5δV32 , when purchases can be made (potentially) over both periods.

Also,

23



Corollary 5 A buyer has a strict incentive to vertically integrate with a seller.

Suppose that a buyer unilaterally buys a seller. This increases his expected profit because a

buyer can buy a seller, by paying the equilibrium profit of 5δV32 . This is the buyer’s expected cost.

He can then satisfy his demand for 3 units and have one extra unit left that he can supply to the

other buyer and obtain an additional positive profit.

It is important to note that it would not be an equilibrium if the buyers coordinated their

behavior by either buying from different sellers with probability 1 or by splitting their orders,

buying one unit each from each seller. Such a behavior would be in the buyers’ best interests, given

the sellers’ prices, since then they would pay 2δV3 in period 1 and nothing for the third unit in

period 2. Essentially, the buyers would avoid the cost of miscoordinating associated with choosing

the same seller in period 1, thus creating a monopoly in period two. However, this coordination

by buyers cannot be part of an equilibrium. Suppose that buyers did coordinate their behavior

when the sellers each asked δV3 per unit. A seller could raise his price by ² and improve his

payoff. There are two possible responses by buyers to this deviation. They could make the same

purchasing decisions as before, either splitting or each buying from one seller with probability one.

Then, in either case, this improves the deviator’s payoff. Or, the buyers could mix their purchasing

decisions.20 In this case, the seller would sell either 0, 1, 2, 3, or 4 units. If he sells a positive number

of units in period 1, he improves his payoff, since the payoff is at least 2δV3 + ². This is because,

if a seller sells only one unit in period 1, his payoff is δV3 + ² in period 1 and δV3 in period 2. If

he sells no units, then his payoff is 2δV3. Since the buyers must be mixing, the expected number

of units sold by the seller is positive, thus he improves his payoff by such a deviation.21 Further, it

is easy to show that if the sellers offered the same price, but one that was different than δV3, than

at least one of the sellers could improve their payoff by defecting.

It is interesting to examine the equilibrium market shares of the firms. In period 1, there is a

50% chance that both sellers sell two units and a 50% chance that one seller sells all his units. If

both sellers sell two units, then the equilibrium market shares for the entire game are “essentially

symmetric,” since both will set a price of zero in period 2. If in the first period one seller sold 4

units, then the other will sell two units in period 2. Thus, the final market shares can be quite

asymmetric for the entire game with 50% probability.

20Note that there is never an equilibrium where both buyers would buy from the same seller with probability
one, since a buyer would do better by accepting the other seller’s offer.

21Note that it has to be the case that, in equilibrium, each buyer buys two units in period 1.
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One may also wonder if there is an asymmetric pure strategy equilibrium where each buyer

buys two units from a different seller. We now argue why this is not the case. For a buyer to be

willing to buy two units from the high priced seller charging pH instead of two units from the low

priced seller charging pL, it must be the case that

2pH ≤ 2pL + δV3

since the price for the third unit in period 2 is 0 if the buyer buys from seller H and δV3 if he buys

from seller L. Thus, pL must be at least

pH − δV3/2 ≤ pL

The low priced seller must not be willing to lower his price that induces both seller to buy two

units from him in period 1. The price of the low priced seller must satisfy

2(2pH − δV3) ≤ 2pL, (4)

otherwise, the low priced seller could deviate and get both buyers to buy from him. Clearly,

to satisfy condition (4) one would want to minimize the difference between pH and pL. But, by

substituting pL = pH into (4) we find that pH must be lower than δV3. Since there is no equilibrium

where prices are below δV3, otherwise a seller could profitably defect, there can be no asymmetric

pure strategy equilibrium. A similar style argument can be used to show that there is no pure

strategy asymmetric equilibrium where buyers split their orders.

There is another equilibrium where both sellers set the same price and the buyers mix between

buying two units from each seller or splitting their orders and getting one unit from each. We

present this equilibrium in Appendix A5. It gives the sellers a lower profit than the one that we

have just derived but, importantly, it still gives them a profit greater than 2δV3. Furthermore, in

this modified equilibrium, the key implication concerning the asymmetry of market shares continues

to hold.

This result, that market share asymmetries should be expected with significant probability when

there are two buyers, is complementary to other studies of asymmetries in the literature - see e.g.

Saloner (1987), Gabszewicz and Poddar (1997) and Besanko and Doraszelski (2004) to mention

just a few. In these studies, capacity asymmetries are typically due to the selling firms’ incentives

to invest strategically in anticipation of a market competition stage. In contrast, in our analysis,

the asymmetries are due to the fact that the buyers are large players and choose strategically

which firms they should purchase from - the fact that they cannot fully coordinate their behavior

in equilibrium, but need to mix, gives rises to asymmetric sellers’ market shares.
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5.3 Non-linear pricing

We now state an equilibrium when the sellers use non-linear pricing; it has a very similar structure

and the same payoffs as the equilibrium with linear pricing. The equilibrium is derived in Appendix

A7. We then explain why the monopsony and duopsony differ so much when comparing linear and

non-linear pricing.

Proposition 6 In the duopsony model with non-linear pricing, there is an equilibrium where each

seller demands δV3, 2δV3, and 8δV3
3 for one, two and three units, respectively, in period 1. Each

buyer mixes with probability 1/2 between buying two units from either seller.

The basic idea behind the result is similar to the case with linear pricing. The complications

arise due to the need to check for possible seller deviations when he can manipulate the prices for

selling one, two, and three units. Thus, we have demonstrated that the equilibrium payoffs and

market shares do not have to depend on whether pricing is linear or non-linear in a duopsony.

This result differs dramatically from the monopsony model. The key to the duopsony result is that

buyers must mix in equilibrium. This strategic uncertainty is good from the sellers’ points of view,

since this gives them an expected premium above satisfying the residual demand left after the other

seller has sold his units. When there is only one buyer, there can be no strategic uncertainty.

6 Conclusion

Capacity constraints play an important role in oligopolistic competition. In this paper, we have ex-

amined markets where both sellers and buyers act strategically. Sellers have intertemporal capacity

constraints, as well as the power to set prices. Buyers decide which sellers to buy from, taking into

consideration that their current purchasing decisions affect the intensity of sellers’ competition in

the future. In the monopsony case with linear prices, capacity constraints imply that a pure strat-

egy equilibrium fails to exist. Instead, sellers play a mixed strategy with respect to their pricing,

and the buyer may split his orders. Importantly, we find that the sellers enjoy higher profits than

what they would have in an one-shot interaction (or the competitive profit from satisfying residual

demand). The buyer is hurt, in equilibrium, by his ability to behave strategically over the two

periods, since this behavior allows the sellers to increase their prices above their rival’s and still

sell their products. Thus, the buyer has a strict incentive to commit not to buy in the future, or to

commit to myopic, period-by-period, maximization (perhaps by delegating purchasing decisions to
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agents), as well as to vertically integrate with one of the sellers. When non-linear pricing is feasible,

however, a pure strategy equilibrium exists under monopsony and the sellers do not obtain excess

profits. Turning to the case of two buyers, we find that it is the buyers that must randomize their

actions. As a result, equilibrium behavior does not need to prescribe that buyers split their orders.

Furthermore, the equilibrium with non-linear pricing has the same transacted prices as with linear

pricing, which was due to the strategic uncertainty that occurs when buyers mix in duopsony. We

find that, since there has to be some buyers’ miscoordination, the equilibrium under duopsony

implies asymmetric market shares for the sellers. Also, as in the monopsony model, there are strict

incentives for buyers to commit not to buy in the future or to vertically integrate.

While we have tried to keep the model as simple as possible, our qualitative results appear robust

to modified formulations. Perhaps the most important ones refer to how the capacity constraints

function. In the model, if a seller sells one unit today, his available capacity decreases tomorrow by

exactly one unit. In some of the cases for which our analysis is relevant, like the ones mentioned in

the Introduction, it may be that the capacity decreases by less than one unit, in particular, if we

adopt the view that each unit takes time to build and, thus, occupies the firm’s production capacity

for a certain time interval. Similarly, instead of the unit cost jumping to infinity once capacity is

reached, in some cases it may be that the unit cost increases in a smoother way: cost curves that

are convex enough function in a way similar to capacity constraints. We believe the spirit of our

main results is valid under such modifications, as long as the crucial property that by purchasing

a unit from a seller you decrease this seller’s ability to supply in the subsequent periods holds.

This is, to our knowledge, the first paper that considers capacity constraints and buyers’ strate-

gic behavior in a dynamic setting. A number of extensions are open for future work. While non

trivial, these present theoretical interest and, at the same time, may make the analysis more directly

relevant for certain markets. First, one may wish to examine the case where the products offered by

the two sellers are differentiated. Is there a distortion because buyers strategically purchase prod-

ucts different from their most preferred ones, simply with the purpose of intensifying competition

in the future? A second interesting extension is when the sellers have asymmetric initial capacities.

Which seller sells faster? Do buyers have an incentive to favor a seller with a larger or with a smaller

remaining capacity? Is competition more intense when capacities are more or less symmetric? A

third extension, based on the one described just above, is that of endogenizing the sellers’ capacities.

Previous work has examined this issue as a two-stage game, where capacities are chosen first and

then firms compete for the final demand. However, regardless of whether final-stage competition
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is in quantities (e.g. Kreps and Scheinkman, 1983) or in prices (e.g. Allen, Deneckere, Faith and

Kovenock, 2000), the issue of strategic buyers has not been treated. Fourth, it may be interesting

to extend the intuition from our model with two buyers to the case of a larger number of buyers.

Our analysis already makes clear how the presence of buyer competition (moving from monopsony

to duopsony) significantly affects the equilibrium behavior - the multiple buyers (possible also with

multiple sellers) case may offer some additional insights. However, calculating the probabilities of

coordinating at different outcomes, given independent purchasing randomizations, would become

increasingly involved. Finally, in our model, price determination takes the form that sellers set

prices (linear or non-linear) in each period. Alternative pricing formulations are also possible. For

instance, sellers may be able to make their prices dependent on the buyers’ purchasing behavior

e.g. by offering a lower price to a buyer that has not purchased in the past (or does not currently

purchase) a unit from the rival seller. Our setting may allow us to examine such “loyalty discounts.”

The buyers may also participate more actively in the determination of the prices, e.g. in principle

these could be determined by bargaining between the two sides of the markets.
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Appendix

Appendix A1: Proof of Lemma 2.

First, we argue that the players choose prices in the interval
h
V3
2 , V3

i
. Suppose that seller 2,

asked a price p less than V3/2. If seller 1 charges a price less than p, then seller 2 will sell 1 unit,

while if seller 1 charges a price higher than p, seller 2 sells 2 units. Seller 2 could improve his payoff

no matter what prices seller 1 asks by asking for V3 − ² for ² very small and selling at least one
unit for sure, since V3− ² > 2p. Since seller 2 will charge a price of at least V3/2, then so will seller
1; otherwise, seller 1 could increase his price and still guarantee a sell of 1 unit. Thus, both sellers

charge at least V3/2. Now, we argue that price will be no more than V3. Take the highest price p

offered in equilibrium greater than V3. First, assume that there is not a mass point by both sellers

at this price. This offer will never be accepted by the buyer, since he will always buy the second

unit from the lower priced seller and his valuation for a third unit is V3 < p. The seller could always

improve his payoff by charging a positive price less than V3/2. Second, if there is a mass point by

both sellers, then at least one of them is rationed with positive probability and a seller can slightly

undercut his price and improve his payoff. Thus, all prices will be between V3/2 and V3.

Now, we argue that the expected equilibrium period 2 payoffs are V3/2 for seller 1 and V3 for

seller 2. Given that the equilibrium prices are between V3/2 and V3, we know that the profits for

seller 1 is at least V3/2 and for seller 2 at least V3. First, we argue that it can never be the case

that both sellers will have an atom at the highest price pH ; later we further show that seller 2 will

have a mass point at pH . If both did, then there is a positive probability of a seller being rationed,

and a seller could improve his payoff by slightly lowering his price. Thus, a seller asking pH knows

that he will be the highest priced seller. If he is seller 1 he will not make a sell, while if he is seller

2 he will make a sell of one unit. If seller 2 charges pH he knows that his payoff will be pH , thus pH

must equal V3. If the lowest price offered in equilibrium, pL, were greater than V3/2, then seller 2

could improve his payoff by offering pL− ² > V3/2, with the buyer buying two units from the seller

and thus improve his payoff above V3. Thus, the lowest price is V3/2. Since both sellers must offer

this price, seller 1’s expected payoff must be V3/2.

We now find the equilibrium price distributions. Let Fi be the distribution of seller i0s price

offers. Seller 10s price distribution is then determined by indifference for seller 2:

p [F1(p) + 2(1− F1(p))] = V3, (A1.1)

since seller 2’s expected payoff is V3 by the earlier argument. Seller 2’s payoff is calculated as
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follows. When seller 2 charges price p, then with probability F1(p) seller 1’s price is lower and seller

2 sells one unit, while with probability 1−F1(p) seller 1’s price is higher and seller 2 sells both his
units. Solving equation (A1.1), we obtain:

F1(p) = 2− V3
p
.

Seller 20s price distribution is a little more complicated. For p < V3, it is determined by

p [1− F2(p)] = V3
2
. (A1.2)

Seller 1 sells one unit if his price is lower than the rival’s and this happens with probability 1−F2(p);
otherwise, he sells no units. This equals seller 1’s expected profit V3/2 by Lemma 2. Condition

(A1.2) implies

F2(p) = 1− V3
2p
.

There is a mass of 1/2 at price V3. Simple arguments can be used to establish that the equilibrium

pricing distributions must be continuous and that the only mass point may be located at V3 for

seller 2.

Appendix A2: Proof of Proposition 1.

First, we define some notation and buyer payoffs. Then we proceed to prove the proposition

in a series of Lemmas. Suppose that the prices in period 1 are pH and pL, with pH ≥ pL. Note
that pricing in period one could, in principle, be determined via either pure or mixed strategies.

In the former case, pH and pL are the prices set by the two sellers, whereas in the latter these are

realizations of the mixed strategies. We use Lemma 3 in computing the payoffs.

The buyer’s payoff if he buys one unit from each of the firms in period 1 is

W1 ≡ 2V (1 + δ)− pH − pL + δV3.

In this case, the buyer gets one unit for free in the following period (since competition drives the

price to zero).

The buyer’s payoff if he buys both units from firm L is

W2 ≡ (1 + δ)2V − 2pL.

In this case, the buyer faces a monopolist and pays V3 in period 2.

The buyer’s expected payoff if he buys only one unit from firm L is

W3 ≡ (1 + δ)V − pL + δ [V + V3 −Emin[p1, p2]−Ep2] .
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In the following period, the buyer will buy two additional units. He will pay the lowest price offered

in the following period for the second unit and will buy the third unit from the seller who has two

units of capacity in period 2, since either he is the low priced seller or the other seller has no more

capacity.

The buyer’s expected payoff if he buys two units from the lowest priced seller and one from the

highest priced seller is

W4 ≡ 2V (1 + δ)− 2pL − pH + δV3.

Now, the series of Lemmas. These are numbered (A1-A5) independently from the Lemmas in the

main body of the paper.

Lemma A1 The sellers set strictly positive prices in period 1.

P roof. If a seller set a price of 0, then either the buyer would buy two units from that seller

or one from each of the sellers. In either case, the seller makes 0 profit. If the buyer buys two

units from that seller, then the seller can sell no more in period 2. If the seller sells one unit, then

the buyer must have bought one unit from the other seller, since W1 > W3 at a 0 price in period

1. The seller could raise his price so that he gets no sells in period 1, and improve his payoff by

Lemma 2.

It follows directly that:

Lemma A2 The buyer never buys three units in period 1.

P roof. By Lemma A1, both prices are positive. Since W1 > W4 if pL > 0, then buying two

units always dominates buying three units.

We now argue in the following three lemmas that no price will be above V+δ [Emin[p1, p2] +Ep2] ≡
pC from which the Proposition will be proven.

Lemma A3 The buyer prefers to buy one unit from each of the sellers instead of only one unit

from the low price seller if pH ≤ pC . Thus the buyer will not buy any units from a seller charging

pH > p
C , when pH > pL.

P roof. Compare W1 and W3.

Lemma A4 In any equilibrium, each price offered by each seller in period 1 is an offer which

results in his selling at least one unit with positive probability.

P roof. Let p be the highest price offered in any (possibly mixed strategy) equilibrium by a
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seller. Suppose that in equilibrium p is never accepted. By Lemma 3 the seller’s expected payoff

of making this offer is δV3. Let p be the lowest price offered in equilibrium by the other seller. By

Lemmas 3 and A1 if the difference between the two prices set is less than δV3, then the highest

price will always be accepted, as long as it is less than pC . By Lemma 1, p > 0. A player offering p

can defect and offer a price p that is the minimum of [p+δV3, pC ] and know that it will be accepted,

and increase his payoff. Thus, no offer is made that is always rejected.

Lemma A5 In any equilibrium, no seller will offer a price above pC .

P roof. Let pi be the highest price offered in any equilibrium by seller i. Suppose that pi ≥ pj ,
i 6= j, and pi > pC . If pi > pj , then seller i’s offer will never be accepted by Lemma A3. Then seller
i0s payoff is δV3. Seller i can clearly improve his payoff by making an offer of δV3 + ² (note that

δV3 + ² < p
C). Suppose now that pi = pj ≡ p. There could not be a mass point at p by each seller,

since only one unit will be bought and that seller could increase his payoff by a slight undercut in

price. If there is no mass at p, then there is no possibility that the offer will be accepted. But, this

contradicts Lemma A4.

Thus, we have proved Proposition 1.

Appendix A3: Proof of Proposition 2.

Suppose we have a pure strategy equilibrium with prices pH and pL, where pH ≥ pL. A pure

strategy equilibrium could exist only if both sellers offered pC and the buyer was purchasing a unit

from each seller. At any other price, at least one of the sellers could defect and improve their payoff.

To see this, we need to look at various cases. First, suppose that the lower offer in equilibrium,

pL, is greater than δV3. If pL > pH − δV3, then the buyer will split his order by Lemma 4. Seller

L could improve his profit by increasing his offer. If pL < pH − δV3, then the buyer will buy both

units from seller L. Seller H will have a payoff of δV3. Seller H can improve his payoff by making

an offer that is accepted. If pL = pH − δV3, then either seller L is not selling 2 units or seller H

is not selling any units. One of the sellers has an incentive to defect. To see this, suppose that

α ∈ [0, 1] is the probability that the buyer splits his order between the sellers. Then the payoff to
seller L is πL = αpL + (1− α)2pL. The payoff to seller H is πH = αpH + (1− α)δV3, which equals

πH = αpL+ δV3 by assumption that pL = pH + δV3. But seller H’s payoff must be at least as large

as pL + δV3 − ² for all positive ², since he could always guarantee an acceptance by dropping his
price ². Thus, α would have to equal 1. But, if α = 1, then seller L could improve his payoff by

raising his price.
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Now, suppose that pL ≤ δV3. If pL > pH − δV3, then the buyer will split his order by Lemma

4. Seller L could improve his profit by increasing his offer. If pL < pH − δV3, then the buyer will

buy both units from seller L. If δV3
2 < pL, then seller H can improve his payoff by making an offer

that is accepted. If pL < δV3
2 , then seller L could raise his offer to pH the buyer will split his order

and the low seller’s profit increases. As before, if pL = pH − δV3, then one of the sellers could do

better by defecting.

An equilibrium with both sellers offering pC could arise only if pC ≥ 2(pC−δV3) or if 2δV3 ≥ pC .
This is because a defection by a seller that gets the buyer to buy two units from the seller will reduce

his profits. Otherwise a seller would defect. This is equivalent to 2δV3 ≥ V2+δ [Emin[p1, p2] +Ep2].
But, this condition never can hold, since both p1 and p2 are greater than V3/2.

Appendix A4: Proof of Proposition 3.

We know that p − p ≥ δV3; otherwise a seller could increase his payoff by moving mass from

lower parts of the price distribution to higher parts and still get accepted. Suppose that p − p <
2δV3 and for now assume that the equilibrium price distribution is continuous. Define three regions

as follows: region 1 where p ∈ [p,p− δV3], region 2 where p ∈
h
p− δV3, p+ δV3

i
and region 3 where

p ∈
h
p+ δV3, p

i
. A price offered in region 1 will be accepted for either 1 or for 2 units. A price in

region 2 will always be accepted for 1 unit. A price in region 3 will be accepted either for a single

unit or no units. But, if there is an offer in region 2, then a seller can always improve his payoff by

moving all the probability mass in region 2 to a price of p + δV3. Thus, there would be a gap in

the price offer distribution.

Suppose that there was a gap in the price offer distribution in region 2. Then prices offered in

region 1 would all be moved to the top of region 1 at a price of p − δV3, since whether the offer

is accepted either once or twice is independent of the price in region 1. But, if sellers move up all

their mass to p + δV3, then the price distribution would only be δV3, but then any price in the

interior distribution is inferior to either a price at the bottom or the top of the distribution. Thus,

we would have a two-point distribution. But this cannot be an equilibrium. Suppose one player

made an offer of p and the other at p. Then either the buyer accepts 2 units at the low price or

splits his order. In the former case, the high bidder could increase his payoff by reducing his offer

slightly, while in the latter case the low bidder could increase his payoff by a bid reduction.

Let π be the equilibrium payoff. The equilibrium pricing equations are as follows. If p < p+δV3,

p [2− F (p+ δV3)] = π. (A4.1)
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If p+ δV3 < p < p− δV3,

δV3F (p− δV3) + P [2− F (p+ δV3)− F (p− δV3)] = π. (A4.2)

If p > p− δV3,

δV3F (p− δV3) + P (1− F (p− δV3)) = π. (A4.3)

Some further important facts about the equilibrium follow.

Substituting p = p and p = p+ δV3 into (A4.1), setting the two resulting values equal to each

and manipulating the equation, we obtain

δV3
h
2− F (p+ 2δV3)

i
= p [F (p+ 2δV3)− F (p+ δV3)] .

Since 2 − F (p + 2δV3) ≥ 1 and F (p + 2δV3) − F (p + δV3) < 1, it must be the case that p > δV3.

This completes the proof.

Appendix A5: Equilibrium behavior in the second-period subgames of the
duopsony model under linear pricing.

We need to examine the equilibrium behavior in the various second-period cases (subgames).

Before proceeding to each of these cases, it is useful to provide some unified treatment of such cases.

This generalizes the analysis presented for Lemma 2 to any case where there is a low-capacity seller

that cannot cover the demand and a high-capacity seller that can cover the demand, including the

case where there are multiple (two, here) buyers. The steps in the analysis are the same as the

ones presented for Lemma 2. We can then state:

Result (mixed strategy equilibria). Suppose that in period 2 the buyers have value for B

units and the capacity of the low-capacity seller is C, with C < B. Then there is no pure strategy

equilibrium. In the unique mixed strategy equilibrium, the high-capacity seller’s profit is V3(B−C)
and the low capacity seller’s profit is C V3(B−C)

B . The support of the prices is from V3(B−C)/B to
V3.

Note that given the structure of demand and capacity, the situation described here will always

be the case whenever we have asymmetric capacities in period 2: the low capacity seller’s capacity

will be strictly lower than the demand while the high capacity seller’s capacity will be at least as

high as the demand.

To understand the above result note that the high-capacity seller’s security profit, is V3(B−C).
This is so because the low-capacity seller can supply only up to C of the B units that the buyer
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demands and the buyer is willing to pay up to V3. This high-capacity seller’s security profit puts a

lower bound on the price offered in period 2. Given the high-capacity seller can sell at most B units

(that is the total demand), he will never charge a price below V3(B − C)/B, since a lower price
would lead to profit lower that his security profit (that seller could sell at most B units and would

do better to sell (B −C) units at a price of V3). Since the high-capacity seller would never change
a price below V3(B − C)/B, this level also puts a lower bound on the price the low-capacity seller
would charge and, as that seller has C units he could possibly sell, his profit becomes C V3(B−C)

B .

The details of the formal proof are identical to Lemma 2.

Now we turn to each of the second-period subgames. We can employ the Result stated just

above to obtain the characterization of the equilibria.

Each buyer bought two units in period 1. If each of the two sellers sold two units in period 1,

then the equilibrium has both sellers charging 0 in period 2. If one seller sold 4 units in period

1, then the equilibrium is for the other seller to charge V3 and for each buyer to buy a unit. If

one of the sellers sold 3 units in period 1, and the other sold 1 in period 1, then there is a unique

mixed strategy equilibrium. Let seller 1 be the seller who has 1 unit of capacity in period 2 (that

is, sold 3 units in period 1) and seller 3 be the one who has three units of capacity in period 2

(that is, sold 1 unit in period 1). The “security” profits (see also Lemma 3), which are the unique

equilibrium profits for seller 1 and 3, are V3/2 and V3. Denoting by F1 and F3 the distribution

functions employed at the mixed strategy equilibrium by the two firms, these satisfy the conditions

p1 [1− F3(p1)] = V3
2

and

p3 [2 (1− F1(p1)) + F1(p3)] = V3,

where the prices are from
h
V3
2 , V3

i
. It follows that seller 10s distribution is F1(p1) = 2− V3

p1
. As in

the monopsony case of Lemma 2, seller 30s distribution will have a mass point at V3: it satisfies

F3(p3) = 1− V3
2p3
, with a mass point of 1/2 at V3.

One seller sold 2 units in period 1 and the other sold 1 unit in period 1, with each buyer buying

at least one unit. Let seller 2 be the seller that has 2 units of capacity remaining and seller 3 have

3 units of capacity. The equilibrium profits are 2V3/3 for seller 2 and V3 for seller 3. Now, the

equilibrium pricing equations satisfy

2p2 [1− F3(p2)] = 2V3
3
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and

p3 [3 (1− F2(p3)) + F2(p3)] = V3,

where the prices are from
h
V3
3 , V3

i
and are distributed according to F2(p2) =3

2 − V3
2p2

and F3(p3) =

1− V3
3p3
, with a mass point of 1/3 at V3.

Each seller sold 1 unit in period 1 and each buyer bought one unit. Then, the equilibrium prices

would be distributed on
h
V3
3 , V3

i
and satisfy

p [3(1− F (p)) + F (p)] = V3

or,

F (p) =
3

2
− V3
2p
,

with each seller having an expected payoff of V3.

One seller sold two units and the other none, and either each of the two buyers bought one unit

or one buyer bought two units. Then the equilibrium payoff of the seller who sold no units is 2V3,

while the equilibrium payoff of the other seller is V3.

One seller sold 1 unit and the other none. Suppose that Seller 3 sold 1 unit in period 1, he has 3

units of capacity in period 2, and seller 4 sold none in period 1, he has 4 units of capacity in period

2. Then, the equilibrium prices are distributed on
h
V3
2 , V3

i
and the corresponding distributions

satisfy

p3 [3(1− F4(p3)) + F4(p3)] = 3V3/2

and

p4 [4(1− F3(p4)) + 2F3(p4)] = 2V3.

Seller 30s price distribution is F3(p3) = 2− V3
P3
and seller 40s distribution is F4(p4) = 3

2 − 3V3
4p4

with a

mass point of 1/4 at V3 for F4. The equilibrium payoffs are 3V3/2 for seller 3 and 2V3 for seller 4.

Neither seller sold a unit in period 1. Then the equilibrium price distribution for each seller

satisfies

p4 [4(1− F (p4)) + 2F (p4)] = 2V3

or,

F (p4) = 2− V3
p4

on
h
V3
2 , V3

i
. The equilibrium expected payoffs are 2V3.
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Appendix A6: A modified equilibrium in the duopsony model under linear
pricing.

Here, we present another equilibrium in the duopsony model under linear pricing. This has a

very similar flavor as the one we have focused on in the main text of the paper: each buyer buys

with some probability two units from (either) one of the sellers and with some probability splits

his order.

Let the prices be pL and pH and let αi be the probability that a buyer buys two from seller i,

with (1− αL − αH) be the probability that the buyer splits his order

Each buyer’s payoff is as follows. If a buyer buys 2 units from seller L, his payoff is

2V (1 + δ)− 2pL + (1− αL)δV3 − (1− αL − αH)δE2, (A6.1)

where E2 is defined as the expected second-period price if, in period one, one seller sells 3 units

and the other 1 unit. If a buyer buys 2 units from H, his payoff is

2V (1 + δ)− 2pH + (1− αH)δV3 − (1− αL − αH)δE2. (A6.2)

If he splits his order, his payoff is

2V (1 + δ)− pL − pH + δV3 − (αL + αH)δE2. (A6.3)

For the buyer to be indifferent among the three alternatives we must have that, by combining

expressions (A6.1) and (A6.2),

αL =
2(pH − pL)

δV3
+ αH , (A6.4)

and, by combining (A6.2) and (A6.3),

αH =
V3(pH − pL + δE2)− 4(pH − pL)E2

(4δE2 − δV3)V3
.

Note that ∂αH
∂pH

= − 1
δV3

and that when pL = pH ,

αH = αL =
E2

4E2 − V3 .

Now let us turn to the sellers. Expected profit for seller H is:

πH = 2δV3α
2
L + 4pHα

2
H + 2pH [(1− αL − αH)

2 + 2αLαH ]+

+(pH + δV3)2αL(1− αL − αH) + (3pH + δV3)2αH(1− αL − αH) =
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= δV3(2αL − 4αLαH + 2αH − 2α2H) + 2pH(1− αL + αH).

Dividing by 2, this becomes

δV3(αL − 2αLαH + αH − α2H) + pH(1− αL + αH).

Further, by substituting (A6.4) into the expression above, we have

πH = δV3

·
2αH +

2(pH − pL)
δV3

− 3α2H −
4αH(pH − pL)

δV3

¸
+ pH − 2(pH − pHpL)

δV3

and
∂πH
∂pH

= δV3

·
− 2

δV3
+

2

δV3
+
6αH
δV3

+
4(pH − pL)

δ2V 23
− 4αH

δV3

¸
+ 1− 2(2pH − pL)

δV3

= δV3

·
2αH
δV3

+
4(pH − pL)

δ2V 23

¸
+ 1− 2(2pH − pL)

δV3
.

Note that if pH = pL = δV3 and there is no splitting (αH = 1/2) we return to the mixed strategy

equilibrium described in Proposition 5.

Now, suppose that the buyers both split their orders with positive probability. Then, at the

symmetric equilibrium, pH = pL ⇒ αL = αH = α = E2
4E2−V3 < 1/2 and the price charged by both

firms in equilibrium is

p = δV3

·
1

2
+

E2
4E2 − V3

¸
< δV3.

Each seller’s equilibrium profit is then

π = 2p+ δV3(4α− 6α2).

Thus, profits are greater than 2δV3, thus the sellers receive positive rents, but are less than 5δV3
2 ,

thus the sellers make lower profits than when buyers do not split their orders.

Appendix A7: Proof of Proposition 6.

To be succinct, we analyze only the first period, since we can use earlier analysis to deal with

the second period. First, we find what prices each seller must charge for each buyer to buy two

units and only two units from a seller. Next, we show that there is no profitable deviation by buyers

given the prices by seller. Finally, we check deviations by sellers to demonstrate that they have no

profitable deviations and hence we have an equilibrium.

Suppose that each of the sellers is charging p1, p2, and p3 for one, two, and three units, re-

spectively. We want to see if there is an equilibrium where both sellers charge a price p2 and both

buyers buy only two units. Suppose that one seller (say seller L) is charging pL2 for two units and
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that the other seller (seller H) is charging pH2 for two units. If α is the probability that both buyers

will buy two units from seller L, it can be shown, using arguments similar to those used in the

linear case, that α = pH2 −pL2
2δV3

+ 1
2 . Let f(p

L
2 ) be the density of prices offered by seller L, which range

in some interval pL2 to p
L
2 . Seller H’s expected profit function over the two periods is

πH(pH) = 2δV3

Z pL2

pL
2

α2f(pL2 )dp
L
2 + p

H
2

Z pL2

pL
2

α(1−α)f(pL2 )dp
L
2 +2p

H
2

Z pL2

pL
2

(1−α)2f(pL2 )dp
L
2 , (A7.1)

where the first term is seller H’s profits if both buyers buy two units from seller L, the second term

is when each buyer buys two units from different sellers, and the final term is when both buyers buy

two units from seller H. Taking the first order condition, we obtain pH2 = 2δV3. Thus, p2 = 2δV3

is the only possible equilibrium price where both buyers buy only two units. This will give a

seller an expected equilibrium payoff of 2.5δV3. We want to check to see if the price configuration

(p1, p2, p3) =
³
δV3, 2δV3,

8δV3
3

´
is an equilibrium.

First, we examine possible buyer deviations. If buyer 1 is mixing equally between buying from

either seller 2 units, then we have already shown in the linear pricing case that the payoff for the

buyer is higher than if he split his order between the two sellers and bought two units, since the

price for one or two units is the linear price of δV3. Furthermore, no buyer wants to buy three units

from a single seller or buy two units from one seller and one from another. Thus, the buyers are

behaving optimally, since the expected discounted price of the third unit is δV3.

Now, we check for deviations by the sellers. It is easy to demonstrate that we do not need to

examine the case when a seller induces no or 1 purchases from a buyer in period 1. There are two

possible deviations that a seller can engage in by inducing buyers to buy three units in period 1.

One is to induce a buyer to buy two from one seller and one from another. The other is to induce

a buyer to buy three units from a seller. Let the deviating seller be seller H and charge prices

pH1 , p
H
2 , and p

H.
3 . First, we check to see if there is a profitable deviation by inducing a buyer, say

buyer 1, from buying two units from one seller and one from another, assuming that buyer 2 buys

either two units from a single seller, one from each seller, or two units from one seller and one from

another. Since buyer 1 knows that his order will always be filled and that he will buy no goods in

the future, he will always look for the current cost minimizing bundle. He will prefer to buy two

units from H and one from L instead of two units from L and one from H if

p1 + p
H
2 < p

H
1 + p

L
2 = p

H
1 + 2δV3 (A7.2)

Suppose that (A7.2) holds. Buyer 2 will buy two units from seller H if

pH2 + δV3 ≤ pL2 = 2δV3, (A7.3)
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since if he also buys two units from H he will need to pay V3 in period 2 (he could also buy a unit

from seller L in period 1 at δV3), while if he bought two units from L the price would be 0. If

condition (A7.3) does not hold then buyer 2 prefers to buy two units from seller L, but then buyer

1 will never buy a unit from seller L at a positive price, since the price for the third unit will be

zero in period 2. That is, if the buyers know that they will buy two units from different sellers,

they will never pay a positive price for the third unit. But, for (A7.3) to hold, pH2 ≤ δV3 and seller

H makes a profit of less than 2δV3, thus he does not benefit from the deviation.

Suppose that (A7.2) does not hold. Buyer 1 will buy two units from L and one from H. Buyer

2 prefers to buy two units from seller L than two units from H if

2δV3 + δV3 ≤ pH2 (A7.4)

If (A7.4) did not hold, then the buyers are buying two units from two different sellers and as before

buyer 1 will not buy a unit from seller H. So, suppose that (A7.4) holds. Seller H 0s profit is

pH1 + δV3. But, buyer 1 will only buy from seller H if pH1 ≤ δV3. Similarly, if buyer 2 plans to buy

a third unit from seller H, she will pay no more than δV3. Thus, the deviation is not profitable.

Suppose that (A7.2) is an equality, so that buyer 1 is indifferent between how she divides her

purchases. If she buys two units from L and one unit from H with probability α and one unit from

L and two from H with probability (1− α) to make buyer 2 indifferent between buying two units

from either seller, then α = 1
2 +

pH2 −2δV3
2δV3

. But this is the same α that was used when examining

(A7.1). We found that the optimal pH2 is 2δV3.

Now, we examine deviations where seller H tries to induce a buyer to buy three units from him.

There are two possibilities: a buyer buys three units from him and the seller makes no other sales

or one buyer buys three units from him and the other buyer a single unit from him. Suppose that

seller H tries to induce one buyer to buy three units from him and the other buyer to buy one unit

from him. For the seller to benefit pH1 + pH3 must be greater than 5δV3
2 . If buyer 1 is going to

buy three units from seller H and buyer 2 is going to buy one unit, then buyer 2 will buy either

one or two units from seller L. If buyer 2 plans to buy 2 units from seller L, then pH1 must equal

0, since the buyer can pick up the third unit for free in period 2. If this is the case, then pH3 must

be greater than 5δV3
2 , but buyer 1 would prefer to buy two units from seller L at 2δV3 and one unit

from seller H at a price of 0. This reduces seller H 0s payoff. If buyer 2 plans to only buy one unit

from seller L, then pH1 + δV3 + δV3 ≤ 2δV3, since the left hand side is the price paid to seller H
for a single unit, the price to seller L for a single unit in period 1, and the price paid to seller L
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in period 2 for its third unit. Again, this implies pH1 ≤ 0. We can use the same logic as before to
show that seller H does not benefit from this deviation.

Suppose that seller H wants to induce one of the buyers to buy three units from him and make

no other sales. Let α be the mixing probability of a buyer buying two units from seller L, instead

of three units from seller H. It can be shown that a buyer is indifferent between buying three units

from seller H at price pH3 and two units from seller L, who is charging 2δV3, if

α =
pH3 − 2δV3
4δV3 − pH3

.

Seller H 0s expected profit in this case is

πH = pH3

h
2α(1− α) + (1− α)2

i
+ α22δV3

Differentiating with respect to pH3 , including taking into account its effect on α, we find that the

optimal price is pH3 =
8δV3
3 . Plugging this price into the α equation, we find α = 1/2. Substituting,

in turn, this value into the profit function, the expected profit from this deviation is 5δV32 , which is

exactly equal to the equilibrium profit. Thus, the deviation does not increase the seller’s profit.
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