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Abstract

In elections, majority divisions pave the way to focal manipulations and coordi-

nation failures, which can lead to the victory of the wrong candidate. This paper

shows how this �aw can be addressed if voter preferences over candidates are sensitive

to information. We consider two potential sources of divisions: majority voters may

have similar preferences but opposite information about the candidates, or opposite

preferences. We show that when information is the source of majority divisions, Ap-

proval Voting features a unique equilibrium with full information and coordination

equivalence. That is, it produces the same outcome as if both information and coor-

dination problems could be resolved. Other electoral systems, such as Plurality and

Two-Round elections, do not satisfy this equivalence. The second source of division is

opposite preferences. Whenever the fraction of voters with such preferences is not too

large, Approval Voting still satis�es full information and coordination equivalence.
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1 Introduction

In most electoral systems, even small divisions within the majority can have a dramatic

impact on the election outcome. The history of US ��rst-past-the-post� elections o¤ers

many examples; two recent ones being the 1992 and 2000 presidential elections, in which

the third candidate, R. Perot in 1992 and R. Nader in 2000, is regularly claimed to have

deprived the majority of its victory. The impact of such divisions is almost as important

in two-round systems. In 2002 in France, a vote split within the left led the socialist

candidate, Lionel Jospin, to lose the �rst round by a hair�s breadth to J.-M. Le Pen,

an extreme-right candidate with no chance of winning the second round. Another case

is Nicaragua, where the ex-Sandinista D. Ortega won the 2006 election despite being

supported only by a minority. He owed his victory primarily to internal divisions among

the right-wing majority.1

The issue raised by these examples dates back at least to Borda (1781). As shown

repeatedly (see e.g. Myerson and Weber 1993, Cox 1997, Myerson 2002, Dewan and My-

att 2007), when a divided majority is facing a uni�ed minority block, electoral systems

produce (i) bad equilibria, in which the minority candidate gets elected and (ii) equilib-

rium multiplicity, which makes elections open to focal manipulations and to coordination

failures. Designing an electoral system exempt from such problems proved impossible.

In this paper, we take a step back and reconsider the nature of majority divisions.

Traditional formalizations assume that voters have a �xed preference ordering over can-

didates. We instead propose a model in which the preference ordering can be a¤ected by

information: within a voting block, voters agree about the ends but may be divided about

the means. That is, in the spirit of Condorcet (1785), they have common policy goals but

di¤erent information about each candidate�s capacity to achieve them.

This introduces state-contingent preferences in the comparison of electoral systems:

which of the two majority candidates is best depends on some state of nature. Majority

divisions result from voters having opposite beliefs about which state prevails. We compare

voting equilibria in three voting systems and �nd that Approval Voting strictly dominates

Plurality and Runo¤ (or: two-round) elections. Contrarily to the latter systems, Approval

Voting is not sensitive to majority divisions and produces a unique equilibrium, which

saves voters from the risk of focal manipulations and coordination failures. In this unique

equilibrium, the winning candidate is necessarily the one preferred by the majority un-

der full information. Thus, Approval Voting satis�es what we call full information and

1Nicaragua�s system is a runo¤ where a candidate wins in the �rst round if he obtains more than 35%

and a 5-point lead over the nearest competitor. D. Ortega (left-wing) won with 38% because the right-wing

majority divided their votes between E. Montealegre (28:3%) and J. Rizo (27:1%).
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coordination equivalence.

This result extends directly to the presence of a fraction of voters with stalwart prefer-

ences. These are voters whose preference ordering over candidates can never be modi�ed.

No piece of information, however convincing, can in�uence their ranking of the candidates.

We show that full information and coordination equivalence holds as long as the fraction

of these voters is su¢ ciently small. Evidence and stylized facts provide support for the

presence of a substantial fraction of swing voters in the electorate. First, poll patterns

are far from �at: many elements of information about candidates or their policy produce

massive swings in voter support. Second, presidential ratings are typically much higher

after the election than before (Norpoth, 1996; Fox and Phillips, 2003) �our results actually

provide a rationale for this initial jump. Finally, several historical incidents, such as the

Watergate scandal or Al Qaeda�s attack on Madrid demonstrate that the voters�response

to information shocks can be largely su¢ cient to tip the election outcome.

The analysis of Approval Voting began with the works of Weber (1977, 1995) and

Brams and Fishburn (1978, 1983) �see also Myerson (2002) and Laslier (2006) for more

recent advances. Approval Voting allows voters to �approve of�(or vote for) as many can-

didates as they wish. Each approval counts as one vote, and the candidate who attracts the

largest number of approvals wins the election. This is actually a very natural mechanism.

We use it spontaneously when we organize appointments with several people, precisely

when we need to aggregate information about their availabilities. The Arbitration Com-

mittee of Wikipedia also relies on such a mechanism to resolve disputes, and Approval

polls are used to select the Committee itself. Furthermore, Approval Voting is used by

many academic societies and by the United Nations, to elect the Secretary-General. Yet,

it has never been adopted for head-of-state elections.2

Our results contradict two prejudices against Approval Voting, and may also help

explain why it has not been implemented in large-scale elections. First, according to

traditional analyses, Approval Voting would also display a multiplicity of equilibria (see

e.g. Myerson and Weber 1993), and may produce inferior equilibria in which the Condorcet

winner fails to be elected (see De Sinopoli et al. 2006 and Nuñez 2007). We show that

these conclusions are no longer valid when we relax the assumption of perfect information

about the value of each electoral outcome. Second, Approval Voting is at times accused

of inducing �excessive closeness� among the candidates�results. Nagel (2007) calls this

the �Burr dilemma�: voters may end up voting indiscriminately for all the candidates in

the majority. Similarly, Myerson and Weber (1993, p106) present an example in which

all candidates obtain the same vote share in equilibrium. According to our results, the

2See also Brams (2007), as well as Laslier and Van der Straeten (2007) who ran a large-scale experiment

during the 2002 presidential election in France.
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evidence produced by Nagel cannot extend to large electorates: since voters have opposing

ex ante preferences, they always have an incentive to deviate from a strategy of all voting

for the same candidates. In contrast to Myerson and Weber, we introduce information

uncertainty: some voters believe that the best candidate is A; others believe it is B. Yet,

all realize that they may be wrong. Hence, each voter has an incentive to also rely on

the information held by the other voters. In equilibrium, this incentive will imply that

candidate A has the highest expected vote share when she is the best, and conversely when

B is actually the best. Third, our results show that the incumbency advantage no longer

exists under Approval Voting: leading politicians and parties cannot foreclose entry on the

political marketplace (see also Dewan and Myatt 2007). This is because Approval Voting

makes experimentation easier for the voters, which sti¤ens competition and reduces the

rents of the main politicians and parties. In our view, this in itself helps explain why

Approval Voting did not pervade to head-of-state elections.

Our modeling of large-scale elections draws on the Condorcet Jury Theorem (CJT)

literature.3 We rely on extended Poisson games to model a three-candidate election, and

compare voting equilibria across electoral systems in the spirit of Myerson and Weber

(1993).4 Extended Poisson games were introduced by Myerson (1998a), who also shows

that they simplify the analysis of the CJT. As in Austen-Smith and Banks (1996), the

goal of the electorate in Myerson (1998a) is to select the �best� alternative. Depending

on the state of nature, either A or B can be the best, but voters have di¤erent prior

opinions about these alternatives. One of the main results of the CJT literature is that,

in a two-candidate setting, there exists an equilibrium in which the best alternative wins

almost certainly, despite the lack of information. This result is robust to changes in the

information structure or in the size of the majority required to win �with the notable

exception of the unanimity rule (Feddersen and Pesendorfer 1997, 1998).5

In our model, the majority always prefers both A and B to a third alternative, C.

However, majority-block voters hold opposing convictions as to which of A and B is the

best alternative: in the absence of additional information, some prefer A and the others

prefer B. They also face opposition by the minority who staunchly supports C. Hence,

the majority may be forced to avoid dividing their votes to prevent C from winning the

election. In this setup, we analyze the equilibrium properties of Approval Voting, Plurality

and Runo¤ elections. Only Approval Voting produces a unique equilibrium, in which the

3For 2-candidate elections, see Austen-Smith and Banks (1996), Feddersen and Pesendorfer (1996

and 1997), Myerson (1998a). For multicandidate elections, see Piketty (2000), Martinelli (2002) and

Castanheira (2003).
4Though based on Poisson games, the nature of our results extends to multinomial distributions and

to the setup of Myerson and Weber (1993).
5See Kim and Fey (2007) and Bhattacharya (2007) for precise necessary conditions on voter preferences.
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best alternative is the sole likely winner.

The intuition is two-pronged. First, by its very design, Approval Voting allows voters

to kill two birds with one ballot: they can vote for their most preferred alternative and

lend support to their second choice if they perceive C as a threat �this is the classical ar-

gument in favor of Approval Voting. Second, we show that the trade-o¤ between splitting

majority ballots and eliciting information is drastically di¤erent under Approval Voting.

This is the rationale for equilibrium uniqueness: when voters know that with some (even

tiny) probability, their alternative might be �bad�, they want to prevent any of the ma-

jority alternatives from being too much ahead of the other.6 Hence, whenever there is an

imbalance between the two alternatives, majority-group voters prefer to vote for both A

and B. This reduces the imbalance and ensures that C remains weak. Only when vote

shares are balanced and there is enough double-voting to drag C behind, will majority

voters start to single-vote for their most preferred alternative. This is the channel through

which voter preferences generate the information necessary to select the best alternative.

The paper is organized as follows: Section 2 lays out the model. Section 3 identi�es

actions that are strictly dominated under Approval Voting and identi�es pivot probabilities

for the remaining actions. Section 4 analyzes equilibrium behavior under Approval Voting.

Section 5 and 6 analyze equilibria under Plurality Voting and Runo¤ respectively. Section

7 shows how our results extend to a population with a continuum of types and to the

presence of �stalwart�voters, with opposite preferences. Section 8 concludes.

2 The Model

There are three alternatives, indexed by P 2 fA;B;Cg, two states of nature, ! 2 fa; bg,
and three types of voters, t 2 ftA; tB; tCg. Conditional on the state of nature, types tA
and tB hold identical preferences: they always want to elect the best alternative, which is

A in state a and B in state b:

U (P; tA; !) = U (P; tB; !) = 1 if (P; !) = (A; a) or (B; b)

= 0 if (P; !) = (A; b) or (B; a) (1)

= �1 if P = C;

where U (P; t; !) denotes the utility of a voter with type t when alternative P is elected

and the true state is !.

6 If instead voters assign a zero-probability on their candidate being �bad�, equilibrium multiplicity

can be an issue (see Myerson and Weber 1993, Nuñez 2007 and Section 7.2 in this paper).

4



Yet, from an ex ante vantage point, types tA and tB have opposite convictions regarding

alternatives A and B: they hold di¤erent beliefs as to which state is most likely. As detailed

below, a voter with type t believes that the true state is ! with a probability q (!jt). We
impose that:

1 >
q (ajtA)
q (bjtA)

> 1 >
q (ajtB)
q (bjtB)

> 0: (2)

That is, information is imperfect and divides types tA and tB. The former believe that

A is most likely to be the best alternative, whereas the latter believe it is alternative

B. Additional information on the true state of nature could nevertheless a¤ect these

convictions (more on this below).

Types tC are pure partisans: independently of the true state of nature, they always

prefer alternative C. For the sake of tractability, they are also assumed indi¤erent between

the other two alternatives:

U (P; tC ; !) = 1 if P = C

= 0 if P 2 fA;Bg :

Timing. At the beginning of the game (time 0), nature chooses the state !, which

remains unobserved until after the election. The probabilities of states a and b are respec-

tively q (a) and q (b), with q (a)+q (b) = 1. At time 1, nature selects a random number of

voters from a Poisson distribution of mean n and, conditional on the state, assigns them a

type t by iid draws.7 The conditional probability of being assigned type t is r (tj!), withP
t r (tj!) = 1; 8!. These probabilities correlate with the true state of nature:

r (tAja) > r (tAjb) ;

r (tBja) < r (tBjb) ;

r (tC ja) = r (tC jb) ;

and, to ensure that our results cannot hinge on any type of symmetry across types tA and

tB, we allow types tA to be potentially more �abundant�than tB:

r (tAja) + r (tAjb) � r (tBja) + r (tBjb) :

Of course, the distribution of voters determines which type has the majority. We focus

on the case:

r (tC j!) < 1=2;

7The main properties of extended Poisson games are summarized in Appendix A1 and in the next

section, where we also explain why our results extend to multinomial distributions.
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which implies that types tC are a strict minority.8 Hence, types tA and tB compose

the majority block, whereas types tC form the minority block. The majority�s preferred

alternative; A or B, thus depends on the state of nature, a or b, which is unknown at the

time of the election.

The election is held at time 2. The probabilities q (!) and r (tj!) are common knowl-
edge. In contrast, neither the actual state of nature nor the actual number of voters of

each type is observed: voters only know their own type, t. Through Bayesian updating, a

voter with type t infers that the probability of state ! is q (!jt):

q (!jt) = q(!) r (tj!)
q(a) r (tja) + q(b) r (tjb) : (3)

Clearly, condition (2) imposes restrictions on q (!) and r (tj!). As already explained, (2)
implies that tA and tB voters are divided. However, these divisions are based only on the

voter�s perception of the candidates, formally represented by her type. Through Bayesian

updating, additional elements of information will a¤ect the voter�s beliefs and may there-

fore modify her preferences over candidates. In particular, the information revealed by the

election can have a major impact, by eliciting information about the distribution of pref-

erences in the entire electorate (in Section 7.1, we consider a continuum of types and/or

preference intensities).

Payo¤s are realized at time 3: the winning alternative W 2 fA;B;Cg is selected and
each voter�s utility U (W; t; !) then realizes. In sections 5 and 6, we analyze Plurality and

Runo¤ elections. Here, we only introduce Approval Voting.

Action set under Approval Voting. Under Approval Voting, each voter can cast a

ballot on as many (or as few) alternatives as she wishes. Each approval counts as one vote:

when a voter only approves of A, then only alternative A is credited with one vote. If the

voter approves of both A and B, then both A and B are credited with one vote, and so

on. Hence, the voters�action set is:

	 = fA;B;C;AB;AC;BC;ABC;?g ;

where, by an abuse of notation, action A denotes a ballot in favor of A only, action BC

denotes a joint approval of B and C, etc., and ? denotes abstention. Thus, the di¤erence
between approval voting and other, more common, electoral rules is that a voter can cast

a single, a double or a triple approval. Single approvals ( = A; B and C) act as positive

8For r (tC j!) > 1=2; a majority of the electorate prefers to have C elected, independently of !. This

case is trivial to investigate: since types tC are a majority, they can elect C with a probability that

converges to 1 when population size increases to in�nity.
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votes: for instance, an A-vote can only be pivotal in favor of A, against B or against C. In

a three-candidate setup, double approvals ( = AB, BC and AC) act as negative votes.

For instance, if the voter plays AC; she is acting against B: her ballot can only be pivotal

against that alternative, either in favor of A or of C. Finally, a triple approval (ABC) can

never be pivotal: it is strategically equivalent to abstention.

Letting x ( ) denote the number of voters who played action  2 	 at time 2, the

total number of approvals received by alternatives A;B; and C are respectively:

X (A) = x (A) + x (AB) + x (AC) + x (ABC) ;

X (B) = x (B) + x (AB) + x (BC) + x (ABC) ; (4)

X (C) = x (C) + x (AC) + x (BC) + x (ABC) :

The alternative with the largest total number of approvals wins the election. Ties are

resolved by the toss of a fair coin. We will see below that, given a Poisson-distributed

total size of the population, each random variable x ( ) itself follows a Poisson distribution.

This will imply that each voter has a strictly positive probability of being pivotal.

Strategy space and equilibrium. A type t�s strategy function is any mapping � (t) :

t !  that speci�es a probability distribution over the set of actions 	 for each type

t. � ( jt) denotes the probability that a randomly sampled voter of type t plays action
 , and the usual constraints apply: � ( jt) � 0 and

P
 � ( jt) = 1; 8t. This strategy

function � (t) re�ects the fact that a voter can only condition her strategy on her type t.

Given the strategy function � (t) of each type t, a fraction:

� ( j!) =
X

t
r (tj!) � ( jt) (5)

of the electorate is expected to play action  in state !. We call � ( j!) the expected share
of voters who choose action  in state !. Importantly, if types tA and tB play the same

strategy � (t), then vote shares � ( j!) are identical in the two states of nature. If instead
they play di¤erent strategies, then expected shares vary with the state of nature.

We analyze symmetric Bayesian Nash equilibria of this voting game for an expected

population size n that becomes in�nitely large.9 We shall say that:

9Note that the equilibrium mapping � ( jt) must be identical for all voters of a same type t; by the
very nature of population uncertainty (see Myerson 1998b, p377, for more detail). Therefore, symmetry is

necessarily part of the equilibrium. Section 7.1 extends the model to a continuum of types, in which case

the equilibrium is in cuto¤ strategies.
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De�nition 1 An equilibrium produces an informational trap if the expected result of

the election is independent of the state of nature:

E� (X (P ) ja) = E� (X (P ) jb) ; 8P 2 fA;B;Cg :

In the presence of an informational trap, the outcome of the election does not reveal

anything about the actual state of nature: the voter�s prior preferences are then una¤ected

by the election outcome. We will see that this can only happen if � (tA) = � (tB).

3 Approval Voting: Elimination of Dominated Strategies

The action set contains eight elements. Identifying strictly dominated strategies allows us

to focus on only three of them.

Denoting by Pr (W j!) the probability that alternativeW 2 fA;B;Cg wins the election
in state !, the expected utility of a majority-block voter is:

EU (t) = q (ajt) [Pr (Aja)� Pr (Cja)] + q (bjt) [Pr (Bjb)� Pr (Cjb)] ; t 2 ftA; tBg : (6)

This reads as follows: having observed her type t, the voter anticipates that the true state

of nature is a with probability q (ajt). In that case, by (1), her utility is 1 if A wins, 0 if B
wins, and �1 if C wins. With probability q (bjt) � [1� q (ajt)] the true state is b. In that
case, her payo¤ is 0 if A wins, 1 if B wins, and �1 if C wins. The expected utility of a

minority-block voter is:

EU (tC) = Pr (C) .

The value of each action depends on its probability of a¤ecting the outcome of the

election, i.e. on its probability of being pivotal. A ballot can be pivotal in two cases:

when an alternative trails behind the leader by exactly one vote or when the leading

alternatives have the same number of votes. It immediately follows that:

Lemma 1 For a majority-block voter t 2 ftA; tBg, in equilibrium:

� (Ajt) + � (Bjt) + � (ABjt) = 1: (7)

For a minority-block voter, action  = C is a strictly dominant strategy:

� (CjtC) = 1: (8)

The proof is straightforward: consider a majority-block voter and compare actions AB

and ABC. While the latter can never be pivotal, an AB-ballot can be pivotal against
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C, either in favor of A or in favor of B: Both events increase a majority-type�s expected

utility. Hence, AB strictly dominates ABC. All other strict dominance relationships are

obtained by performing similar two-by-two comparisons: AB strictly dominates ABC; ?
and C; A strictly dominates AC; and B strictly dominates BC.

Lemma 1 tells us that we must focus on three undominated actions. Let G ( jt) denote
the expected gain of these actions,  = A;B;AB. This gain depends on the voter�s type,

summarized by q (!jt), and on the strategy function � (t) � f� (Ajt) ; � (Bjt) ; � (ABjt)g of
the other majority-block voters. These strategies determine the expected number of votes

received by each alternative, and thereby the pivot probabilities Pr (pivPQj!):

G (Ajt) = q (ajt) [Pr (pivABja) + 2Pr (pivAC ja)]
+q (bjt) [Pr (pivAC jb)� Pr (pivABjb)] ;

(9)

G (Bjt) = q (ajt) [Pr (pivBC ja)� Pr (pivBAja)]
+q (bjt) [Pr (pivBAjb) + 2Pr (pivBC jb)] ;

(10)

and G (ABjt) = q (ajt) [Pr (pivBC ja) + 2Pr (pivAC ja)]
+q (bjt) [Pr (pivAC jb) + 2Pr (pivBC jb)] :

(11)

These pivot probabilities depend on the distribution of the number x ( ) of voters who

play each action  . As shown by Myerson (1998a, 1998b, 2000), since the total number

of voters follows a Poisson distribution of mean n, the realizations x ( ) follow mutually

independent Poisson distributions: x ( ) � P (n � � ( j!)), where � ( j!) is the expected
fraction of voters playing action  in state ! (see (5) above).

Under Approval Voting, the number of votes received by alternative A or B is the

sum of two independent Poisson random variables: X (A) = x (A) + x (AB) and X (B) =

x (B) + x (AB). A pivot probability is therefore the joint probability of two events, each

one involving a di¤erent pair of candidates:

Pr (pivPQj!) =
1

2
Pr(

Q is ahead of P by 0 or 1 votez }| {
X (Q)�X (P ) 2 f0; 1g j!)� ::: (12)

:::Pr(X (R) < X (Q) jX (Q)�X (P ) 2 f0; 1g ; !| {z }
3d alternative, R, trails behind

)

+2Pr(X(P )=X(Q)=X(R)j!) + Pr(X(P )+1=X(Q)=X(R)j!)
3| {z }

near three-way tie

Property 1 below summarizes some of the properties proven by Myerson (1998a, 1998b,

2000) and extends them to Approval Voting (the proofs are in Appendix A1). Denoting
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P1, P2 and P3 the alternatives with respectively the largest, second largest, and lowest

expected vote totals, we have:

Property 1 For an increasingly large electorate size n, the probability that two alterna-

tives P and Q 2 fA;B;Cg have (almost) the same number of votes converges to zero at
an exponential rate called the magnitude of the probability. We denote it mag (PQj!):

mag (PQj!) � lim
n!1

log [Pr (jX (P )�X (Q)j � 1j!)]
n

: (13)

The exact form of the di¤erent magnitudes mag (PQj!) are given in Property 2 in Ap-
pendix A1. It follows that:

a) if two events have a di¤erent magnitude, then (Property 3 in Appendix A1):

lim
n!1

Pr(X(P )=X(Q)j!)
Pr(X(P )=X(R)j!0) = 0 if and only if mag (PQj!) < mag

�
PRj!0

�
; (14)

with P;Q;R 2 fA;B;Cg ; P 6= Q 6= R and !; !0 2 fa; bg :
b) The magnitude of a pivot probability Pr (pivPQ) is such that:

mag (pivPQj!) = mag (PQj!) if Pr (X (R) � X (Q) jX (Q)�X (P ) 2 f0; 1g ; !) !
n!1

1

< mag (PQj!) if Pr (X (R) � X (Q) jX (Q)�X (P ) 2 f0; 1g ; !) !
n!1

0:

c) Under Approval Voting, the pivot probability with the largest magnitude need not be the

one between the top two alternatives. Yet, a su¢ cient condition for mag (pivP1P2 j!) >
mag (pivP1P3 j!) � mag (pivP2P3 j!) is that C is one of the top-two contenders in state !

(Property 4 in Appendix A1).

The result summarized by equations (13� 14) has been called the magnitude theorem
by Myerson (2000). The intuition is that pivot probabilities do not converge towards zero

at the same speed. Hence, unless two events have the same magnitude, their likelihood

ratio converges either to zero or to in�nity. For instance, if two events have a magnitude

di¤erential of 0:01, their probability ratio is of an order of 10�44 with 10 000 voters and

10�435 with 100 000 voters.

Remark 1 Note that this magnitude result is far from being speci�c to Poisson distri-

butions. For instance, Myerson (2000, Section 4) shows that pivot probabilities under

multinomial distributions are simply a monotone transformation of their Poisson equiva-

lent.10 Myerson and Weber (1993) rank pivot probabilities in a similar way. Since our
10Myerson (2000) shows that limits of pivot probabilities under Poisson games are such that limn!1

log (Pr (pivPQ)) =n = �. In his Section 4, Myerson (2000) shows that, if the distribution is Multinomial

instead of Poisson, then limn!1 log (Pr (pivPQ)) =n = log(�+ 1), where � is the limit under the Poisson

distribution. Therefore, the limit likelihood ratio (14) is the same under both distributions.
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results primarily depends on the magnitude of pivot probabilities, they do not hinge upon

the assumption of Poisson games.

In addition to these classical results, Property 1c tells us that the pivot probability

ranking need not correspond to the expected ranking of vote shares. This is because the

voters who double-vote for A and B introduce a correlation between X(A) and X(B),

which reduces mag(pivABj!). This correlation is taken care of by computing pivot prob-
abilities on the mutually independent variables x( ).

Remark 2 The correlation between the number of votes obtained by candidates A and B

implies that the ranking of pivot probabilities need not mirror the ranking of expected vote

shares. This contrasts with the simplifying assumptions in Myerson and Weber (1993),

who assume such a bijectional relation.

4 Approval Voting: Equilibrium Analysis

Classically, elections with three or more alternatives su¤er from information and coordi-

nation problems: which is the best alternative is unclear, and one voter�s best response

depends on the action pro�le of the rest of the electorate. In the present setup, under full

information, alternative A should win in state a and alternative B should win in state b.

Yet, the voters�lack of information means that they cannot make their ballot contingent

on the state of nature. What is more, perfect information is not even su¢ cient to ensure

that the best candidate wins. Indeed, voters could experience a coordination failure: as

shown in Sections 5 and 6, all majority-block voters may be induced to vote for the same

alternative in common electoral systems. We shall say that:

De�nition 2 Elections satisfy full information and coordination equivalence if

equilibrium vote shares are such that:

�(Aja) + �(ABja) > max f�(Bja) + �(ABja); � (C)g in state a; and
�(Bjb) + �(ABjb) > max f�(Ajb) + �(ABjb); � (C)g in state b.

(15)

That is, alternative A�s expected vote share must be the largest one in state a and con-

versely for alternative B in state b. Asymptotically, the winning alternative is then the

one preferred by a majority of the population under full information.11

11This concept of full information and coordination equivalence is the natural extension to multicandi-

date elections of Feddersen and Pesendorfer�s (1997) concept of full information equivalence.
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Typically, satisfying this constraint is not trivial in a three-candidate setting: �rst, C

may win the election if the majority split their votes. Second, even if C is only supported

by a small minority, there may be multiple equilibria, and hence a coordination problem.

Third, the outcome cannot vary with the state of nature if the majority coordinate on

exactly one alternative. Our main contribution is to show that these problems vanish

under Approval Voting:

Theorem 1 Under Approval Voting, the equilibrium is unique and satis�es full informa-

tion and coordination equivalence: the equilibrium strategies are such that (15) holds.

In other words, the possibility of double-voting, which is built into Approval Voting,

profoundly modi�es the trade-o¤ that is present in other systems. When majority voters

can use double-voting to avoid C�s victory, coordinating behind only one alternative is

both unnecessary and undesired. Indeed, if A�s victory is threatened in state a, then

even types tB will be willing to lend support to A by double-voting, i.e. by playing AB.

Importantly, this is not only valid when A is threatened by C, but also true when B

threatens the victory of A in state a: types tB understand that the true state might be a.

Similarly, when B is threatened in state b, then types tA will be willing to play AB. Only

when A and B�s vote shares are su¢ ciently high compared to C�s and balanced with one

another, majority voters are willing to divide their votes to aggregate information. As we

show below, the simple fact that majority-group voters represent more than half of the

electorate is su¢ cient to ensure that information aggregation takes place in equilibrium.

The purpose of this section is to prove this Theorem. Each of the next two subsections

focuses on one aspect of the proof: �rst, we prove in Propositions 1 and 2 that there

cannot be an informational trap under Approval Voting. Second, we derive the equilibrium

strategies: Proposition 3 identi�es them and shows that they are unique and induce full

information and coordination equivalence. Section 7.1 shows why this result is robust to

heterogeneity in priors and/or preference intensities and Section 7.2 shows that the result

builds on information-sensitive preferences.

4.1 Absence of Informational Traps

In this subsection, we prove that there cannot be informational traps in equilibrium, either

in pure or in mixed strategies (remember that informational traps arise if all majority

types, tA and tB, adopt the same strategy pro�le in equilibrium). We underline the main

trade-o¤ in Proposition 1. Proposition 2 then shows that types tA and tB necessarily

specialize in playing A and B respectively.
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Proposition 1 There cannot be an informational trap in which all majority-block voters

play the same pure strategy. That is, none of the three corner strategies:

f� (Ajt) ; � (Bjt) ; � (ABjt)g 2 ff1; 0; 0g ; f0; 1; 0g ; f0; 0; 1gg

in which all majority block voters t = tA; tB play the same action with probability 1 can be

an equilibrium.

Proof. See Appendix A2.

The intuition is as follows. Imagine that all majority-block voters are expected to play

A. This would generate an informational trap, in which case the election result cannot

in�uence voter preferences. In particular, a type tB still wants to vote for B: this is her

preference motive. Yet, she knows that, with a vote share of 0, B has virtually no chance

of winning. So, her strategic motive induces her to support A. Under Approval Voting,

tB-voters can kill these two birds with one ballot: they can combine their strategic motive

(vote A) together with their preference motive (vote B) through a joint AB approval;

this deviation is always pro�table.12 Hence, approval voting frees voters from the trap of

�having to�single-vote for a less attractive candidate.

The balance between these two motives is reversed when all majority voters are ex-

pected to double-vote. If they all play AB, alternatives A and B top the polls with the

same expected vote share. In this case again, the election outcome cannot reveal any in-

formation about the state of nature. This means that types tA and tB maintain their

prior preferences and that any of them would deviate and single-vote for her preferred

alternative. Indeed, a single ballot has a very high probability of making the di¤erence

between A and B, whereas the other majority-block voters are already taking care of the

strategic motive (trailing behind, C has virtually no chance of winning).

Hence, Proposition 1 eliminates three problematic equilibria. The �rst two candidate

equilibria are the game theoretic materialization of Duverger�s Law. In such equilibria,

majority-block voters feel compelled to coordinate all their votes on only one alternative

(we will see in Sections 5 and 6 that these equilibria exist under Plurality and Runo¤

elections). Such Duvergerian outcomes pose two problems. They prevent information ag-

gregation and, most importantly, they erect barriers to entry: without su¢ cient initial

12This feature is speci�c to Approval Voting. Consider any other voting rule, in which the voter must

withdraw some �voting points� from A if she wants to also vote for B. In that case, there is a con�ict

between the preference and strategic motives: the probability that a ballot is pivotal in favor of B is

in�nitesimal compared to the pivot probability in favor of A. Hence, any �voting points�withdrawn from

A has a cost that is in�nitely larger than the bene�t of the point(s) given to B. As in a prisoner�s dilemma,

no voter can a¤ord to express her preferences.
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support, challengers are bound to lose the election even when a large fringe of the pop-

ulation perceives them as better than incumbent alternatives. Thus, Proposition 1 also

shows that the incumbency advantage vanishes under Approval Voting.

The third candidate equilibrium has been termed the Burr dilemma by Nagel (2007).

He documents the �[approval] experiment [that] ended disastrously in 1800 with the in-

famous Electoral College tie between Je¤erson and Burr�. Proposition 1 shows why such

a �disaster� cannot happen in large-scale elections � the Electoral College involved few

voters, whose behavior was dictated by party discipline.

Even though Proposition 1 eliminates these three candidate equilibria, it does not

ensure that equilibrium vote shares are necessarily di¤erent in the two states of nature.

Myerson and Weber (1993), for instance, present an example in which all candidates have

the same vote share in equilibrium. This is another version of the Burr dilemma: A and B

indeed end up in a tie. Our second proposition shows that this cannot happen in our setup:

since majority-block voters tA and tB �specialize�into playing A and B respectively, there

can never be an informational trap:

Proposition 2 In equilibrium, we must have: � (AjtA) + � (ABjtA) = 1 and � (BjtB) +
� (ABjtB) = 1 with � (AjtA) > 0 and � (BjtB) > 0. Hence, majority-block voters mix

between their �preferred alternative�and the joint AB approval.

Proof. See Appendix A2.

The intuition for the proof is as follows: �rst, we show that a voter never wants to

mix between actions A and B. Such a mixed strategy would imply that she is indi¤erent

between the two alternatives. Expressed di¤erently, the voter does not want to choose

between them. However, a safer option is then to play action AB: this action has a higher

probability of being pivotal against C, and can never be mistakenly pivotal, e.g. in favor

of A against B when the true state of nature is b.

This intuition also relates to the �swing voter�s curse�: in Feddersen and Pesendorfer

(1996), voters with imperfect information abstain, to avoid �noising�the election result.

Proposition 2 shows why this incentive to abstain is absent under Approval Voting: double-

voting is more e¤ective than abstaining when there are more than two candidates.

It remains to see why types tA and tB necessarily play A and B with strictly positive

probability. To understand this, imagine for a moment that no voter plays  = A. Even

if we constrain � (Ajt) to be equal to 0, the vote share of A will be larger in state a

than in state b, because types tA must play AB with a strictly higher probability than

types tB in equilibrium. This di¤erence in vote shares implies that even types tB do not
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want to be pivotal against A: they prefer to play AB in pure strategy. This leads to a

contradiction: by Proposition 1, it cannot be an equilibrium that all majority types play

AB with probability 1. Hence, the action  = A must be played with strictly positive

probability in equilibrium. Given the preference motive, types tA can be identi�ed as the

ones playing A with strictly positive probability (they never play B), and conversely for

types tB.13

4.2 Equilibrium Uniqueness

From Proposition 2, we know that all majority-type voters include their a priori preferred

alternative in their ballot: since they mix between A and AB, types tA necessarily approve

of A. Types tB mix between B and AB, which always includes B. Hence, the strategy

of a type tA does not in�uence the vote count of alternative A. It only in�uences that of

B: the more types tA double-vote, the higher the expected vote share of B. Likewise, the

strategy of a type tB in�uences the expected vote count of alternative A.

The vote share of either alternative will thus increase when the incentives of types tA
and tB become more aligned, i.e.when either type feels it must support the other group.

Their incentives align, �rst, when there is a �major imbalance�between the expected vote

shares of A and B or, second, when they need to �ght alternative C.

A �major imbalance�occurs when either alternative A or B is too much ahead of the

other. Imagine for instance that A is expected to receive many more votes than B. In

that case, tA-voters are quite certain that A wins in state a, given its lead. Instead, they

are not quite certain that B wins in state b. They thus realize that they have to lend

support to B as well: this does not threaten A in state a, but does give B a chance in

state b. Hence, they prefer to play AB if they expect a major imbalance in favor of A:

The �ght against C aligns incentives in the same way. Imagine that a vote for B is

much more likely to be pivotal against C than against A (this happens when A and B�s

vote shares are not su¢ ciently above C�s). In that case as well, a type tA prefers to cast

a double ballot: it provides additional insurance against the election of C.

These two cases lead to the same conclusion: if B�s vote share is too low, either

compared to A�s or to C�s, the incentives of types tA become aligned with that of types

tB �this is again the strategic motive at work �which induces them to double-vote with

a higher probability. By symmetry, if A�s vote share is too low, then it is types tB who

13 In a setup with �xed preferences, Brams and Fishburn (2007, Theorem 2.1) show that a voter will

always include her most preferred alternative in her ballot. One aspect of Proposition 2 is to show how

their Theorem extends to voters whose preference ordering is state-dependent.
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must lend support to A, and double-vote.

Previous propositions showed that the preference motive dominates when su¢ ciently

many majority voters double-vote. In what follows, we show that there is a unique com-

bination of strategies for types tA and tB that can prevent major imbalances between A

and B, and a unique �aggregate level�of double-voting that balances the preference and

strategic motives. This is why the equilibrium is unique.

Formally, using the expected gain functions (9)� (11) ; we have:

G (AjtA)�G (ABjtA) = q (ajtA) [Pr (pivABja)� Pr (pivBC ja)]
�q (bjtA) [2 Pr (pivBC jb) + Pr (pivABjb)] ;

(16)

G (BjtB)�G (ABjtB) = q (bjtB) [Pr (pivBAjb)� Pr (pivAC jb)]
�q (ajtB) [2 Pr (pivAC ja) + Pr (pivBAja)] :

(17)

From Proposition 2, types tA and tB must single-vote with positive probability in equi-

librium. A necessary condition to have G (AjtA)�G (ABjtA) � 0 is that Pr (pivABja) be
su¢ ciently large compared to the other three pivot probabilities in (16). Similarly, a nec-

essary condition to have G (BjtB)�G (ABjtB) � 0 is that Pr (pivBAjb) be su¢ ciently large
compared to the other three pivot probabilities in (17) : From Property 1, this requires:

mag (pivABja) � max fmag (pivABjb) ;mag (pivBC ja) ;mag (pivBC jb)g ;
mag (pivBAjb) � max fmag (pivBAja) ;mag (pivAC ja) ;mag (pivAC jb)g :

(18)

Let us �rst focus on the constraint that appears between the vote shares of alternatives

A and B. The combination of the two inequalities in (18) imposes that the magnitudes

mag (pivABja) and mag (pivBAjb) be equal. Since they must also be larger than all the
magnitudes against C, we have by Property 4 in Appendix A1:�p

r (tAja) � � (AjtA)�
p
r (tBja) � � (BjtB)

�2
=�p

r (tAjb) � � (AjtA)�
p
r (tBjb) � � (BjtB)

�2
:

(19)

This condition depends on the two strategy pro�les, � (AjtA) and � (BjtB). Yet, de�ning:

� � � (AjtA) =� (BjtB) ;

one readily sees that condition (19) is satis�ed i¤:���pr (tAja) � ��pr (tBja)��� = ���pr (tBjb)�pr (tAjb) � ���� ;
which has a unique solution in R+:

�� =

 p
r (tBja) +

p
r (tBjb)p

r (tAja) +
p
r (tAjb)

!2
: (20)
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This solution in turn implies: � (Aja) > � (Bja) and � (Ajb) < � (Bjb).

Hence, we are now left with one unknown variable: if we �nd the equilibrium probabil-

ity � (BjtB) with which types tB single-vote in equilibrium, the value of � (AjtA) follows
immediately. The following proposition shows that there is a unique solution to � (BjtB).
This equilibrium value of � (BjtB) is the highest one that allows (18) to be satis�ed:

Proposition 3 The equilibrium is unique and such that:

i) � (BjtB) = 1, � (AjtA) = �� i¤, for this strategy pro�le,

mag(pivABja) = mag(pivABjb) � max
!
fmag (pivAC j!) ;mag (pivBC j!)g :

ii) Otherwise, � (BjtB) = ��, � (AjtA) = ���� with �� 2 (0; 1) such that:

mag(pivABja) = mag(pivABjb) = max
!
fmag (pivAC j!) ;mag (pivBC j!)g : (21)

Proof. See Appendix A2.

Proposition 3 shows that there is a unique equilibrium value for � (AjtA) and � (BjtB).
The reason is as follows: whenever C�s vote share is su¢ ciently below that of A and B,

the preference motive dominates: types tB strictly prefer to single-vote for B, and so do

types tA, who want to single-vote for A. This increases the gap between A and B in both

states of nature. The only obstacle to furthering this gap is the threat posed by C: if there

exists a strategy pro�le for which (21) binds, then the strategic motive starts dominating

again, and both types tA and tB prefer to double-vote with a su¢ ciently high probability.

The equilibrium is reached when this strategic motive to beat C balances the preference

motive, unless a corner solution is reached. The solution is unique because the perceived

threat posed by C decreases monotonically with the fraction of voters who double-vote.

4.3 Numerical Examples

The examples focus on symmetric priors: q (a) = 1
2 = q (b) and a symmetric distribution of

types: r (tAja) = r (tBjb). This is meant to simplify exposition: from (20) and Proposition
3, symmetry imposes that ��(AjtA) = ��(BjtB). We illustrate the e¤ect of a variation
in r(tC); the size of the minority group in the population, and of a variation in the ratio

r(tAja)=r(tAjb); which proxies the quality of the information available to the voters:

Let r(tC) = 0:4; r(tAja) = 0:36 and r(tAjb) = 0:24. With these parameter values, as
for the actual cases discussed in the introduction, the Condorcet loser, C, would asymp-

totically be sure to win the election if the majority divide their votes. Vote shares would
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indeed be: � (C) = 0:4 > � (Aja) = � (Bjb) = 0:36 > � (Ajb) = � (Bja) = 0:24. This im-
plies that we are in case (ii) of Proposition 3, and that there must be some double-voting

in equilibrium. The equilibrium strategy pro�le is �(ABjtA) = 0:57 = �(ABjtB), which
leads to the vote shares and magnitudes illustrated in Table 1.

Table 1: equilibrium vote shares (left) and magnitudes (right).14

Vote shares state a state b

A 0:497
(�rst)

0:445
(second)

B 0:445
(second)

0:497
(�rst)

C 0:4
(third)

0:4
(third)

Total 1.342 1.342

and

Magnitudes state a state b

mag(pivAC j!) �0:0052 (small)

mag(pivBC j!) (small) �0:0052
mag(pivABj!) �0:0052 �0:0052

This example illustrates the e¤ect of the double-vote: it allows the majority to �in�ate�

the expected vote shares of both A and B above the share of C. This is why the sum of

the three vote shares exceeds 100% of the population: majority-block voters double-vote

up to the point at which the magnitude of the pivot probability between A and B is equal

to the largest magnitudes against C.

The equilibrium propensity to double-vote is directly related to the size of the minority.

If the fraction of types tC is su¢ ciently low, majority-group voters do not actually need

to double-vote: let r(tC) = 0:25; r(tAja) = 0:45 and r(tAjb) = 0:30. With these parameter
values, the quality of information is the same as in the previous example (r(tAja)=r(tAjb) =
1:5) but full information and coordination equivalence obtains even if majority-group

voters divide their votes. Indeed, with �(ABjtA) = 0 = �(ABjtB), we have: � (Aja) =
� (Bjb) = 0:45 > � (Ajb) = � (Bja) = 0:30 > � (C) = 0:25; and mag(pivABj!) is strictly
larger than the other magnitudes. We are therefore in case (i) of Proposition 3. More

generally, in such a symmetric setup, majority-block voters double-vote in equilibrium if

and only if r (tC) > r(tAjb) = r(tBja) and, the higher is r (tC) ; the higher is the majority�s
propensity to double-vote (holding r(tAja)=r(tAjb) constant).

This shows that double-voting may vanish when r(tC) falls, and be valuable again

when r (tC) increases. This observation directly links to Brams and Fishburn�s (2005) case

study of the Institute of Electrical and Electronics Engineers (IEEE). In 1986, because of

a split among the majority, the minority-backed candidate almost won the election for the

14The pivot probability between the second and third candidates is in�nitely lower than the pivot

probability between the �rst and second candidate. In the absence of a closed-form solution for these

magnitudes, we cannot compute their exact value.
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presidency. This triggered the adoption of Approval Voting by the Institute. Subsequently,

both majority divisions and minority size decreased, which induced the IEEE to revert to

Plurality Voting. Arguably, the latter decision overlooks the option value of a double-vote:

According to the IEEE executive director [...] �few of our members were using

[multiple voting...]�. Brams responded in an e-mail exchange (June 2, 2002)

that since �candidates now can get on the ballot with �relative ease� [...] the

problem of multiple candidates [...] might actually be exacerbated ... and come

back to haunt you [IEEE] some day� (Brams and Fishburn 2005, p16).

Returning to the numerical examples, we now analyze the e¤ect of an improvement in

information. Surprisingly, better information induces more double-voting in equilibrium.

The rationale is as follows: increasing r(tAja) and decreasing r(tAjb) while holding r(tC)
constant implies that, ceteris paribus, the gap between the �rst and the second alternative�s

vote shares increases. For a given strategy pro�le, the probability of being pivotal between

A and B decreases in magnitude. In comparison, the gap between the �rst alternative

and C does not increase as fast. Hence, the balance between the strategic and preference

motives tilts in favor of the former: the relative value of a double vote increases. To

illustrate this, set r(tAja) = 0:48 and r(tAjb) = 0:12 and keep r(tC) = 0:4 as in the �rst
example. We �nd that �(ABjtA) = 0:8580 = �(ABjtB) in equilibrium, and hence:

Table 2: equilibrium vote shares (left) and magnitudes (right).

Vote shares state a state b

A 0:583
(�rst)

0:532
(second)

B 0:532
(second)

0:583
(�rst)

C 0:4
(third)

0:4
(third)

Total 1.5144 1.5144

and

Magnitudes state a state b

mag(pivAC) �0:0172 (small)

mag(pivBC) (small) �0:0172
mag(pivAB) �0:0172 �0:0172

Compared to the �rst example, the equilibrium ranking remains the same but there is

more double-voting and pivot magnitudes are lower, which means that the probability of

a mistake, i.e. that A wins in state b or B wins in state a, decreases substantially.

5 Plurality Elections

Now that we have analyzed the properties of Approval Voting, we can compare them with

those of other, commonly used, electoral systems. We analyze two such systems: plurality

elections in this section, and runo¤ elections in the next one.
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Under plurality, as under Approval Voting, the alternative receiving the most votes

wins the election. The only di¤erence is that voters can only cast a single ballot or

abstain. That is, their action set is restricted to: 	Plurality = f?; A;B;Cg. Otherwise,
all pivot probabilities remain the same as in Property 1, with the only di¤erence that,

by the de�nition of 	Plurality, we have: � (ABjt) = 0; 8t and hence X(P ) = x (P ),

8P 2 fA;B;Cg :

Theorem 2 shows that this single di¤erence between the two electoral procedures is

su¢ cient to induce multiplicity of equilibria. Moreover, as already highlighted by Piketty

(2000), many such equilibria fail to produce full information and coordination equivalence:

Theorem 2 Under plurality elections, there are at least three equilibria. The �rst and

second are self-ful�lling equilibria in which all majority types vote for A (resp.B), because

they expect the other alternative, B (resp.A) to receive no vote. These equilibria produce

an informational trap.

In the third equilibrium, majority types adopt di¤erent strategies, hence there is no infor-

mational trap. Yet, for � (C) > 1=[2 + r (tAjb) =r (tAja)]; equilibrium vote shares are such

that:

� (C) > �(Aja) ' �(Bjb) > �(Ajb) ' �(Bja) > 0:

In this equilibrium, candidate C wins with a probability that converges to 1 as n!1.

Proof. See Appendix A3.

6 Runo¤ Elections

This section analyzes the properties of another commonly used electoral system: Plurality

Runo¤ elections, also known as two-round elections. In this electoral system, a candidate

wins outright if she collects more than 50% of the votes in the �rst round. If no candidate

reaches this 50%-threshold, then a Runo¤ is organized between the two candidates with

the most votes.15 This Runo¤procedure is often proposed as a solution to the coordination

failures that lead to informational traps. Piketty (2000) for instance professes that Runo¤

elections should be able to separate the �communication stage�, in which voters learn

which of A and B is best, from the �election stage�. This intuition �nds support in

Martinelli (2002) who analyses the equilibrium properties of Plurality Runo¤ elections

15Note that there exists other types of two-round elections in which the threshold for �rst-round victory

is below 50% (for instance in Argentina, Nicaragua, Costa Rica and North Carolina). For an analysis of

such two-round elections in Poisson games, see Bouton (2007).
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with privately informed voters. However, in his analysis, Martinelli (2002) assumes away

the risks that are present in the second round: the majority-backed candidate wins with

probability 1. In contrast, we let, in each round, the population follow the same Poisson

distribution as under the other electoral systems, which means that the probability of

winning is only asymptotically equal to 1. As we show here, this implies that, unless types

tC represent a very small part of the electorate, Runo¤ elections su¤er from the same

informational traps as Plurality elections.

To show this, we need to check whether the �rst-period strategies (� (A; t) ; � (B; t)) 2
f(1; 0) ; (0; 1)g for t = tA; tB can be an equilibrium. Solving the game backwards, we are

therefore only interested in the subgames in which C reaches the second round. Let us

focus on the subgame where A opposes C: in that case, all majority-block voters play

 = A, and all minority-block voters play  = C. The expected utility of a majority type

t 2 ftA; tBg negatively depends on the probability that C wins the election, Pr (C):

EU(tjA vs.C in 2d round) = q (ajt)� Pr (C)

= q (ajt)�
�
Pr[ ~X(C)= ~X(A)]

2 + Pr
h
~X (C) > ~X (A)

i�
< q (ajt)� Pr[ ~X(C)= ~X(A)]

2 = q (ajt)� Pr
�
piv2AC

�
;

where Pr
�
piv2AC

�
denotes the second-round pivot probability between A and C. By Prop-

erty 2, Pr
�
piv2AC

�
is proportional to:

Pr
h
~X (C) = ~X (A)

i
/ exp

�
�
�p

1� � (C)�
p
� (C)

�2
n

�
:

This second-round risk in�uences the incentives of a majority block voter in the �rst

round: consider the �rst-round strategy pro�le � (BjtB)! 0 and � (BjtA) = 0, for which
alternative B�s expected vote share is vanishingly small. What is a given tB-voter�s best

response? If she plays  = A and is pivotal to elect A in the �rst round, she saves herself

from the second-round risk. In comparison, action  = B is valuable if a second round is

organized and if her ballot is pivotal in bringing B to that round.

Comparing the probabilities of each of these events shows that:

Theorem 3 Under Runo¤ elections, unless the fraction of types tC is su¢ ciently small,

there exist two self-ful�lling equilibria in which all majority types play  = A (resp. B).

These equilibria produce an informational trap.

Proof. See Appendix A4.

The trade-o¤ is self-explanatory. A majority voter has an incentive to abandon a trail-

ing candidate (B in the above case) if the second-round risk is too high compared to the
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�rst-round chance of bringing the trailing candidate to the second round. Typically, the

larger C�s vote share, the higher the second-round risk, and the lower the probability that

one vote may bring B to the second round. Surprisingly, even though we only focus on a

lower bound of that risk (we only compute the probability that the two candidates tie in

the second round), we �nd that a vote share of C as low as 6:7% is su¢ cient to generate

such informational traps.16

Note however that Theorem 3 does not claim that there is no equilibrium with full

information and coordination equivalence. Runo¤ elections actually feature many equi-

libria, and some of them do satisfy this equivalence. This is however immaterial to the

analysis, for two reasons. First, the equilibrium under Approval Voting is unique. Ap-

proval Voting therefore Pareto-dominates Runo¤ elections. Second, organizing elections is

extremely costly. Runo¤ elections may therefore cost about twice as much as Approval

Voting elections, despite its less desirable properties.

7 Robustness

7.1 Heterogeneous types and cuto¤ strategies

Throughout, we worked under the assumption of two types of majority voters, who have

identical preferences and information. What would happen if they had more heterogeneous

priors or preference intensities? We show that this would only slightly a¤ect the shape of

the equilibrium under Approval Voting: instead of adopting a symmetric mixed strategy,

voters specialize. Those most in favor of A (resp: B) single-vote for A (resp: B) and

the moderate double-vote. This is related to Piketty (2000)�s idea of �labour division�

between voters. This is also close to the equilibrium in Feddersen and Pesendorfer (1997).

If we compare this equilibrium with our result in symmetric mixed strategies, the

proportion of voters who single and double-vote must remain the same. Formally, with

probability r (tC) the voter is a minority type, tC . With probability 1 � r (tC) the voter

is a majority type. In that case, his pre-election priors are q (ajt) = t; with t 2 [0; 1].
Thus, a type t close to 0 strongly believes that B is the best candidate, whereas a type t

close to 1 strongly believes that A must win.17 F (tj!) denotes the cumulated distribution

16As emphasized in Section 4.1, all our results directly extend to multinomial distributions. In the case

of runo¤ elections, results would even be stronger with such a multinomial distribution. Indeed, the share

of C su¢ cient to generate an informational trap converges to zero as population size increases.
17We could also consider di¤erent preference intensities (e.g. U (Aja) = t): it would yield the same

results. The advantage of di¤erentiating beliefs is that the support is then [0; 1] instead of [0;1] ; which
makes the analysis more tractable.
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of majority types t, with F (tj!) = 0, 8t � 0, and F (tj!) = 1, 8t � 1. In the previous

sections, we assumed that F (:) was discontinuous in q (ajtB) and q (ajtA). That is, only
two types were present, with beliefs q (ajtA) and q (ajtB).

Our next proposition shows how our results extend to a continuous distribution of

types, when there is �rst-order stochastic dominance in the distribution of types (this is

related to the result in Bhattacharya 2007):

Proposition 4 For F (tja) < F (tjb) ; 8t 2 (0; 1) and F (tj!) continuous everywhere,
there exists a unique equilibrium de�ned by two cuto¤s, �A and �B such that: � (Bjt) = 1;
8t < �B; � (Ajt) = 1; 8t > �A and � (ABjt) = 1; 8�B < t < �A. In this equilibrium,

alternative A wins in state a and alternative B wins in state b.

Proof. First, note that, by (16) and (17) ; if there exists a type �A such that G (Aj�A) =
G (ABj�A), then G (Ajt0) ? G (ABjt0) i¤ t0 ? �A, and similarly for G (Bj�B) = G (ABj�B) :

The rest of the proof follows the same steps as in Propositions 1-3, that lead to Theorem 1:

following Proposition 1, �A = �B = 1 cannot be an equilibrium: with these cuto¤s, all majority

voters vote B. But then, all types t > 1=2 strictly prefer to deviate and play AB. By symmetry,

�A = �B = 0 cannot be an equilibrium. Finally, �A = 1 > �B = 0 cannot either be an equilibrium:

with these cuto¤s, all majority voters vote AB. In this case, types t < 1=2 prefer to play B and those

above 1/2 prefer A. This shows that there does not exist any equilibrium with an informational

trap. Next, following (16) and (17) ; a necessary condition for indi¤erence is that (18) holds, which

requires: mag(pivAB ja) = mag(pivAB jb) � max! fmag (pivAC j!) ;mag (pivBC j!)g : Proposition
3 showed that there exists only one set of vote shares that satisfy these conditions, and that it

requires that � (Aja)+ � (ABja) > � (Bja)+ � (ABja) and conversely in state b. These vote shares
pinpoint the unique equilibrium cuto¤s.

This proposition demonstrates that our results do not hinge on symmetric strategies

nor on the voters� indi¤erence in equilibrium. As shown below, the truly important as-

sumption is that the distribution function is continuous in 0 and in 1: any voter who

has pre-election priors strictly between zero and one know that, with some probability

�possibly arbitrarily small�, their pre-election ranking of the candidates can be wrong.

This is su¢ cient to make them want to extract information from the rest of the majority

block, and Approval Voting gives them the possibility to do so e¢ ciently.

In contrast, the literature traditionally focuses on the assumption that voters assign

a zero-probability on the other voters in their group being right. In our setup, a prior

preference ordering that can never be changed is akin to imposing that all voters have

pre-election priors that are exactly t = 0 or t = 1, and not " away from these values.

Theorem 1, instead imposes that these priors are di¤erent from 0 and 1 with probability
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1. Let us develop this point in more detail.

7.2 Approval Voting with Purely Partisan Voters

Up to now, we focused on majority voters who have identical, state-contingent, preferences

but di¤erent information about the candidates. This is polar to the classical, Arrovian

speci�cation, in which voters are divided because they rank the candidates di¤erently. As

explained in the introduction, equilibrium multiplicity prevails in that case.

A natural question is which result extends to a world in which a fraction of the divisions

are due to information, and the complementary fraction is caused by opposite preferences.

To analyze this problem, we introduce a positive fraction of stalwart voters, who never

change their preference ordering. We will show that full information and coordination

equivalence requires that the fraction of such stalwart voters is not too high.

Using the notation for majority types introduced in Section 7.1, all majority voters are

insensitive to information when:

r(0j!) + r(1j!) = 1;

where r(0j!) = limt!
>
0 F (tj!) and r(1j!) = 1 � limt!

<
1 F (tj!). That is, the distribution

of types is entirely concentrated on the �stalwart�types t = 0 and t = 1.18 These types

are stalwart in the sense that their pre-election prior, q(ajt); is equal to either 0 or 1.
Such extreme priors preclude any updating: since they assign a 0-weight to one of the two

states of nature, their Bayesian posterior must also assign a probability 0 to that state.

Therefore, types t = 0 think that B is the best alternative with probability 1 and no piece

of information, however convincing, can in�uence that belief.

Let us show why full information and coordination equivalence does not prevail in such

a setup: assume that types t = 1 form 55% of the electorate in state a and 51% in state

b.19 In turn, set r(tC) = 0:4 and hence r(0ja) = 0:05 and r(0jb) = 0:09, which implies that
types t = 0, who support B, are the smallest group in the population.

Even though types t = 0 are the smallest group, there exists an equilibrium in which

B wins the election in both states of nature. In this equilibrium, we have: �(ABjtA) = 1;
�(BjtB) = 1 and �(CjtC) = 1: 60% of the electorate approve of B and 40% approve of

C, whereas alternative A lies in between, with 51% or 55%. To show that this strategy

pro�le is an equilibrium, we apply Properties 2 and 4 in Appendix A1. They reveal that

18 In contrast, we assumed througout that: r(0j!) + r(1j!) = 0:
19The results of this example do not depend on the presence of two states of nature. We maintain them

only to remain as close as possible to the initial setup.
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the largest magnitude is always the one between B and C:

Magnitudes state a state b

mag(pivAC) �0:062 �0:097
mag(pivBC) �0:02
mag(pivAB) �0:05 �0:09

Given these magnitudes, types t = 1 strictly prefer to play  = AB since G (Ajt = 1) <
G (ABjt = 1), by (16). In contrast, types t = 0 strictly prefer to play  = B: their

preferences being insensitive to information, they prefer to take advantage of their lead,

and impose the election of B. In this equilibrium indeed, B�s total number of approvals

can never be inferior to A�s, since �(A) = 0: Hence, alternative A can only win when it

ties with B, i.e. when also B can win, which implies G (Bjt = 0) > G (ABjt = 0) by (17).

The contrast between this result and Theorem 1 shows that �swing�or �independent�

voters profoundly a¤ect the equilibrium properties of Approval Voting. It also suggests

that a su¢ ciently large fraction of stalwart voters is necessary for inferior equilibria to

exist in Approval Voting.

To determine this fraction, consider a setup in which swing and stalwart voters coexist,

i.e. 0 < r(0j!)+r(1j!) < 1: Proposition 5 identi�es the critical fraction of stalwart voters:

Proposition 5 If:

r(0j!) > 1� 2
p
(1� r(tC)) r(tC)
1� r(tC)

;

i.e. if the fraction of stalwart voters is too large, Approval Voting displays multiple equilib-

ria, and hence does not satisfy full information and coordination equivalence. The threshold

is identical for r(1j!).

Proof. See Appendix A5.

Theorem 1 and Proposition 4 showed that Approval Voting produces a unique equilib-

rium as long as there exists at least one element of information that can modify a voter�s

preference ordering. This makes the majority willing to share information and learn about

the alternatives. Proposition 5 instead shows that equilibrium multiplicity is a concern

when there are too many stalwart voters for whom no piece of evidence, as convincing as

it might be, can a¤ect their beliefs.

This result also sheds light on the relationship between the fraction of stalwart voters

and the nature of the minority. If the minority is very extreme, r(tC) will be small

and the majority be divided between, say, left and right. Proposition 5 shows that full

information aggregation will then prevail even if the majority is composed of a relatively

25



large fraction of stalwart voters. If instead the minority is one of the two main parties in

the country, r(tC) is bound to be large. In such a case, the majority block is the other

party, with two candidates. Most majority voters must then double-vote to prevent the

minority from winning. Hence, a small fraction of stalwart voters may be su¢ cient to

prevent information aggregation. Yet, the majority group should also be expected to be

relatively homogeneous, since their choice is between close candidates. The fraction of such

stalwart voters should thus, by nature, be extremely small.

8 Conclusion

We argued that one must take account of the voters�sensitiveness to information when

studying the properties of electoral systems. Under imperfect information, the voters�

preference ranking is bound to depend, among other things, on fresh information about

candidate competence, probity or political preferences.

We proposed a model of elections that captures this information imperfection. Voters

in the majority are divided about the candidate they prefer but know that they only have

a fraction of the information needed to make a fully informed decision. A third candidate,

backed by another part of the electorate, runs against the majority. Hence, voters in the

majority run the risk of losing the election altogether if they divide their votes.

In this setup, we studied the asymptotic equilibrium properties of three electoral sys-

tems and showed that Approval Voting is ideally suited to information aggregation: it

produces a unique equilibrium, in which the candidate who wins the election is actually

the one preferred by a majority of the electorate under full information. The other two

systems, Plurality and Runo¤, produce multiple equilibria. This gives rise to coordination

problems and allows a bad candidate to win almost certainly.

The reason why Approval Voting dominates the other systems is that majority divisions

need not translate into divided votes. Voters can double-vote (that is: approve of their

two candidates) both to �ght the minority-backed candidate and to balance the support

in favor of either majority alternative. Since majority voters can always outnumber the

minority, there will always be room for single-voting, which assures that information is

elicited in equilibrium and that the best candidate is assured to win.

Arguably, the model focused on a simpli�ed baseline case, but the trade-o¤s and strate-

gies that emerged are quite general. First, the equilibrium strategy proves extremely

intuitive: voters only need to understand that a multiple ballot is valuable whenever

a potentially good candidate is too weak or when a disliked candidate gets too strong.

Generalizing the setup to a continuum of types shows that the pattern of specialization
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that emerges is even more intuitive: voters who are more or less indi¤erent between the

majority candidates double-vote, and those most in favor of either candidate single-vote.

Second, these trade-o¤s should also be robust to several extensions not considered

here. Think for instance of a world with more candidates. If there are k candidates in

the majority and l candidates in the minority, the trade-o¤ remains identical. As long as

their primary objective is to �ght one another, both majority-block and minority-block

voters will �multiple-vote�for their own candidates. Within the majority, voters will also

maintain the balance between all their potentially good candidates, to make sure that the

best can win. Indeed, our results have shown that, whenever a candidate trails behind,

all voters in the majority want to support her with a multiple ballot. Hence, although the

analysis would become much more cumbersome given the number of strategies to consider,

the main insights remain.

Finally, we have made the assumption that all voters in the majority value information

aggregation. In contrast, the literature focuses on the polar case in which no voter updates

beliefs. We saw in Section 7.2 that, if the fraction of such stalwart voters is too large, then

multiple equilibria may also arise under Approval Voting. The nature of our contribution

is thus to emphasize the role of �independent�or �swing�voters in real-world elections.

Those have typically been overlooked by voting theory and we showed that they profoundly

modify the properties of Approval Voting. A natural question for future research is thus

to see how these voters a¤ect the properties of other electoral systems, such as Instant

Runo¤, the Borda Count or Storable Votes.
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Appendices

Appendix A1 summarizes and extends to Approval Voting some properties of Poisson Games

proven by Myerson (1998a, 1998b, 2000). Appendices A2, A3 and A4 demonstrate the claims made

in Sections 4, 5 and 6 respectively.

Appendix A1: Some Properties of Poisson Voting Games

Property 2 (Myerson 2000, Theorem 1 and extension to Approval Voting)

Subject to
P
 2fA;B;AB;Cg �( j!) = 1, and for ! 2 fa; bg, given the expected numbers of votes

n�(!), the probability that the realized number of votes are x = fx (A) ; x (B) ; x (AB) ; x (C)g is:

Pr(xj�(!)) �!
n�!1

max
x

exp[mag [x]]Q
 2	

p
2�x ( ) + �

3

;

where: mag [x] =
X
 

x ( )

n

�
1� log( x ( )

n�( j!) )
�
� 1 ( � 0) (22)

For a large electorate (n large), the probability that two alternatives P and Q 2 fA;B;Cg have
(almost) the same number of votes converges to zero at an exponential rate called the magnitude

of the probability:

mag (PQj!) � lim
n!1

log [Pr (jx (P )� x (Q)j � 1j!)]
n

;

where the magnitudes mag (PQj!) are given by:

mag (ABj!) = �
�p

� (Aj!)�
p
� (Bj!)

�2
; (23)

mag (ACj!) = �
�p

� (Aj!) + � (ABj!)�
p
� (Cj!)

�2
; (24)

mag (BCj!) = �
�p

� (Bj!) + � (ABj!)�
p
� (Cj!)

�2
: (25)

Proof. (22) is the application of Theorem 1 in Myerson (2000), and (23) ; (24) and (25) extend this

theorem to Approval Voting. From Theorem 1 in Myerson (2000), the magnitude of the probability

that alternatives A and C have (almost) the same number of votes is:

lim
n!1

log[Pr(jX(C)�X(A)j�1j!)]
n = max

x

X
 

x ( )

n

�
1� log x ( )

n� ( j!)

�
� 1 (26)

s:t: x (A) + x (AB) = x (C)
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If we denote x (A)+x (AB) = x, x (A) = �x, and x (AB) = (1��)x; we �nd that this is maximized
in:

��AC =
� (Aj!)

� (Aj!) + � (ABj!) ; (27)

x�AC = n
p
� (C) [� (Aj!) + � (ABj!)];

x (B)
�
AC = n�(Bj!):

Substituting for ��AC , x
�
AC , and x (B)

�
AC in (26) thus yields:

lim
n!1

log[Pr(jX(C)�X(A)j�1j!)]
n = �

�p
� (Aj!) + � (ABj!)�

p
� (Cj!)

�2
:

By analogy:

lim
n!1

log[Pr(jX(C)�X(B)j�1j!)]
n = �

�p
� (Bj!) + � (ABj!)�

p
� (Cj!)

�2
; and

lim
n!1

log[Pr(jx(B)�x(A)j�1j!)]
n = �

�p
� (Aj!)�

p
� (Bj!)

�2
:

Note the symmetry between mag(PQ) and mag(QP ):

lim
n!1

log[Pr(jX(P )�X(Q)j�1j!)]
n = lim

n!1
log[Pr(jX(Q)�X(P )j�1j!)]

n :

Property 3 (Myerson 2000, Corollary 1) The relative probability of two events x and x0 converges

to 1 as population size increases to in�nity when the magnitude of x is larger than that of x0, and

conversely:

Pr(xj�(!))
Pr(x0j�(!)) �!

n�!1
1 if mag [x] > mag [x0]

�!
n�!1

0 if mag [x] < mag [x0] :

Property 4 If C is expected to rank �rst in state !, then, for �(Aj!) > �(Bj!), we have:

mag(pivAC j!) > mag(pivBC j!) � mag(pivAB j!):

Conversely, for �(Aj!) < �(Bj!); we have mag(pivBC j!) > mag(pivAC j!) � mag(pivAB j!). If C
is expected to rank second in state !, then, for �(Aj!) > �(Bj!), we have:

mag(pivAC j!) > mag(pivAB j!) � mag(pivBC j!):

Conversely, for �(Aj!) < �(Bj!); we have mag(pivBC j!) > mag(pivAB j!) � mag(pivAC j!).
That is, whenever C is expected to rank �rst or second, the pivot probability between the expected

top (resp. bottom) two alternatives has the largest (resp. smallest) magnitude.
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Proof. As formally stated in (12), the pivot probability between P and Q is the joint probability

of two events. These two events can in fact be viewed as two constraints imposed on the number

of votes to make a ballot pivotal: (i) Q is ahead of P by 0 or 1 vote and (ii) the 3d alternative, R,

trails behind. To compute the magnitude of the di¤erent pivot probabilities, we use Theorem 1 in

Myerson (2000) and impose these constraints. Applying this Theorem to compute the magnitude

of the pivot probability between A and C gives:

mag(pivAC j!) = max
x

X
 

x ( )

�
1� log x ( )

n� ( j!)

�
� 1 (28)

s:t: x (A) + x (AB) = x (C) and x (C) � x (B) + x (AB)

If we abstract from the constraint x (C) � x(B)+x(AB), or if this constraint is not binding, from

Property 2, (28) is maximized for ��AC , x
�
AC and x (B)

�
AC as de�ned in (27) : Substituting for �

�
AC ,

x�AC , and x (B)
�
AC in (28) yields:

mag(piv�AC j!) = lim
n!1

log[Pr(jX(C)�X(A)j�1j!)]
n = �

�p
� (Aj!) + � (ABj!)�

p
� (Cj!)

�2
:

We refer to this as the unrestricted magnitude (denoted by �).

If the constraint is binding, i.e. if ��ACx
�
AC � x (B)

�
AC , the joint probability also depends on

another event that has a strictly negative magnitude. Taking this constraint into account implies:

mag(pivAC j!) � mag (piv�AC j!) = �
�p

� (Aj!) + � (ABj!)�
p
� (Cj!)

�2
:

By analogy, it is immediate to check that:

mag (pivBC j!) � mag (piv�BC j!) = �
�p

� (Bj!) + � (ABj!)�
p
� (Cj!)

�2
;

and mag (pivAB j!) � mag (piv�AB j!) = �
�p

� (Aj!)�
p
� (Bj!)

�2
:

Now, note that the three events pivAB , pivAC and pivBC are identical if their respective

constraints are binding. Indeed, whatever the event, a binding constraint implies: x (A)+x (AB) =

x (C) = x (B) + x (AB). We refer to the magnitude of this binding events as the restricted

magnitudes (denoted by ��):

mag (piv��AC j!) = mag (piv��BC j!) = mag (piv��AB j!) ;

which, by de�nition, are smaller than the lowest unrestricted magnitude:

mag (piv��AC j!) � min
P;Q2fA;B;Cg

mag
�
piv�PQj!

�
:

Having observed this, we are now in a position to prove that, if the expected ranking is A > C > B

in state !, then:

mag(pivAC j!) > mag(pivAB j!) � mag(pivBC j!): (29)
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The proof is in 3 steps: �rst, we compare the unrestricted magnitudes and show that:

mag (piv�AC j!) > mag (piv�AB j!) : (30)

This amounts to showing that:

�(Aj!) + � (ABj!) > �(Cj!) > �(Bj!) + � (ABj!) (31)

implies:

�
�p

� (Aj!) + � (ABj!)�
p
� (Cj!)

�2
> �

�p
� (Aj!)�

p
� (Bj!)

�2
: (32)

Rearranging terms, we �nd that (32) holds i¤:p
� (Aj!)�

p
� (Bj!) >

p
� (Aj!) + � (ABj!)�

p
� (Cj!),

which is necessarily true. Hence, the ranking (31) indeed implies (30).

Second, we show that mag(pivAC j!) is always equal to the unrestricted magnitude. For this,
we need to prove that: x (A) + x (AB) = x (C) implies x (C) > x (B) + x (AB) at the optimum,

that is:

���ACx
��
AC > x (B)

��
AC :

Using (27) and performing some manipulations, we see that the latter inequality holds i¤:s
� (C)

� (Aj!) + � (ABj!) >
� (Bj!)
� (Aj!) ; (33)

in which both sides are smaller than one. Hence: �(Bj!)
�(Aj!) �

�(Bj!)+�(ABj!)
�(Aj!)+�(ABj!) �

q
�(Bj!)+�(ABj!)
�(Aj!)+�(ABj!) ,

and by (31) ; the last member of this inequality is smaller than
q

�(C)
�(Aj!)+�(ABj!) ; which proves that

mag(pivAC j!) is always unrestricted. Hence mag(pivAC j!) is always larger than mag(pivAB j!),
whether the latter be restricted or not.

Third, to complete the proof that (29) always holds under the expected ranking (31) ; we prove

that mag(pivBC j!) is always the restricted magnitude mag(piv��BC j!), which implies:
mag(pivAB j!) � mag(pivBC j!).

Mutatis mutandis, the derivation of the critical values ���BC , x
��
BC , and x(A)

��
BC is identical to

that of ���AC , x
��
AC , and x (B)

��
AC in (27):

���BC =
� (Bj!)

� (Bj!) + � (ABj!)
x��BC = n

p
� (C) [� (Bj!) + � (ABj!)]

x (A)
��
BC = n�(Aj!)

and the magnitude mag(pivBC j!) would be unrestricted i¤:

���BCx
��
BC > x (A)

��
BC (34)
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To show that the latter inequality can never hold, we proceed as with (33) and show that:s
� (C)

� (Bj!) + � (ABj!) <
� (Aj!)
� (Bj!) ;

in which both fractions are larger than one. This implies: �(Aj!)�(Bj!) �
�(Aj!)+�(ABj!)
�(Bj!)+�(ABj!) �

q
�(Aj!)+�(ABj!)
�(Bj!)+�(ABj!)

and, by (31) ; the last member of this inequality is always larger than
q

�(C)
�(Bj!)+�(ABj!) ; which

proves that mag(pivBC j!) is always restricted and completes the proof of (29).

The proof is identical for all the other possible rankings: C > B > A; C > A > B and

B > C > A, which proves the property.

Property 5 (Myerson 2000, Theorem 2)) The probability that two alternatives, P;Q 2 fA;B;Cg,
receive a number of votes that di¤ers by a constant c (c << n) in state of the nature ! 2 fa; bg, is:

lim
n!1

Pr (x(P ) = x(Q) + cj!; �(P j!); �(Qj!)) =
�
�(P j!)
�(Qj!)

�c=2 exp[��p�(P j!)�p�(Qj!)�2 n]
2
p
�n (�(P j!)�(Qj!))1=4

:

Appendix A2: Proofs for Section 4

Lemma 2

G(Ajt) � G (ABjt)() q(bjt)
q(ajt) �

1

M1
� Pr(pivAB ja)�Pr(pivBC ja)

Pr(pivAB jb)+2Pr(pivBC jb) (35)

G(Bjt) � G (ABjt)() q(ajt)
q(bjt) �M2 � Pr(pivBAjb)�Pr(pivAC jb)

Pr(pivBAja)+2Pr(pivAC ja)
(36)

Proof. Immediate from (9)� (11) :

Proof of Proposition 1.

Conjecture the following strategy functions: � (tA) = � (tB) = f1; 0; 0g. These strategies imply
that � ( ja) = � ( jb), 8 . Therefore: Pr (pivPQ) � Pr (pivPQja) = Pr (pivPQjb). Now, we show
that playing  = AB is a best response to � (t) for a type tB :

G (ABjt)�G (Ajt) = q (ajt) fPr (pivBC)� Pr (pivAB)g
+q (bjt) f2Pr (pivBC) + Pr (pivAB)g

= (1 + q (bjt)) Pr (pivBC) + (q (bjt)� q (ajt)) Pr (pivAB) :

(37)

Since q (bjtB) > q (ajtB), all terms in (37) are strictly positive, which proves that a type tB always
wants to deviate from � (tA) = � (tB) = f1; 0; 0g. By symmetry, � (tA) = � (tB) = f0; 1; 0g cannot
be an equilibrium either.

It remains to show that � (tA) = � (tB) = f0; 0; 1g cannot be an equilibrium. That is, all
majority types will never play  = AB with probability 1. To see this, note that, by Properties 1

and 2:

lim
n!1

Pr (pivBC)

Pr (pivAB)
= lim
n!1

Pr (pivAC)

Pr (pivBA)
= 0;
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since alternatives A and B are expected to lead the election, with the same vote share.20 Hence:

limn!1
G(ABjt)�G(Ajt)

Pr(pivAB)
= q (bjt)� q (ajt) ;

limn!1
G(ABjt)�G(Bjt)

Pr(pivBA)
= q (ajt)� q (bjt) :

The former value is strictly positive for types tA and the latter is strictly positive for types tB .

Hence, both types strictly prefer to deviate from a pure AB vote, and single-vote for their preferred

alternative.

Proof of Proposition 2.

From Proposition 1, we know that majority-block voters never play the same action in pure strat-

egy. It thus remains to show that majority block voters never play the same mixed strategy in

equilibrium. We begin by showing that � (Ajt) > 0 implies � (Bjt) = 0 and conversely, for any

t 2 ftA; tBg. We use a proof by contradiction.

We know that equilibrium strategies lie on the simplex f� (Ajt) ; � (Bjt) ; � (ABjt)g : A neces-
sary condition for A and B to be played with positive probability in equilibrium is that, for some

t 2 ftA; tBg:
G(Ajt) = G(Bjt) � G (ABjt) ; (38)

and, from Lemma 2 (in this Appendix), G(Ajt); G(Bjt) � G (ABjt) require Pr (pivAB ja) > Pr (pivBC ja)
and Pr (pivBAjb) > Pr (pivAC jb).

Using (9) and (10), a necessary condition for G(Ajt) = G(Bjt) is:
q (ajt)
q (bjt) =

Pr (pivBAjb)� Pr (pivAC jb) + Pr (pivAB jb) + 2Pr (pivBC jb)
Pr (pivAB ja)� Pr (pivBC ja) + Pr (pivBAja) + 2Pr (pivAC ja)

: (39)

Now, we prove that (38) can never hold: using Lemma 2, we identify a lower bound for M1

and an upper bound for M2. Then, we show that this lower bound for M1 is strictly larger than

the upper bound for M2, whereas condition (38) requires:

M1 �M2; (40)

hence the contradiction.

M1 =
Pr(pivAB jb)+2Pr(pivBC jb)
Pr(pivAB ja)�Pr(pivBC ja) is strictly increasing in Pr (pivBC ja) and Pr (pivBC jb). A lower

bound to M1 is thus found by setting these two pivot probabilities equal to 0. Similarly, an upper

bound toM2 is found by setting Pr (pivAC ja) and Pr (pivAC jb) equal to zero. This establishes that:
Pr (pivAB jb)
Pr (pivAB ja)

< M1 and M2 <
Pr (pivBAjb)
Pr (pivBAja)

; (41)

and hence that a necessary condition for (40) is that:

Pr (pivAB jb)
Pr (pivBAjb)

Pr (pivBAja)
Pr (pivAB ja)

< 1:

20We have two strategies being played: minority types play C and majority types play AB. Hence:

� (ABj!) = (1� r (tC)) > � (C) = r (tC) and � (Aj!) = � (Bj!) = 0. Applying Property 1 yields the

result.
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Using Property 5 (in Appendix A1), the left-hand side of this expression is equal to:s
� (Aja)
� (Ajb)

� (Bjb)
� (Bja) ;

which cannot be smaller than 1. Indeed, by (39), types tA must vote for A with a higher probability

than types tB , since
q(ajtA)
q(bjtA) >

q(ajtB)
q(bjtB) . Hence, in equilibrium:

� (Aja)
� (Ajb) � 1 and

� (Bjb)
� (Bja) � 1: (42)

It follows that G(Ajt) = G(Bjt) implies G (ABjt) > G(Ajt); and therefore that a strict mixture
between A and B is a strictly dominated strategy: � (Ajt) > 0 implies � (Bjt) = 0 and conversely.

It remains to prove that � (AjtA) and � (BjtB) are strictly positive in equilibrium. To this end,
we show that:

� (BjtB) > 0 and � (AjtA) = 0 (43)

leads to a contradiction. Indeed, (43) implies � (Aj!) = 0 in both states. Hence, by Property 2:

mag (pivBAj!) = �� (Bj!) :

By (42) ; we have: � (Bja) < � (Bjb), which implies that limn!1 Pr (pivBAjb) =Pr (pivBAja) = 0
and therefore that limn!1 M2 � 0 in Lemma 2. Instead, � (BjtB) > 0 imposes thatM2 be strictly

positive. This shows that � (AjtA) = 0 contradicts the possibility that � (BjtB) > 0. By symmetry,
we cannot either have: � (AjtA) > 0 and � (BjtB) = 0.

Together with Proposition 1 and (42), this proves that, in equilibrium, we must have � (AjtA) >
0 and � (BjtB) > 0. From the �rst part of this proof, this also implies that: � (BjtA) = 0 =

� (AjtB).

Proof of Proposition 3.

To prove that there is an unique equilibrium, we proceed in two steps. First, we show that

� (AjtA) = ��� (BjtB) is the unique best response of types tA given the strategy of types tB .

Second, we prove that there is a unique equilibrium strategy �� (BjtB).

From (18) and (20), we must have in equilibrium:

mag (pivAB ja) = mag (pivAB jb) � maxfmag (pivBC ja) ;mag (pivBC jb) ;
mag (pivAC ja) ;mag (pivAC jb)g:

(44)

We can check that types tA never want to deviate from � (AjtA) = ��� (BjtB): for any
� (AjtA) < ��� (BjtB), we have � (ABjtA) > 1 � ��� (BjtB). This implies that the expected
share of alternative B increases in both states and hence that: mag (pivAB ja) increases above
mag (pivAB jb), whereas mag (pivBC ja) and mag (pivBC jb) decrease.
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Using Lemma 2 and (44), this implies:

q (bjtA)
q (ajtA)

< lim
n!1

1

M1
� Pr(pivAB ja)�Pr(pivBC ja)

Pr(pivAB jb)+2Pr(pivBC jb) =1;

and hence: G(AjtA) > G (ABjtA). Therefore, � (AjtA) < ��� (BjtB) cannot be true in equilibrium.

For any ��� (BjtB) < 1, we also have to check that � (AjtA) > ��� (BjtB) cannot be an equi-
librium either. Following the same procedure as above, one can check that � (AjtA) > ��� (BjtB)
implies:

q (bjtA)
q (ajtA)

> lim
n!1

1

M1
� Pr(pivAB ja)�Pr(pivBC ja)

Pr(pivAB jb)+2Pr(pivBC jb) � 0;

which in turn implies G(Ajt) < G (ABjt). Hence, � (AjtA) > ��� (BjtB) cannot be true in equilib-
rium. Therefore, when (44) holds, �� (AjtA) = ��� (BjtB) is the unique best response of types tA
to � (BjtB).

It remains to prove that there is a unique equilibrium strategy �� (BjtB), which will always
imply (44). Two cases must be considered:

Case 1: G(BjtB)�G(ABjtB) � 0 in � (BjtB) = 1; � (AjtA) = ��:

In that case, � (BjtB) = 1 is the only possible best response for types tB . Indeed, � (BjtB) < 1
would imply � (ABjtB) > 0. This induces an increase in the expected vote share of alternative A
in both states of nature and hence that: mag (pivBAjb) increases above mag (pivBAja), whereas
mag (pivAC ja) and mag (pivAC jb) decrease. Using Lemma 2 and (44), this implies:

q (ajtB)
q (bjtB)

< lim
n!1

M2 � Pr(pivBAjb)�Pr(pivAC jb)
Pr(pivBAja)+2Pr(pivAC ja) =1;

and henceG(BjtB) > G (ABjtB) : Therefore, � (BjtB) = 1 is the unique best response to � (AjtA) =
��.

It remains to show that types tB would deviate from any f� (AjtA) ; � (BjtB)g = f���; �g if
� < 1. To this end, we need to show that

lim
n!1

G(BjtB)�G(ABjtB)
Pr(pivAB ja)

= q(bjtB)
Pr(pivBAjb)
Pr(pivAB ja)

� q(ajtB)
Pr(pivBAja)
Pr(pivAB ja)

> 0; (45)

for any f� (AjtA) ; � (BjtB)g = f���; �g, � < 1.

The strategy of the types tA implies:

lim
n!1

G(AjtA)�G(ABjtA)
Pr(pivAB ja)

= q(ajtA)� q(bjtA)
Pr(pivAB jb)
Pr(pivAB ja)

= 0

=) Pr(pivAB jb)
Pr(pivAB ja)

=
q(ajtA)
q(bjtA)

:

By Myerson�s o¤set theorem: Pr(pivBAj!) = Pr(pivAB j!)
q

�(Aj!)
�(Bj!) : Hence, (45) can be rewritten

as:
q(bjtB)
q(ajtB)

q(ajtA)
q(bjtA)

>

s
� (Aja) � (Bjb)
� (Bja) � (Ajb) :

37



By (3) ; the left-hand side of this inequality is equal to: �(Aja)�(Bjb)
�(Bja)�(Ajb) > 1, which proves that (45)

holds.

Case 2: G(BjtB)�G(ABjtB) < 0 in � (BjtB) = 1; � (AjtA) = ��:

In this case, there must exist a �� 2 (0; 1) such that, for f� (AjtA) ; � (BjtB)g = f����; ��g,
we have: G(BjtB) � G(ABjtB) = 0. Indeed, by Proposition 1, G(BjtB) � G(ABjtB) > 0 for

f� (AjtA) ; � (BjtB)g = f0; 0g. The existence of �� immediately follows from the continuity of the

G function.

This value of �� is unique and such that:

mag (pivAB ja) = mag (pivAB jb) = maxfmag (pivBC ja) ;mag (pivBC jb) ;
mag (pivAC ja) ;mag (pivAC jb)g:

(46)

Indeed, any � < �� implies that the total expected vote shares of alternatives A and B increase.

Since (46) implies that C is third in both states, the magnitudes mag (pivPC j!) must decrease, for
any P 2 fA;Bg and ! 2 fa; bg. In contrast, the magnitudes mag (pivAB j!) must increase, since:

mag (pivAB ja) = mag (pivAB jb) =
�p

r (tAja) � ��� �
p
r (tB ja) � �

�2
=

�p
r (tAja) � �� �

p
r (tB ja)

�2
�

is strictly increasing in �. Hence (44) holds with a strict inequality for any � < ��. This implies

that (45) holds, and hence that G(BjtB)�G(ABjtB) > 0 for any f� (AjtA) ; � (BjtB)g = f���; �g,
� < ��.

Similarly, one can check that (44) is violated for any � > �� which impliesG(BjtB)�G(ABjtB) <
0 for any f� (AjtA) ; � (BjtB)g = f���; �g, � > ��. This proves that (46) must hold in f� (AjtA) ;
� (BjtB)g = f����; ��g, and that the solution to �� is unique.

Appendix A3: Proof for Section 5

Proof of Theorem 2.

1) First, we prove that, for all majority types t 2 ftA; tBg, G (Ajt)�G (Bjt) is strictly positive if
�(Bj!)! 0. This proves that, if B is expected to receive too few votes, all majority types strictly

prefer to vote for A. By symmetry, it also proves that all majority types vote for B if they expect

A to receive too few votes.

For any strategy pro�le, we have:

G (Ajt)�G (Bjt) = q (ajt) f2Pr (pivAC ja) + Pr (pivAB ja) + Pr (pivBAja)� Pr (pivBC ja)g
+q (bjt) fPr (pivAC jb)� Pr (pivAB jb)� Pr (pivBAjb)� 2Pr (pivBC jb)g :

(47)
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By (5), for �(Bj!) ! 0 we have: �(Aj!) ! 1 � r (tC). Hence, by Properties 1 and 2, for any

given ! = a; b we have:

lim
n!1

Pr (pivBC j!)
Pr (pivAC j!)

= lim
n!1

Pr (pivAB j!)
Pr (pivAC j!)

= lim
n!1

Pr (pivBAj!)
Pr (pivAC j!)

= 0:

Hence:

lim
n!1

�(Bj!)!0

G (Ajt)�G (Bjt)
Pr (pivAC ja)

= 2q (ajt) + q (bjt) Pr (pivAC jb)
Pr (pivAC ja)

;

which is strictly positive. This proves the existence of the two �sunspot�equilibria.

2) Second, we show the existence of the third equilibrium. Following Theorem 2 of Myerson

(1998a), if a type t 2 ftA; tBg adopts a strictly mixed strategy, then the other type t0 6= t;

t0 2 ftA; tBg votes for �his�candidate with probability 1. The reason is that q (ajtA) > q (ajtB),
which implies G (AjtA)�G (BjtA) > G (AjtB)�G (BjtB) for any expected voting pro�le.

Having noted this, we know that a necessary condition for majority-types voters to adopt a

di¤erent strategy is that:

G (AjtA)�G (BjtA) � 0, and
G (AjtB)�G (BjtB) � 0:

(48)

Next, remark that: a) pivot probabilities are continuous in the voters�propensity to cast their

ballot on A and on B, and b) payo¤s are bounded. Therefore, the di¤erence G (Ajt) � G (Bjt)
is continuous in the voters�propensity to vote for A, and we can apply Kakutani�s �xed point

theorem.

Now, consider a strategy pro�le �� such that: �(Aja) = �(Bjb) � �� . If voters marginally increase
their propensity to vote A above ��, we have: � (Aja) > � (Bjb) > � (Ajb) > � (Bja). By Property
1, for any such strategy pro�le, we have:

G (Ajt)�G (Bjt) > 0 for both t 2 ftA; tBg ; if � (C) < �� ;

G (Ajt)�G (Bjt) < 0 for both t 2 ftA; tBg ; if � (C) > �� ;

and the inequalities are reversed if the voters�propensity to vote for A decreases below �� . By the

continuity of the payo¤ functions, (48) must hold in a neighborhood of ��.

Now, we show that, for � (C) > 1=[2 + r (tAjb) =r (tAja)], the following strategy pro�le is an
equilibrium:

�(?jtA) = 0 = �(?jtB);

�(BjtB) = 1; (49)

�(AjtA) ' r (tB jb) + r (tAjb)
r (tAja) + r (tAjb)

, and �(BjtA) = 1� �(AjtA):

For that strategy pro�le, we have � (Aja) ' � (Bjb) � �� and: � (C) > �� > � (Ajb) ' � (Bja). By
Property 1, this implies:

lim
n!1

Pr (pivBC ja)
Pr (pivAC ja)

= lim
n!1

Pr (pivAC jb)
Pr (pivBC jb)

= 0:
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Finally, since alternative C�s vote share is the largest of the three in both states of nature, we

have by Property 4 in Appendix A1:

lim
n!1

max fPr (pivAB ja) ;Pr (pivBAja)g
Pr (pivAC ja)

= lim
n!1

max fPr (pivAB jb) ;Pr (pivBAjb)g
Pr (pivBC jb)

= 0:

It results that, in ��:

lim
n!1

G (Ajt)�G (Bjt)
Pr (pivAC ja)

= 2

�
q (ajt)� q (bjt) Pr (pivBC jb)

Pr (pivAC ja)

�
;

and, by Kakutani�s �xed point theorem, there must exist a strategy pro�le �(AjtA) in the neigh-
borhood of r(tB jb)+r(tAjb)r(tAja)+r(tAjb) such that: limn!1

G(AjtA)�G(BjtA)
Pr(pivAC ja) = 0. It remains to prove that abstention

is strictly dominated. To this end, it can be veri�ed that: G (AjtA) > 0 and G (BjtB) > 0, which
can be compared to the value of abstention: zero.

Appendix A4: Proof for Section 6

Proof of Theorem 3. The probability that A is elected from the �rst round, with a majority

of the votes is:

Pr [X (A) � X (B) +X (C) + 1] :

For �(AjtA) = 1 and �(AjtB)! 1, we have �(Aj!)! 1� r(tC) and �(Bj!)! 0. The magnitude

of this probability is therefore:

lim
�(Bj!)!0

mag(piv1AC j!) = �
�p

1� r(tC)�
p
r(tC)

�2
;8! 2 fa; bg ;

where piv1AC denotes the event that a ballot is pivotal in electing A in the �rst round. In contrast,

the probability that a B ballot is pivotal in bringing B to a second round is given by:

1
2 Pr

h
max fX (A) ; X (B) ; X (C)g � X(A)+X(B)+X(C)

2 \min [X (A) ; X (C)]�X (B) 2 f0; 1g
i
:

When alternative B�s vote share approaches zero, the magnitude of this joint event converges to

�1.

However, if X (A) = X (B)+X (C), a ballot for A would be pivotal to elect A in the �rst round.

Similarly, if X (A) = X (B) +X (C) + 1; a B-ballot would be pivotal in forcing the organization

of a second round. Hence, when a voter compares the two options, she values the A-ballot only in

proportion to the second-round risk:

G (Ajt) > 1
2 Pr

�
piv1AC

�
Pr
�
piv2AC

�
;

where Pr
�
piv2AC

�
denotes the second-round pivot probability. Yet, the two probabilities, Pr

�
piv1AC

�
and Pr

�
piv2AC

�
are identical. Hence:

G (Ajt) > 1
2 Pr

�
piv1AC

�2
:
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Taking logarithms and dividing by n:

log
h
Pr
�
piv1AC

�2i
n

! �2
�p

1� r(tC)�
p
r(tC)

�2
;

which must be compared to the magnitude of the probability that a B ballot is pivotal in bringing

B to a second round. That magnitude is equal to �1. Hence:

�2
�p

1� r(tC)�
p
r(tC)

�2
� �1

is a su¢ cient condition for G (Ajt) > G (Bjt). Solving it in r(tC) yields: r(tC) � 0:06699: Hence, for
any r(tC) � 0:06699, there exists an informational trap equilibrium with � (Ajt) = 1; t 2 ftA; tBg.
By symmetry, there exists another equilibrium with � (Bjt) = 1; t 2 ftA; tBg.

Appendix A5: Proof of Proposition 5

Proof. We show that, for r(0j!) large enough, there exists an equilibrium in which B always

wins in Approval Voting. This equilibrium is de�ned by the cuto¤s �A = 1 and �B = 0 such that:

� (Bj0) = 1 and � (ABjt) = 1 8t > �B : Obviously, � (CjtC) = 1.

For these strategies, expected vote shares are: �(Aj!) = 0; �(Bj!) = (1� r(tC)) r(0j!);
�(ABj!) = (1� r(tC)) (1� r(0j!)) and �(C) = r(tC): Using Properties 2 and 4 in Appendix

A1, we have:

mag(pivAB j!) � � (1� r(tC)) r(0j!)

mag(pivBC j!) = �
�p

1� r(tC)�
p
r(tC)

�2
; and

mag(pivAC j!) = 2
p
r(tC) (1� r(tC)) [1� r(0j!)]� 1:

The above strategy pro�le de�nes an equilibrium if:

G(Bjt) > G(ABjt) for t = 0; (50)

G(Ajt) < G(ABjt), 8t > 0: (51)

Types t = 0 prefer to play B except if mag(pivAC jb) > max fmag(pivAB jb);mag(pivBC jb)g : Since
mag(pivAC j!) is necessarily smaller than mag(pivBC j!) for this strategy pro�le, we have that (50)
is always satis�ed and thus � (Bjt) = 1 is an equilibrium strategy for types t = 0: Condition (51)

holds if:

� (1� r(tC)) r(0j!) < �
�p

1� r(tC)�
p
r(tC)

�2
r(0j!) >

1� 2
p
(1� r(tC)) r(tC)
1� r(tC)

:

The proof for r(1j!) is similar.
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