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Abstract

We consider a jurisdiction formation problem on the plane uniformly populated by
a continuum of agents. This could be interpreted either as a real two-dimensional space
where these agents live, or alternatively as a space of pairs of two parameters of a public
good on which the agents may have horizontally differentiated preferences, in which case
any agent is identified with the point of his best variety, out of the space considered.

We study jurisdiction formation under transferable utility, and the main focus is
on contribution schemes which lie in the core of a corresponding cooperative game.
The proper core turns to be empty, and we consider the minimal ε-core. We show
that it essentially contains only one allocation, which is the egalitarian (or Rawlsian)
contribution scheme under which all agents are left with one and the same level of utility.
(In fact, as shown in (Ballobas and Stern 1972), the minimal ε is extremely small —
approximately, 0.0018).
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1 Introduction

We consider a heterogeneous society whose population has to make selections from a two-

dimensional space <2 of horizontally1 differentiated public projects of Mas-Colell (1983). We

assume that members of a society have heterogeneous preferences over <2, and that these

preference relations all are single-peaked, with respect to the standard Euclidean metric. This

could be interpreted as the existence of transportation costs. We identify each individual with

the location of his best project on <2, and assume uniform distribution of (best projects of)

citizens over <2.

For instance, the population of a big city has to decide locations of several libraries, to

be built in the city. The overall number of these libraries is also a matter of choice. Each

citizen then will be assigned to one and only one library. All the individuals assigned to one

and the same library form a subset called “a jurisdiction”; as a result, we have a “jurisdiction

structure” which is a partition of the society (or, equivalently, of the space <2) into pairwise

disjoint jurisdictions.

Following the choice of a jurisdiction structure, including a selection of libraries in all

jurisdictions, the contribution scheme towards the costs of libraries must be chosen. In addition

to these monetary costs, each citizen bears his personalized costs of being “far” from the library

to which he is assigned. We assume that the monetary expression of a transportation cost is

just the distance between the location of a citizen and the location of the library to which he

is assigned.

Thus, the group choice of the locational problem described here consists of three items:

• - jurisdiction structure, which is a partition P of the space <2 into subsets of individuals,

jurisdictions, assigned to the same library;

• - libraries locations in each jurisdiction, and

1For the analysis of vertically differentiated projects, see Guesnerie (1995), Guesnerie and Oddou
(1981,1988), Greenberg and Weber (1986), Jehiel and Scotchmer (2001), Weber and Zamir (1985), West-
hoff (1977), Wooders (1978,1980).
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• - sharing rule, that is a choice of a contribution scheme in order to cover the total cost

of libraries in all jurisdictions.

Our approach is that of transferable utility (TU), assumption.2. The first question of the

analysis is that of the core, i.e. under which jurisdiction structures and subsequent contribu-

tion schemes, the society is stable, in a sense that no group of its members would wish to secede

and form a new jurisdiction, decreasing their overall costs, including integrated personalized

costs and monetary costs?

It turns out that the core is empty, i.e. there are no secession-proof partitions3 and

contribution schemes. Then, a natural question arises of how far we are from the core?

Namely, if the government of the city intervenes to compensate a certain share of costs to

citizens in case the efficient partition of <2 is implemented, then which is the minimal possible

intervention such that secession-proofness is reinforced?

We show that: (i) The minimal possible intervention is remarkably negligible: this is

sufficient to cover less than 0.002 per capita cost to reinsure stability, and (ii) Rawlsian

(i.e. egalitarian) allocation, where everyone ends up with the same total costs (monetary

plus transportation), plays a major part. Namely, the compensation scheme leading to the

Rawlsian allocation under the efficient partition of <2, is the only secession-proof scheme under

the minimal possible intervention. This provides an additional justification for egalitarism,

together with (Bogomolnaia et al 2005a).

Results obtained here generalize (Le Breton et al 2004) to the simplest multi-dimensional

case, which is the case of two dimensions. When the dimensionality is greater than 1, we

encounter a problem of inner geometry of the space under consideration. Namely, we observe

that the form of the optimal jurisdiction is not consistent with the space <2 itself, in the sense

that we cannot partition <2 into most efficient jurisdictions (in fact, balls). This very fact is

responsible for the empty core and, as a result, there is a case for exogenous (government)

2For a treatment of NTU-case in the uni-dimensional setting, see (Bogomolnaia et al 2005).
3We will use terms jurisdiction structure and partition interchangeably, throughout the paper.
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intervention.

2 The Model

Let us specify a formal model. We assume that individuals are located uniformly over

the whole (unbounded) space <2. The volume of an arbitrary measurable4 subset S will be

denoted by λ[S], or simply by |S|:

λ[S] = |S| =
∫
S

dt, (1)

which is a real number from the closed segment [0, +∞].5 Here, t = (t1, t2) is a two-dimentional

coordinate on <2.

The cost of every library is given by a positive parameter g. We normalize to g = 1. The

transportation cost incurred by individual6 t, assigned to a library located at point p, is given

by the cost function d(t, p) =
√
|t1 − p1|2 + |t2 − p2|2 which is the Euclidean distance on <2.

Let us now introduce a concept of n-partition of an arbitrary measurable subset S ⊂ <2

to an arbitrary positive or countable number n of its parts, jurisdictions:

Definition 1: An n-partition P = (Si)1≤i≤n is a jurisdiction structure that consists of n

bounded measurable sets of a positive finite measure, pairwise disjoint up to a null-set,

the union of which being equal to the entire subset S.7 The set of all n-partitions P of

4An arbitrary subset is measurable if and only if its intersection with every measurable subset of a finite
measure is measurable; hence, we allow for infinite-measured measurable subsets.

5Throughout the paper, the following agreement will be made. Namely, when we calculate average values
of functions over the whole space <2, or over its Cartesian powers, or over an infinite-measured subset, we
often write them as ratios of the two infinite integrals. This always makes sense in our story, since we impose
sufficiently rigorous restrictions on such functions; essentially, we require periodicity of allocations, sharing
rules etc. so that we interpret these ratios as evaluated on the (finite-measured) periodicity generating set.

6We will not distinguish between individual t and an individual located at point t ∈ <2.
7Restrictions on the measure and size of possible jurisdictions are imposed with the aim of having costs

of all citizens uniformly bounded from above. If one allowed for null-set jurisdictions, then all its members
would incur infinitely high costs; as for unbounded jurisdictions (including those of infinite measure), there is
always the case that costs of members of such jurisdictions are unbounded from above.
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a subset S will be denoted by Pn(S); the set of all partitions of S is denoted by P(S):

P(S) =
+∞⋃
n=1

Pn(S)
⋃

P∞(S). (2)

When we consider partitions of S = <2, we will omit subscripts, writing Pn and P ,

respectively. For P ∈ P(S) we denote by N(P ) the number of jurisdictions in P ; we

have N(P ) ∈ N
⋃

+∞. We always have P ∈ PN(P )(S) tautologically for any P ∈ P(S).

For the analysis of the location problem at hand, we construct a TU -game with the set

of players coinciding with <2, and the class of coalitions coinciding with all measurable sets,

either finite- or infinite-measured. This is done in two steps. As a first step, for each bounded

measurable subset S of <2 of a positive measure (which is a possible jurisdiction), denote by

D[S] the value of a following minimization problem:

D[S] := min
m∈<2

∫
S

d(t,m)dt. (3)

This is called “MAT(S)” in Mathematical Programming, which is Minimal Aggregate Trans-

portation of the set S. For obvious reasons, solution(s) to this problem exist (the integral

in (3) is continuous in m, and for m →∞ the value of a program goes to +∞). Any solution

to (3) is called a median location of S, and we denote the set of all solutions to this program

by M(S) (by analogy with the uni-dimentional case where

M(S) =

{
p ∈ I : λ ({t ∈ S : t ≤ p}) = λ ({t ∈ S : t ≥ p}) =

1

2
λ(S)

}
(4)

is the set of median locations). Once we have a possible jurisdiction S, its members would

like to minimize transportation costs by placing their library to one of the points in M(S).

Now, at the second step, for an arbitrary coalition S ⊂ <2, which is a measurable subset

of a positive (maybe infinite) measure, we will define its per capita characteristic function (in

terms of costs) in the following way:

c[S] :=

(
1

|S|

)
inf

P∈P(S)

(
gN(P ) +

∑
S′∈P

D[S ′]

)
. (5)
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The solution to program (5) is always finite.8 Any partition solving (4) is called an efficient

partition of S.

So, we defined a characteristic function on the class of measurable subsets in <2, including

those of infinite measure. Note that, by allowing any group S to partition itself in an efficient

way and not just to function as a unique jurisdiction, we automatically get super-additivity:

the union of the two disjoint coalitions, S and S ′ at least can partition itself as the union of

the two partitions, hence we observe that

c[S
⋃

S ′] ≤ |S|c[S] + |S ′|c[S ′]
|S|+ |S ′|

, (6)

a manifestation of super-additivity for games in the per capita characteristic form.

Denote c̄ = c[<2], and by P̄ — any efficient partition of <2. We have the following

result. For the proof and discussions around, see (Ballobas and Stern 1972; Haimovich and

Magnanti 1988).

Theorem 1: Given the (uniformly populated) society <2 with some g as fixed cost of a

library, we have:

(i) c̄ = c[<2] = c[H], where H is a hexagon of an optimal size;

(ii) Among efficient partitions P̄ ∈ P , there are partitions of <2 into hexagons of the

optimal size.

Now, we are going to define a core of this game, following the standard definition of the

core. Fix an arbitrary efficient partition P̄ ∈ P that consists of hexagons of the optimal size.

Denote any of these hexagons by H.

First, we introduce a concept of a contribution scheme, or equivalently of a sharing rule

(these two terms are being used interchangibly, in what follows). Namely, a sharing rule, x(t)

describes the monetary contribution of each individual t towards the cost of the libraries in

8See footnote 7.
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the partition P̄ . We assume that each jurisdiction in P̄ balances its budget:9

∀H ∈ P̄

∫
H

x(t)dt− g = 0. (7)

An allocation corresponding to a sharing rule, x(·), is the distribution of total costs in a

population, arising from the rule x(·):

c(t) = x(t) + d(t,m(H t)), (8)

where H t ∈ P̄ is the hexagonal jurisdiction containing t, and m(H) is the center of the hexagon

H (which is the location of a public good in a jurisdiction H).

Now, we say that a function c(t) is a feasible cost allocation if there exists a sharing rule

x(·) such that c(·) corresponds to x(·) via (8). These notions could be defined not only for

<2, but also for an arbitrary coalition S ⊂ <2, in which case we denote them by xS(·) and

cS(·). Sharing rules and costs allocations, as well as partitions, are defined up to a null-set

(since we even cannot uniquely define the allocation corresponding to a given sharing rule on

the (null-)set where different jurisdictions in a given partition intersect).

For any feasible allocation c(·) and an arbitrary measurable subset S ⊂ <2 we define the

average cost of members of S under the allocation c(·) by the formula

c̄S =

(
1

|S|

)∫
S

c(t)dt; (9)

for the grand coalition S = <2, we have the following identity:

c̄<2 = c̄, (10)

taking into account (7) and (8) — the average cost of all citizens under any feasible allocation

is equal to the value of the per capita characteristic function on the grand coalition <2.

Now, we are ready to define the core of our cooperative game. The definition below simply

says that if for some coalition S we observe c̄S > c[S], then the coalition S will secede and

9Since they all have the same form, there is no point in inter-jurisdictional transfers.
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form its own efficient partition P ′ ∈ PS, economizing on total aggregate costs of its members.

(Transferable utility paradygm then says that there exists a way to distribute costs c[S] among

members of S such that everyone in S becomes better off.)

Definition 2: Given the society <2, we say that an allocation c(·) lies in the core (notation:

c(·) ∈ C[<2]) if for any coalition S ⊂ <2 we observe that

c̄S ≤ c[S]. (11)

Next definition introduces an allocation r(·) which plays a major part in what follows.

This is the allocation for which the utility of the most disadvantaged individual is maximized

(which allows us to name this allocation after Rawls). Under transferable utility, this implies

equating costs, so this allocation could is also called egalitarian, and we use these two terms

inter-changibly.

Definition 3: By the Rawlsian, or egalitarian allocation we mean the allocation r(t) ≡ c̄.

3 The main result

Now we are ready to state and prove the main findings of our study. First, we demonstrate

below that the core C[<2] is empty. This mere fact leaves us non-satisfied concerning questions

“what then to do” and “what we expect to be the outcome of the game”. When the core is

empty, one is sometimes searching for a solution which is mostly close to being in the core. For

instance, we may have assumed that there is a fixed per capita cost of a secession by a proper

subgroup S; alternatively, one can consider the “government intervention” which compensates

a certain fraction of a total cost to every citizen, in case they do not form seceding groups.

Both approaches are essentially equivalent; using the latter approach, we come to a following

definition of an ε-core:

8



Definition 4: Given the society <2, we say that an allocation c(·) lies in the ε-core (notation:

Cε[<2]), if for any measurable subset S ⊂ <2 we have

(1− ε)c̄S ≤ c[S]. (12)

In other words, if people are following “the agreement” of the grand coalition, then the ε-

part of the cost is covered “outside”; if, however, a certain coalition, S poses a threat for a

secession, then their members are to bear costs on their own.

This definition relaxes the constraints which determine the core, and leaves us a hope that,

for some values of ε we will reinforce non-emptiness. Formally, we consider the value ε̂ such

that

• Cε̂[<2] 6= ∅;

• For every ε < ε̂, we observe that Cε[<2] = ∅.

We will demonstrate that this value exists, and even more, we give its full characterization.

For the ε̂-core, we have yet another name: we call it a minimal ε-core, and denote by C.

In order to formulate the main result of the analysis, it is left to introduce the notion of

an optimal jurisdiction form. Consider the following minimization problem over the class of

all measurable subsets S ⊂ <2:

min
S⊂<2

D[S] + g

|S|
. (13)

That is, we search for a jurisdiction(s) that minimize total per capita costs of its members.

Denote any potential solution to (13) by Ŝ. We have the following result.

Lemma 1: The median set m(Ŝ) is a singleton: m(Ŝ) = α, for some α ∈ <2. Moreover, in

fact, up to a null-set, Ŝ is a ball Bl
α centered at the point α with a certain, “optimal”

radius l. (Therefore, all the solutions of (13) are parametrised by points in <2, namely,

centers of these balls: {Bα}α∈<2 .)
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Proof of Lemma 1: Fix any α ∈ M(S) and omit subscripts in balls centered at α.

Hence, any such ball is characterized by its radius, l. Now, consider 0 ≤ l1 ≤ l2 ≤ +∞ such

that Bl1 \ Ŝ is a null-set, Ŝ \ Bl2 is a null-set, and ∀l ∈ (l1, l2) we have Bl \ Ŝ has a positive

measure and Ŝ \Bl has a positive measure. Such l1 and l2 trivially exist. We claim that they

coincide, hence, Ŝ = Bl1 = Bl2 , up to a null-set.

Indeed, if not, take l3 = (2l1 + l2)/3 and l4 = (l1 + 2l2)/3 and consider moving some

positive mass µ from Ŝ \Bl4 to Bl3 \ Ŝ. This gives us new Ŝ ′ for which D[Ŝ ′] in (13) is strictly

lower: the aggregate distance to the point α is already lower by at least µ(l2− l1)/3, a positive

number, hence, MAT is lower by this number as well. But then Ŝ ′ gives strictly lower value

to (13) than Ŝ, a contradiction. 2

We will denote by ĉ the value of the problem (13). We claim that ĉ = c[Ŝ], for any Ŝ

solving the problem (13). This is not obvious at once, since there could have existed a partition

P of Ŝ which were leading to lower value of c[Ŝ]. But in this case, due to (6), in at least one

of jurisdictions S ′ ∈ P of this partition, c[S ′] would be less than ĉ, which would mean that Ŝ

was not a solution to (13).

We are prepared to state and prove the main result of our analysis.

Theorem 2: Given the (uniformly populated) society <2, we have:

(i) ε̂ = 1− ĉ

c̄
6= 0;

(ii) C = {r(·)} — a singleton, up to a null-set.

Summing this up, we state that the proper core is empty, and that the minimal ε-core is

essentially single-valued.

Proof of Theorem 2: Consider ε = 1− ĉ

c̄
, and the Rawlsian allocation, r(·). We claim

that it is in the ε-core. Indeed, for this allocation and for an arbitrary measurable S ⊂ <2,

we have that cS = c̄, and so

(1− ε)cS =
ĉ

c̄
c̄ = ĉ ≤ c[S], (14)
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by the very definition of ĉ.

Now, we demonstrate that the ε-core is empty if

ε < 1− ĉ

c̄
. (15)

This will prove the (i) part, and that the Rawlsian allocation is in the minimal core. To

do this, we should make use of the Fubini’s theorem stating independence of the value of a

repeated integral on the order of integration.10 But before using this celebrated theorem, we

need to make some arrangements.

Namely, consider a parametrized family {Bl
α}α∈<2 of balls of the optimal radius l, which is

the set of all solutions to (13); denote by λ̂ the volume of any ball from this family. From now

on, we omit the superscript l when referring to any ball of the optimal size, thus denoting it

by {Bα, parametrized only by its center.

Suppose that ε-core is nonempty under given ε and pick up any allocation c(·) ∈ Cε[<2].

Using this allocation, we are going to demonstrate that ε ≥ 1− ĉ

c̄
.

Observe that, in the average over <2, this allocation assigns costs of c̄ to individuals, and if

this allocation were Rawlsian, we would have picked any of the optimal form jurisdiction {Bα,

and due to (15), we would have observed that this optimal jurisdiction would have seceded,

unless the required inequality on ε is fulfilled. Hence, r(·) /∈ Cε[<2], once ε < 1− ĉ

c̄
.

The problem arises when the allocation is arbitrary. In this case, for a given Bα, it is

possible that (1− ε)cŜ is lower than c[S], even when the required inequality on ε is violated.

However, our intuition suggests that the class of optimal jurisdictions, {Bα}α∈<2 is “uniformly

distributed on <2”, and hence in this case, in average we should observe that (1− ε)cŜ < c[S],

and one can pick up at least one jurisdiction in this family characterized by the desired

inequality.

10It is easy to see that this basic theorem holds for our environment as described in Footnote 5.
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To reinforce this intuition in a precise way, define the function Φ(t, α) on <2 × <2 by the

formula

Φ(t, α) =

{
c(t), if we have t ∈ Bα;
0, otherwise

(16)

In other words, this function gives us costs of t in the allocation under consideration, if the

individual t belongs to the optimal ball Bα centered in the point α; otherwise, this function

gives just zero.

Using Fubini’s theorem, we will perform its integration first over t, next over α, and after

that vise-versa. We have:

1

λ̂|<2|

∫
<2

∫
<2

Φ(t, α)dtdα =

1

|<2|

∫
<2

1

λ̂

∫
Bα

c(t)dt

 dα =

1

|<2|

∫
<2

cBαdα,

(17)

by the definition of cS for a measurable S ⊂ <2 and an allocation c(·). Hence, this double

integral expresses the average of total per capita costs within balls centered in various points

in <2.

Before applying Fubini’s theorem in the opposite direction, let us state the following result.

It expresses a duality property of an arbitrary ball Bα.

Assertion: For every t ∈ <2, we have that

{α|t ∈ Bα} ≡ Bt. (18)

Indeed, this is just due to the symmetry property of a distance d(t, α) as a function of the

two arguments, and the definition of a ball Bt as a set of α such that d(α, t) = d(t, α) ≤ l. 2

Now, we are ready to integrate in the opposite direction. We use the fact that all the sets

Bα have volume λ̂, hence, the set Bt as well. In the middle of the following calculations, we
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make use of the assertion just made.

1

λ̂

1

|<2|

∫
<2

∫
<2

Φ(t, α)dαdt =

1

|<2|

∫
<2

c(t)

λ̂

∫
{α:t∈Bα}

dαdt =

1

|<2|

∫
<2

c(t)

λ̂

∫
Bt

dαdt =

1

|<2|

∫
<2

c(t)dt = c̄,

(19)

by its very definition.

Summing up and using Fubini’s theorem, we obtain the following equality:

c̄ =
1

|<2|

∫
<2

cBαdα. (20)

Now, if c(·) ∈ Cε[<2], then by definition of an ε-core, we must have that any Bα is

secession-proof, hence,

∀α ∈ <2 (1− ε)cBα ≤ ĉ. (21)

But in this case we have

c̄ =
1

|<2|

∫
<2

cBαdα ≤

ĉ

1− ε

1

|<2|

∫
<2

dα =

=
ĉ

1− ε
.

(22)

But c̄ ≤ ĉ

1− ε
⇔ ε ≥ 1− ĉ

c̄
.

To prove the main theorem, we are left to demonstrate that, up to measure 0, there are

no other allocations in the minimal core but the Rawlsian one. In fact, the proof is almost

identical to that presented in (Le Breton at al 2004), and therefore is skipped. 2
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