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Abstract

This paper formulates and solves the problem of a homeowherwants to sell their house for the
maximum possible price net of transactions costs (inclydéal estate commissions). The optimal
selling strategy consists of an initial list price with segaent weekly decisions on how much to adjust
the list price until the home is sold or withdrawn from the kedr The solution also yields a sequence
of reservation prices that determine whether the homeoshauld accept bids from potential buyers
who arrive stochastically over time with an expected atnigée that is a decreasing function of the
list price. This model was developed to provide a theorkégplanation for list price dynamics and
bargaining behavior observed for a sample of homeowneragaad in a new data set introduced by
Merlo and Ortalo-Magné (2004). One of the puzzling feadutat emerged from their analysis (but
which other evidence suggests holds in general, not juskaBdyis that list prices arsticky By and
large homeowners appear to be reluctant to change thgiriist, and are observed to do so only after
a significant amount of time has elapsed if they have notvedeiny offers. This finding presents a
challenge, since the conventional wisdom is that traditioational economic theories are unable to
explain this extreme price stickiness. Recent researclideased on “behavioral” explanations such
as loss aversion in attempt to explain a homeowner’s umgitiess to reduce their list price. We are
able to explain the price stickiness and most of the otherf&atjures observed in the data using a
model of rational, forward-looking, risk-neutral sellevo seek to maximize the expected proceeds
from selling their home net of transactions costs. The moglels on a very small fixed “menu cost”
of changing the list price, amounting to less than 6 thousenaf 1% of the estimated house value, or
approximatel\£12 for a home wort£200 000.
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1 Introduction

Buying and selling a home is one of the most important findmigaisions most individuals make during
their lifetime. Home equity is typically the biggest singlemponent of the overall wealth of a house-
hold, and given the highly leveraged situation that mossbkbolds are in (where mortgage debt is a high
fraction of the overall value of the home), the outcome oftihene selling process can have very serious
consequences for their financial well-being.

Given its importance, we would expegipriori that households have strong incentives to be forward-
looking and behave rationally when they sell their home. drtipular, it seems reasonable to model the
household’s objective as trying to maximize the expectédsgfaom selling their home net of transactions
costst

Surprisingly, dynamic rational models of the “home sellipmpblem” have been understudied both
theoretically and, most notably, empirically. In pionegriwork, Salant (1991) formulated and solved for
the optimal selling strategy of a risk neutral seller usiggamic programming. Salant’s model involves
an initial choice by the household whether to use a realeeatgnt to help sell their home, versus deciding
to save on the high commissions charged by most real estateiag and follow a “for sale by owner”
selling strategy. Under either of these options, the sellest also choose a list price each period the home
is up for sale, and whether to accept a bid for the home whemives, or to wait and hope that a higher
bid will arrive in the near future. Salant showed that theiropt solution generally involves a strictly
monotonically declining sequence of list prices, and that fypically optimal to begin selling the home
by owner, but if no acceptable offers have arrived withinecded interval of time, the seller should retain
a real estate agent. Under some circumstances, the opt#npfite can jump up at the time the seller
switches to the real estate agency, but list prices dedheeeafter. To our knowledge the implications of
Salant’s theoretical analysis have not been tested eralbyric

Horowitz (1992) was the first attempt to empirically estismand test a dynamic model of the home
seller’s problem. Unlike Salant, who considered an enwitent with a finite horizon, Horowitz adopted

an infinite-horizon stationary search framework, and attar&zed the optimal (time-invariant) list and

1 Risk aversion may also play an important role in determiritegbehavior of a home seller. For example, a risk aversersell
may be inclined to set somewhat lower list prices than a reltmnal one, and accept lower offers in order to reduce theafis
“letting a fish off the hook.” However, we will show that it i©psible to model the selling behavior of risk averse seli@as
relatively straightforward adjustments to a model of a riskitral seller, and the broad qualitative features of amapbtselling
strategy are the same regardless of the degree of risk anersi



reservation prices of the seller. Horowitz's model implieat the duration to sale of a house is geometri-
cally distributed, and he estimated his model using datdetist price, sale price and duration to sale for
a sample of 1196 homes sold in Baltimore, Maryland in 1978.

Horowitz concluded that his econometric model “gives predns of sale prices that are considerably
more accurate than those of a standard hedonic price regregs. 126). He also noted that his model
“explains why sellers may not be willing to reduce their [isices even after their houses have remained
unsold for long periods of time” (p.126). The latter conaiums however, is unwarranted because time
invariance of list and reservation prices are inherentufeat of Horowitz's stationary search framework.
Hence, his model is logically incapable of addressing theaf what is the optimal sequence of list price
choices by a seller over time (and in particular whetherpigtes should decline or remain constant over
time). Further, his data set does not appear to contain &oymation on changes in the list price between
when a home was initially listed and when it was finally sbld.

It seems that the question of whether optimal list pricesikhor should not decline over time can only
be addressed in a non-stationary, finite-horizon framewuodk as Salant’s, or else in a stationary infinite-
horizon framework that includes variables such as duraince initial listing, or duration since previous
offer, as state variabl€sAlso, it is quite evident that any progress in the specificaind estimation of
plausible dynamic models of the home selling problem @iliychinges on the availability of richer micro
data containing detailed information on the history of vald events (e.g., list price revisions and offers
received) during the home selling process.

The model presented in this paper is motivated by the enapifilcdings of Merlo and Ortalo-Magné
(2004), (henceforth MO) who introduced a new data set thalit&knowledge provides the first opportunity
to study the home selling problem in considerable detail.’Mfudy is based on a panel data of complete
transaction histories of 780 residential properties therevgold via a real estate agency in England between
June 1995 and April 1998. For each home in the sample, therddtmle all listing price changes and all
offers made on the home between initial listing and the finbd agreement. MO characterized a number
of key stylized facts pertaining to the sequence of everisdbcur within individual property transaction
histories, and discussed the limitations of existing thesoof a home seller’'s behavior in explaining the

data.

2 Also note that Horowitz’s estimated model explains litffetee observed variation in time from listing to sale.
3 However, once one includes a state variable such as dusitioa initial listing, the seller’s problem automaticatigcomes
a non-stationary dynamic programming problem that is é&dynequivalent to Salant’s formulation.



The dynamic model of the home selling problem we propose atichate using MO’s data takes
advantage of the richness of this data set and incorporatesag realistic features of the house selling
process into a finite-horizon, dynamic programming modehefbehavior of the seller of a residential
property. We take the decision to sell a house via a realeat@ncy as a given, and consider the decisions
of which price to list the house at initially, how to reviséstprice over time, whether or not to accept offers
that are made, and whether to withdraw the house if insuffilyiattractive offers are realizédTo make
these decisions the seller forms expectations about thEapildy a potential buyer will arrive and make
an initial offer, the probability she will make additiondfers if any of her offers are rejected, and the level
of each of these offers. These expectations are revisediowebased on the realized event history.

In this paper, we do not explicitly model the behavior of lngyand the bargaining game that leads
to the sale of a house. Typically, when a potential buyerasrand makes an initial offer for the home,
it is just the first move in dargaining subgamevhere the buyer and the seller negotiate over the sale
price. This negotiation may either lead to a transactionemtie buyer and seller reach an agreement
over the terms of the sale, or end with the buyer leaving thgai@ing table when no mutually agreeable
deal can be reached. Rather than modeling this situatiotagyaining model with two-sided incomplete
information (where the buyer and the seller each possess@information about their own idiosyncratic
valuation of the home), we capture the key features of thif@mment by specifying a simplified model
of buyers’ bidding behavior. In particular, we assume that potential buyer arrives, he makes upnto
consecutive offers which are drawn from bids distributitimst depend, among other things, on the list
price and the amount of time the house has been on the n¥afket.seller can either accept or reject each
offer, but after any rejection there is a positive prob&pilhe buyer “walks” (i.e. she decides not to make

a further offer and move on and search for other propertigteaul

4 One aspect that we do not model in this paper is the selletisida whether to use a real estate agent, something that was
a key focus of Salant’s analysis. While we agree that thisvisrg interesting and important issue, it is one that we cheayp
much about empirically, since MO’s data set only includexpprties that were listed and sold via a real estate agent.

5 In our empirical work, we assume that= 3, which is the maximum number of offers made by a potentigkebwn the
same house observed in the data.

6 As is well known, game-theoretic models of bargaining wito4sided incomplete information typically admit multiple
equilibria — and often a continuum of them. Furthermoreratae no general results in the literature that charaetéhie full
set of equilibria for such games, and adopting an arbitrguylibrium selection rule seems a rather unappealing ratare. We
avoid these problems by treating buyerdaiding automataising simple piecewise linear bidding functions with exugesly
specified random termination in the bargaining process.hdukl be noted, however, that such bidding functions codd b
derived endogenously in the unique equilibrium of a baiiggigame with one-sided incomplete information, where tingeb
is uninformed about the seller’s valuation, but the buyeakiation of the house is common knowledge. Our specifinaieo
accommodates the possibility of “auctions”, i.e. situasiavhere multiple buyers are bidding simultaneously for méoand
offers may exceed the list price.



While treating buyers aBidding automatas obviously a simplification, modeling the offer process
as one-sided, where the potential buyer makes offers teasalier can either accept or reject without
making counteroffers, is not. Contrary to the standard gulace we are accustomed to in the U.S. as well
as many other countries, where the owner of a house for saltypially respond to a buyer’s offer with
a counteroffer, and there may be multiple real estate ageptgsenting the various parties involved in
the sale process, the negotiating protocol that pertaitisetoesidential properties transactions in the MO
English data set is quite different. In England, most regidéproperties are marketed under sole agency
agreement (i.e., a house is listed with a single real estigtiecy that coordinates all market related activities
concerning the house from the time it is listed until it ertkells or is withdrawn). Agencies represent the
seller only, and a potential buyer who wants to make an ofiex property has to communicate the offer in
writing to the agency representing the seller of that priypéfpon being notified of the offer, the general
practice is for the seller simply to either accept the offargject it, in which case the buyer has the option
of either submitting a revised offer or terminating the riegmn. ’

Our model incorporates a fixed “menu cost” of changing theplige. One of the most striking features
of MO'’s data is that housing list prices appear to be hightpi@igh not completely3ticky. That is, 77%
of the house sellers in the data never changed the initigiise between the time the house was initially
listed and when it was sold. List prices were changed onlyedncd8% of the cases, only twice in 4%
of the cases, and only three times in the remaining 1% of teescabserve®.MO conclude that “listing
price reductions are fairly infrequent; when they occulythee typically large. Listing price revisions
appear to be triggered by a lack of offers. The size of theatoluin the listing price is larger the longer
a property has been on the market” (p. 214).

This finding presents a challenge, since the conventioredam is that traditional, rational, forward-
looking economic theories are unable to explain extremeepstickiness of this sort, unless there are

large menu costs associated with price revistbighile list price changes certainly entail a cost (e.g., in

7 Another reason for our simplified treatment of buyers is thatMO English data set contains very limited information on
the buyers. While the data allow us to follow the decisionsadiers through time, we have no record of the search ancioémg
behavior of individual buyers except for the sequence of bidla single property. In other words, we know the numbeintim
and levels of offers made by the same potential buyer on aepiypput we do not know whether the same buyer is also making
offers on other properties. We believe that our model mayigeoa reasonably good approximation to a seller’s belietsfiuid
environment where there is a high degree of heterogenejiptiential buyers, and sellers have a great deal of uncgriabout
the buyers’ motivations and outside options.

8 None of the homeowners made more than 1 change in theirlifigtiprice during the first 11 weeks on the market, which
is the mean duration between initial listing and the saldnefttome in the sample.

9 For example, Salant's model, which abstracts from menwscpsedicts that list prices should decline monotonicaligro



England, all documents pertaining to the listing needs tapgmated — analogously, in the U.S., the new
price information must be entered in the Multiple Listingr8ee data base), this cost is unlikely to be
large.

Recent research has focused on “behavioral” explanationgrfce stickiness. Such explanations
typically rely on the notion that sellers are fundamentabykward-looking Genesove and Mayer (2001),
for example, appeal to Kahneman and Tversky’s (1991) thebtgss aversiorto explain the apparent
unwillingness of owners of condominiums in Boston to redthar list price in response to downturns
in the housing market. In particular, they assume that @r&lprevious purchase price serves as the
“reference point” required by the model of loss aversiorg age this to explain a pattern where, when
house prices begin to fall after aboom, “homes tend to sihemrtarket for long periods of time with asking
prices well above expected selling prices, and many sedlegatually withdraw their properties without
sale” (p. 1233). This type of behavior is clearly inconsistwith the rational forward-looking calculations
underlying the dynamic programming models of seller batrawhich assume that homeowners have
rational expectations about the amoprispective buyerare willing to pay for their home. If the housing
market turns bad and it is no longer possible for the homeotmexpect to sell their home at a higher
price than they paid for it, a rational seller will regardstlais an unfortunate bygone, but will realize that
whatever they paid for their house in thastmay have little bearing on how they should try to sell their
housenow, which requires a realistic assessment of what will happehéifuture. While many sellers do
have the option not to sell their homes if market conditiams bad, not selling a home or not selling one
sufficiently quickly can entail serious losses as Well.

One of the primary contributions of this paper is to show thagry smallmenu cost, amounting to less
than 6 thousandths of 1% of the estimated house value, codpmately£12 for a home worti£200,000,
is sufficient to generate the high degree of list price stieks observed in the MO'’s data with a forward-
looking dynamic programming model with risk-neutral sedlevho have rational expectations about the

ultimate selling price of their homes.

the period the home is on the market. However, it is well kndkat the type of non-convexity introduced by a menu cost can
generateaegions of inactiorwhere it is optimal for the seller not to change the list pggen though the list price inherited from
the previous period is not the optimal forward-looking fisice that the seller would choose if there was no cost of gimarnthe
list price. The larger the menu cost, the bigger the regidimsaation.

10 For example, some sellers (such as those facing foreclosureno need to sell due to a job move, or a change in family
situation such as divorce) are selling under duress, aml @vers who are under less time pressure may perceive astibbt
“hassle cost” of having their home listed, cleaned and réadyow to prospective buyers on short notice.



There are several reasons why a very small menu cost yieligh @bgree of list price stickiness in our
model. One reason is that our model assumes that sellersabeneateex antebeliefs about théinancial
valueof their homes. That is, we assume sellers hati®nal expectationsbout the future selling price.
In the absence of macro shocks or learning about the finavadiad of the house, the fact that offers from
potential buyers fail to arrive (or not) does not have a haferimation content that would cause sellers to
revise their beliefs and adjust their list price.

A second reason for the price stickiness in our model is thiirs realize that the list price is just a
starting pointfor negotiations, and the seller is not committed to selbinty at the list price. In general,
most offers are less than the list price and subsequentibargdetween the buyer and the seller leads to
an increasing sequence of offers until a final transactiaceps agreed upon (or the buyer walks away).
However, the final transaction price is generally less tihancurrent list price of the home. Thus, most
of the real “action” in terms of the realized transactioncproccurs during this bargaining process, and
the purpose of the list price is mainly to attract potentiaydrs to the bargaining table. While we do
not model the bargaining process explicitly, our empirfcainework incorporates the key features of this
process, and in particular the fact that when a potentiaébagrives, she may make not just one offer (as it
is assumed in the models of Horowitz and Salant alike), bumereasing sequence of offers. Indeed, our
estimated model predicts that while list prices are pieseMlat functions of duration on the market (just
as we observe in the data), the selleeservation valuedo decline continuously as a function of duration
on the market. The combination of the probability of reaggvimultiple increasing offers from a potential
buyer once the potential buyer arrives and declining resienv prices results in significaaictual price
flexibility that is not evident in the list prices.

A final reason is that while we find that the rate of arrival dedé is a decreasing function of the list
price, the estimated relationship between the arrival aatéthe list price is fairly inelastic. In effect, it
appears that it is a matter of common knowledge that mosteoéttion in terms of determining an actual
sale price of a home will occur as a result of a bargaining ggscand therefore while we show that the
list price is a good predictor of the ultimate transactiorwgpand indeed, a much more accurate predictor
of the transaction price than a hedonic price estimate) treaitial list price is set at the time the house
is listed, the apparently highly rational manner in whicé thitial list price was set largely precludes the
need for significant further adjustments over reasonahiedms. Our estimated model predicts only large

reductions in the list price for houses that have been on tudeh for a very long time without having



received an acceptable offer, consistent with what we ebsarthe English housing data.

Our estimated model is also consistent with most of the dibgifeatures of the MO data, including
the distributions of times to sale, initial list prices, tbeerall trajectory of list prices, sale prices and
the number of "matches” between a seller and a potentialrbuye interesting finding of our empirical
analysis is that houses are generaNgerpricedwhen they are first listed. In the English housing data the
degree of overpricing is not huge: the initial list is on age 5% higher than the ultimate transaction
price for the home. However, it is important to point out tbat theoretical model could also generate
underpricingas an optimal seller's behavior. Underpricing can resulenvthe arrival rate of buyers is
sufficiently sensitive to the list price, and when there igjaificant chance that multiple buyers can arrive
at the same time, resulting in an auction situation and paieividding war” that tends to drive the final
transaction price to a value far higher than the list ptice.

Section 2 provides a brief review of the English housing datayzed by MO, reviewing the legal en-
vironment, the overall housing market, and the way the retalte agency operates in the parts of England
where the data were gathered. We refer the reader to MO forra imalepth analysis, but we do attempt
to lay out the key features of the data that we attempt to attdou in this analysis. Section 3 introduces
our model of the seller's decision problem. Section 4 dessrithe model of buyer arrival and bidding
behavior that constitutes the key “belief objects” in théesis decision problem that must be estimated
to empirically implement and test our model. Section 5 presestimation results based both on quasi
maximum likelihood (QML) and simulated minimum distanc®3) estimation methods. We show there
are substantial problems with the smoothness of the estimetiterion using either of these approaches,
which calls into question the validity of standard first ardeymptotic theory and the usual methods for
computing parameter standard errors and goodness of ftismt So instead of focusing on presenting
statistics of dubious validity, we provide a fairly extarescomparison of the predictions of our model to
the features we observe in the English housing data. Whilbave not yet found the “best fitting” pa-
rameter estimates or specification of the model (due langeliye non-smoothness of the QML and SMD
estimation criteria), we argue that the provisional ol perameter values and model specification that we

present here already provides a very good approximatiomtiderange of features that MO documented

11 In the data, initial bids and final transaction prices in ascef the list price are observed in approximately 4% of désa
Our model allows for the possibility of such “overbidding’high results from the fact that in England, the seller hasegall
obligation to accept a bid that is greater than or equal tdish@rice. Previous models, including both Salant’'s anddwatz’s
models, do not allow for the possibility that a bid or trart&atprice would ever exceed the list price.



in their analysis of the English housing data. Section 6gressa number of hypothetical simulations and
calculations using our model. In addition to calculatingelies’s willingness to pay for the services of

a real estate agency, we also show how risk aversion affleetsdller’s strategy. We also perform other
calculations with our risk neutral seller model to show hdffedent beliefs on the part of sellers can result
in underpricing, and even situations where list prices caneiase rather than decrease as a function of
time on the market. A final calculation is to show how sellendgor would be changed if sellers were
legally obligated to sell to any buyer who is willing to paetbeller’s posted list price. Section 7 provides

some concluding comments and directions for future rekearc

2 The English Housing Data

In England, most residential properties are marketed usdier agency agreement. This means that a
property is listed with a single real estate agency thatdinates all market related activities concerning
that property from the time itis listed until it either sedisis withdrawn. Agencies represent the seller only.
Listing a property with an agency entails publishing a sloég@roperty characteristics and a listing price.
Although not legally binding, the listing price is geneyalinderstood as a price the seller is committed to
accept.

The listing price may be revised at any time at the discretibtihe seller. The seller does not incur
any cost when revising the listing price, except the costoafimunicating the decision to the agent. The
agent has to adjust the price on the posted property sheeepridt any property detail sheets in stock, a
minimal cost.

Potential buyers search by visiting local real estate dgerand viewing properties. A match between
the seller and a potential buyer occurs when the potentiabmakes an offer. Within a match, the
general practice is for the seller to either accept or re#ets. In the event the seller rejects an offer, the
potential buyer either makes another offer or walks awayagleement occurs, both parties engage the
administrative procedure leading to the exchange of corsti@and the completion of the transaction. This
procedure typically lasts three to eight weeks. During g@sod, among other things, the buyer applies
for mortgage and has the property surveyed. Each party nmoekthe sale agreement up to the exchange
of contracts.

For each property it represents, the agency keeps a fileicmg@a detailed description of the property,



its listing price, and a record of listing price changesersf and terms of the sale agreement, as required
by law. The information contained in each individual file isarecorded on the accounting register that
is used by each agency to report to the head office. Althoughisits of a property by potential buyers
are arranged by the listing agency, recording viewings igequired either by the head office or by law.
However, individual agencies may require their agents ieciothis information for internal management
purposes.

The data set we use in our research was obtained from thereat@sls of four real estate agencies in
England. These agencies are all part of Halifax Estate Agemdmited, one of the largest network of real
estate agents in England. Three of these agencies opethte@Greater London metropolitan area, one in
South Yorkshire. Our sample consists of 780 complete trdimgsahistories of properties listed and sold
between June 1995 and April 1998 under sole agency agreeBweti entry in our data was validated by
checking the consistency of the records in the accountigigter and in the individual files.

Each observation contains the property’s characterisscshown on the information sheet published
by the agency at the time of initial listing, the listing priand the date of the listing. If any listing price
change occurs, we observe its date and the new price. Each imatescribed by the date of the first offer
by a potential buyer and the sequence of buyer’s offers witte match. When a match is successful,
we observe the sale agreed price and the date of agreemarit tghininate the history. In addition, for
the properties listed with one of our Greater London agengidich account for about a fourth of the
observations in our sample), we observe the complete histbviewings. Since events are typically
recorded by agents within the week of their occurrence, veethis week as our unit of measure of time.
Our data spans two geographic areas with different locah@mic conditions and two different phases
of the cycle in the housing market. While the local econom@nmeater London has been experiencing a
prolonged period of sustained growth, this has not beendke m South Yorkshire. Furthermore, from
June 1995 to April 1998, the housing market in the Greatedbammetropolitan area went from a slow
recovery to a boom. While this transition occurred graguétir ease of exposition we refer to 1995-96
as the recovery and to 1997-98 as the boom.

This data set was the one analyzed by Merlo and Ortalo-M§20@4), and their main findings can
be summarized as follows. First, listing price reductiore fairly infrequent; when they occur they are
typically large. Listing price revisions appear to be teged by a lack of offers. The size of the reduction

in the listing price is larger the longer a property has beerihe market. Second, the level of a first



offer relative to the listing price at the time the offer isaedas lower the longer the property has been on
the market, the more the property is currently over-priead if there has been no revision of the listing
price. Negotiations typically entail several offers. AbaLthird of all negotiations are unsuccessful (i.e.,
they end in a separation rather than a sale). The probabflgyccess of a negotiation decreases with the
number of previous unsuccessful negotiations. Third, @vést majority of cases, a property is sold to
the first potential buyer who makes an offer on the propergy,(within the first negotiation), although
not necessarily at the first offer. The vast majority of sslighose first negotiation is unsuccessful end up
selling at a higher price, but a few end up accepting a lowfer.oT he higher the number of negotiations
between initial listing and sale agreement, the higher &he srice.

Figure 2.1 illustrates two typical observations in the daf We have plotted list prices over the full
duration from initial listing until sale as a ratio of thetial listing price. The red dots plot the first offer
and the blue squares are the second offers received in a.nfételstars plot the final accepted transaction
prices. Thus, the seller of property 1046 in the left handepafifigure 2.1 experienced 3 separate matches.
The first occurred in the fourth week that the property wasdisand the seller rejected the first bid by
a bidder equal to 95% of the list price. The buyer “walkedtafhe seller rejected the offer. The next
match occurred on the sixth week on he market. The seller agam rejected this second prospective
buyer’s first bid, which was only 93% of the list price. Howetlais time the bidder did not walk after
this first rejection, but responded with a second higher @ffpial to 95% of the list price. However when
the seller rejected this second higher offer, the secordebidlso walked. The third match occurred in the
11th week the home was on the market. The seller acceptetthitttididder's opening offer, equal to 98%
of the list price. Note that there were no changes in theainist price during the 11 weeks this property
was on the market.

The right hand panel plots a case where there was a decrethelist price by 5% in the fourth week
this property was on the market. After this price decreasthan 5 weeks elapsed before the first offer was
made on this home, equal to 90% of the initial list price. Tékes rected this offe and the bidder made a
counteroffer equal to 91% of the initial list price. The seliejected this second offer too, prompting the
bidder to make a final offer equal to 94.5% of the initial lisitcp which the seller accepted.

Figure 2.2 plots the number of observations in the data sktt@ mean and median list prices as a
function of the total number of weeks on the market. The laftchpanel plots the number of observations

(unsold homes reamining to be sold) as a function of duratinoe initial listing. For example only 54
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List Price and Offers

List Price and Offer History for House ID 1046 (observation # 46) List Price and Offer History for House ID 1050 (observation # 50)
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Figure 2.1 Selected Observations from the London Housing Da

of the 780 observations remain unsold after 30 weeks on thketao over 93% of the properties listed
by this agency sell within this time frame. If we compute th#a of first offers received to the number
of remaining unsold properties, we get a crude estimateeobtter arrival rate (a more refined model and
estimate of this rate and its dependence on the list prideoeibresented subsequently). There is an 11%
arrival rate in the first week a home is listed, meaning thpt@amately 11% of all properties will receive
one or more offers in the first week after the home is listedhhe real estate agency. The arrival rate
increases to approximately 15% in weeks 2 to 6, then it deesetd approximately 12% in weeks 7 to 12,
and then drops to about 10% thereafter, although it is hacdestimate arrival rates for longer durations
given the declining number of remaining unsold properties.

The right hand panel of figure 2.2 plots the mean and mediamprises of all unsold homes as a
function of the duration on the market. We have normalizedi# prices by dividing by the predicted sale
price from a hedonic price regression using the extensivefdgousing characteristics that are available
in the data set (e.g. location of home, square meters of flumres number of baths, bedrooms, and so
forth). However the results are approximately the same wiemormalize using thactual transaction
prices instead of the regression predictions: this is aemumsnce of the fact that the hedonic regression
provides a very accurate prediction of actual transactraesp.

We see from the right panel of figure 2.2 that initially houaeslisted at an average of a 5% premium

above their ultimate selling prices, and there is an obviamwgnward slope in both the mean and median
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Numbers of Observations on List and Offer Prices

Numbers of List/Offer Price Observations for London markets with 780 homes List Price for Unsold Homes: Mean Number of List Price Changes: 1.2
Number receiving offers: 780, min,mean,max duration to sale (weeks): (1,10,70) Percent of homes with (0,1,2,2+) changes: (77.3,20.8, 1.9, 0.0)
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Figure 2.2 Number of Observations and List Prices by Week on Mrket

list prices as a function of duration on the market. HoweVer $lope is not very pronounced: even
after 25 weeks on the market the list price has only decline@8%, so that at this point list prices are
approximately equal to thex anteexpected selling prices. The apparently continuously aeavd slope

in mean and median list prices is misleading in the sensedbate noted from figure 2.1, individual list
price trajectories are piecewise flat with discontinuousga on the dates where price reductions occur.
Averaging over these piecewise flat list price trajectoctesmtes an illusion that list prices are continuously
declining as a function of duration on the market, but we esspe again that the individual observations
do not have this property.

Figure 2.3 plots the distribution of sales prices (onceragarmalized as a ratio to the predicted trans-
action price) and the distribution of duration to sale. Téfethand panel of figure 2.3 plots the distribution
of sales price ratios. There are two different distributi@hown: the blue line is the distribution of ratios
of sale price to the hedonic prediction of sales price, ardéld line is the distribution of the ratio of sales
price to the initial list price, multiplied by 1.05 (this tat factor is the average markup of the initial list
price over the ultimate transaction price, as noted abdBejh of these distributions have a mean value
of 1 (by construction), but clearly the distribution of thdjusted sales price to list price ratio is much
more tightly concentrated than the distribution of salésepto hedonic value ratios. Evidently there is
significant information about the value of the home thatafféhe seller's decision of what price to list

their home at that is not contained in th@ariables used to construct the hedonic price predictidie
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Distribution of Sales Prices Distribution of Duration (in weeks) to Sale

Min, Mean, Median, Max, Std of Sale Price/Hedonic ( 0.22, 1.00, 0.98, 3.38, 0.30) Min,Mean,Median and Max ( 1.00,10.27, 6.00,69.00)

Min, Mean, Median, Max, Std of Sale Price*1.05/List Price ( 0.53, 1.00, 1.01, 1.32, 0.07)
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Figure 2.3 Distribution of Sale Prices and Duration to Sale

model we present in section 3 will account for this exirevate informationabout the home that we are
unable to observe. However even when this extra informaidaken into account, there is still a fair
amount of variation/uncertainty in what the ultimate sglgase will be, even factoring in the information
revealed by the initial list price: the sales price can vaoyrf as low of only 53% of the adjusted list price
to 32% higher than the adjusted list price.

The right hand panel of figure 2.3 plots the distribution ofds to sale. This is a clearly right skewed
but unimodal distribution with a mean time to sale of 10.2°€kseand a median time to sale of 6 weeks.
As we noted above, over 90% of the properties in our data set sad within 30 weeks of the date the
property was initially listed. Scatterplots relating titeesale to the ratio of the list price to the hedonic
value (not shown) do not reveal any clear negative relatipnsetween the degree of “overpricing” (as
indiciated by high values of this ratio) and longer timesdtes Thus, we do not find any clear evidence at
this level supporting the “loss aversion” explanation asited by Genesove and Mayer (2001). However
an alternative explanation is the fact that prices in Londene generally rising over the time period of
the data (see figure 2.4 above), so an alternative explantitad few of the sellers had experienced any
adverse shocks, and thus our sample is not in a regime wheefddtvnward stickiness” prediction of the
loss aversion theory is relevant.

We conclude our review of the English housing data by shouionge 2.5, which plots the distribu-

tions of the first offer received and the best (highest) aféeeived as a ratio of the current list price for
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Housing Prices
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Figure 2.4 Price Indices in the Regions Covered in the EnglisHousing Data

properties with different durations on the market. Thelhaftd panel of figure 2.5 shows the distributions
of first offers. We see that in the first week a home is listed niean first offer received is 96% of the list
price (which is also the initial list price in this case). Hever first offers range from a low of only 79% of
the list price to a high of 104% of the list price. We see thareaccounting for declines in the list price
with duration on the market, that first offers made on prapertend to decline the longer the property
is on the market. There is a notable leftware shift in therithstion of first offers for offers received on
homes that have been on the market for 20 weeks, where thefirsganifer is only 91% of the list price
in effect for properties that are still unsold after 20 weeks

The right hand panel of figure 2.5 shows the distribution ef blest offers received in a match. In
the first few weeks the best offers show only modest improveraeer the first offers received (e.g. the
best offer is 97% of the list price, whereas the first offer6&®of the list price). However we see more
significant improvement in offers received for homes thateastill unsold after 20 weeks: the best offer
received is 94% of the current list price, which is 3 percgatpoints higher than the ratio of the first offer

to the list price.
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Estimated Densities

Distribution of First Offers as a ratio of List Price
Min, Mean, Median and Max of:
Offers week 1 ( 0.79, 0.96, 0.96, 1.04)
Offers week 10 ( 0.86, 0.96, 0.96, 1.00)
Offers week 20 ( 0.83, 0.91, 0.92, 0.99)

Distribution of Best Offers as a ratio of List Price
Min, Mean, Median and Max of:
Offers week 1 ( 0.82, 0.97, 0.98, 1.03)
Offers week 10 ( 0.86, 0.96, 0.97, 1.00)
Offers week 20 ( 0.83, 0.94, 0.95, 1.00)
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Figure 2.5 Distribution First Offer and Best Offer as a Ratio of List Price
3 The Seller's Problem

This section presents our formulation of a discrete-timmetefihorizon dynamic programming problem of
the seller's optimal strategy for selling a house. The madepropose incorporates several features of the
house selling process in England illustrated in the pre/gmction.

Since our data set only includes properties that were ligtetisold via a real estate agent, we take
the decision to sell a house (via a real estate agency) aea,gwd consider the seller’s decisions of
which price to list the house at initially, how to revise thisce over time, whether or not to accept offers
that are made, and whether to withdraw the house if insuffilyiexttractive offers are realized. To make
these decisions the seller forms expectations about thmapildy a potential buyer will arrive and make
an initial offer, the probability she will make additiondfers if any of her offers are rejected, and the level
of each of these offers. These expectations are revisediowebased on the realized event history.

We do not explicitly model the behavior of buyers and the aenigg game that leads to the sale of
a house. Rather, we capture the salient features of theibgga&nvironment by specifying a simplified
model of buyers’ bidding behavior. In particular, we assuha if a potential buyer arrives, she makes up
to 3 consecutive offers (where 3 is the maximum number ofefdserved in the data), which are drawn
from bids distributions that depend, among other thinggherlist price and the amount of time the house

has been on the mark&t.The seller can either accept or reject each offer, but afterejection there is a

12 We describe this component of our model in detail in the negtien.
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positive probability the buyer “walks” (i.e. she decides tiomake a further offer and move on and search
for other properties instead). As explained above, thequhoe where a potential buyer makes offers that
the seller can simply either accept or reject mimics the tiatjog protocol in the data.

A decision period is a week, and we assume a finite horizon @a2sy If a house is not sold after 2
years, we assume that it is withdrawn from sale and the s@lains an exogenously specified “continua-
tion value” representing the use value of owning (or rentihgir home over a longer horizon beyond the
2 year decision horizon in this modé.

The seller’s continuation value will generally be differdrom a quantity we refer to as the seller’s
financial valueof their home. This is the seller's expectation of what thendte selling price will be for
their home. While it is clear that the ultimate selling priseendogenously determined and partly under
control of the seller, we can think of the financial value agalistic appraisal or initial assessment on
the part of the seller of the ultimate outcome of the sellingcpss. Since the seller's optimal strategy
will depend on the financial value of the house, if the finaneddue is to represent a rational, internally
consistent belief on the part of the seller, it will have tis$g a fixed-point condition that guarantees that
it is a “self-fulfilling prophecy”. Although we do not expiity enforce this fixed-point constraint in our
solution of the dynamic programming problem, we verify belgia stochastic simulations) that it does
hold for the estimated version of our modé!.

Let Fy denote the seller’s perception about the financial valuéeaif home at the time of listing. We

assume thdf is given by the equation

Fo = exp{XB+no} 1)

where X are the observed characteristics of the home (the basidéotraditional hedonic regression
prediction of the ultimate sales price discussed in Se@)pandng reflects the impact of other variables

that are observed by the seller but not by the econometsiciaat can affect the seller’s perception of their

13 The continuation value may include the option value of tielisthe home at a future date, perhaps during a period where
conditions in the housing market are more favorable to thlerseHowever, we do not model the decision that leads eitber
“entry” (i.e. the initial decision to sell) or to “re-entry(in case the property is withdrawn and then re-listed) of askoon the
market.

14 while it is possible to enforce the rationality constraiataafixed-point condition on our model, from our standpoins it
useful to allow for formulations that relax the rationalignstraint. This gives us the additional flexibility to cmes models
where sellers do not have fully rational, self-consistegitdfs about the financial value of their homes. Indeedwatig for
inconsistent or “unrealistic” beliefs may be an alternativay to explain why some home sellers set unrealisticafii fisting
prices for their homes that would be distinct from the lossraion approach discussed in the introduction. Howevexeashow
below, we do not need to appeal to any type of irrationalitggssume that sellers have unrealistic beliefs in order teigecan
accurate explanation of the English housing data.
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home’s financial value. These variables could include tHerseprivate assessment of aggregate shocks
that affect the entire housing market, regional or neighbod level shocks, as well as idiosyncratic house-
specific factors. We assume that after consultation withiagers and the real estate agent, the seller has
a firm assessment of the financial value of their home that doesary over the course of their selling
horizon. Hencer)g can be interpreted as reflecting the sellprigate informationabout the financial value

of their home that is not already captured by the observaideacteristics<.

Recall the left panel of figure 2.3 that shows that the adfuksé price is a far more accurate predictor
of the ultimate selling price of the home than the hedonicealexdXB}. In our estimation of the
model, we assume that ejqn } is a lognormally distributed random variable that is indegent ofX, and
we estimate via a log-linear regression of the final transaction pricel@X characteristics assuming
that the random variable ekpy} satisfies the restrictioB{exp(no)} = 1. This restriction represents the
rationality constraintwe refer to above, which we verify is satisfied by our estimdatedel.

Due to the fact that the seller's optimal selling decisioepehd critically on the seller’s financial
value Fp, which in turn depends on a very high dimensional vector afeoled housing characteristics
X as well as unobserved components straightforward attempts to solve the seller's problenilavh
accounting for all of these variables immediately preseastwith a significant “curse of dimensionality”.
In principle, we could treat the estimated hedonic value{m{})} as a “fixed effect” relevant to property
and solveN = 780 individual dynamic programming (DP) problems, one facheof the 780 properties in
our sample. However, the problem is more complicated dubdexistence of the unobserved “random
effect” ng. This is a one dimensional unobserved random variable apdriniple we would need to solve
each of the 780 DP problems over a grid of possible valuegoénd thereby approximate the optimal
selling strategy explicitly as a function of all possibldues of the unobserved random effegt which
would be then “integrated out” in the estimation of the model

However, by imposing #inear homogeneityassumption, we can solve a single DP problem for the
seller’s optimal selling strategy where the values andestate defined astios relative to the seller’'s
financial value.In particular, define the seller's current list prieeto be the ratio of the actual list price
divided by the seller’s financial valug. ThenP, = 1.0 is equivalent to a list price that equals the financial
value, and? > 1.0 corresponds to a list price that exceeds the financial \ahdeso forth. The implicit
assumption underlying the linear homogeneity assumpsdhat, at least within the limited and fairly

homogeneous segment of the housing market in our data eet, dhe no relevant further “price subseg-
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ments” that have significantly different arrival rates angdr behavior depending on whether the houses
in these segments are more expensive “high end” homes ofMhathomogeneity assumption reflects a
reasonable assumption that arrival rates and buyer biduhgvior are driven mostly by whether a given
home is perceived to be a “good deal” as reflected by the ratlwedist price to the financial value. How-
ever, as we discuss below, the actual bid submitted by a wiltatepend on the buyer’s private valuation
for the home (also expressed as a ratio of the financial \Fjue

Let S(P,di) denote the expected discounted (optimal) value of selliegnbme at the start of week
t, where the current ratio of the list price to the financialueals B, and where the duration since the
last match igd;, with d; = O indicating a situation where no matches have occurrediete a match is
defined as a buyer who makes an offer on the home. We will gedietiail about the timing of decisions
and the flow of information shortly, but already we can se¢ thia formulation of the seller’s problem
has three state variables: 1) the current total time on thé&ehfy 2) the duration since the last match
d;, and 3) the current list price to financial value ra®o The value functior§ (R, d;) provides the value
of the home as a ratio of the financial value, so to obtain theah®alue and actual list price we simply
multiply these values blgy. ThusRS (R, d ) is the present discounted value of the optimal sellingestpat
and PR, is the current list price, both measured in UK pounfls (Via this “trick” we can account for
substantial heterogeneity in actual list prices and sedikrations by solving just a single DP problem “in
ratio form.” However an important implication of this assptinn is that timing of list price reductions and
the percentage size of these reductions implied by the'sedjgtimal selling strategy are homogeneous of
degree 0 in the list price and the financial value.

Our model of the optimal selling decision does not requikedbller to sell their home within the 2
year horizon: we assume that the seller has the option tavewdhtheir home from the market at any time
over the selling horizon. Since we do not model the defaufbopof not selling one’s house, we do not
attempt to go into any detail and derive the form of the vatutiné seller of withdrawing their home from
the market and pursuing their next best option (e.g. comtinto live in the house, or renting the home).
Instead we simply invoke a flexible specification of the “dounation value™"W (P, 1) of withdrawing a

home from the market and pursuing the next best opporttity.

15 Alternatively, we could allow for different types of sellewho have different continuation values and spewifyR;, 1),
where the parametarcould denote the seller’s “type.” Fortunately, howeveth@ligh our model can allow for other types of
unobserved heterogeneity beyond the privately observagbenent of the financial valugy, we did not need to appeal to any
type of unobserved heterogeneity in seller types in ordettfe model to provide a good approximation to the behavior we
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The seller has 3 main decisions: 1) whether or not to withdrewproperty, 2) if the seller opts not
to withdraw the property, there is a decision about whichgiice to set at the beginning of each week
the home is on the market, and 3) if a prospective buyer armviehin the week and makes an offer, the
seller must determine whether or not to accept the offer,ifaha seller rejects the offer and the buyer
makes a second offer, whether to accept the second offescaond up to (possibly) a third and final offer.
We assume that the first two decisions are made at the stascbfweeek and that the seller is unable to
withdraw their home or change their list price during the aearder of the week. Within the week, if one
or more offers arrive, the seller decides whether or not tepicthem.

The Bellman equation for the seller’'s problem is given inapn (??) below.

S(R,d) = max\W(R), max{u (PR, d) +PES+1 (PR, d)] )

The Bellman equation says that at each weake optimal selling strategy involves choosing the larger
of 1) the continuation value of (permanently) withdrawihg home from the market, or 2) continuing to
sell, choosing an optimal listing pri¢& The functionES.1(P,R,d;) is the conditional expectation of the
weekt + 1 value functionS 1 conditional on the current state variablé, d;) and the newly chosen list
price P. Pursuant to the “forward-looking” perspective that weedissed in the introduction, in the version
of the model we actually estimate in the next section, thigeetation depends only dhand not on the
previous week’s list pric&;. That is, the current list price is a sufficient statistic affecting the arrival
rate of buyers and the magnitude of bids submitted. Howewercould imagine a world with information
lags where arrival rates and bids could depend on previgugiiices, including the last week list price
P.. While it is not hard to allow for such lags without greatlyngplicating the solution of the model (at
least provided we only allow a single week lag), we have fotlrad it was not necessary to account for
information lags to enable the model to provide a good appration to the behavior we observe in the
English housing data.

The functionu (P, R, di) captures two things: 1) the fixed “menu cost” of changing tbieprice, and
2) the “holding cost” to the seller of having their home on tharket.

—h(d)-K if P£R

(PR, ) = _ ®3)
—h(ck) if P=R

observe in the English housing data.
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The functionh; (d; ) is the net disutility (in money equivalent units) of havirgkeep the house in a tidy
condition and to be ready to vacate it on short notice so theastate agent can show it to prospective
buyers.K is the fixed menu cost associated with changing the list pri¢es fixed cost can include the
cost of posting new advertisements in a newspaper and/osit@eband printing up new flyers with the
new listing price, and other bureaucratic costs involvingniaking this change (i.e. consulting with the
realtor to determine the best new price to charge). We woude thatk should be a small number since
none of the costs listed above would be expected to be largiesolute terms.

We now write a formula foES1(P,R,d;) that represents the value of the within week events when
a match occurs. To keep the notation simpler, we will dghiirom this conditional expectation, since as
we noted above, we did not need to inclugeto capture any information lags that might affect arrival
of buyers or the bids they might make. In order to describestheation forlE S, 1, we need to introduce
some additional information to describe the seller's iglebout the arrival of offers from buyers, the
distribution of the size of the offers, and the probabilitatt the buyer will walk away (i.e. not make a
new offer and search for other houses) if the seller rejbetbuyer’s offer. Given the negotiation protocol
described above, within a given week there are at most 3lgessages of offers by a potential buyer and
accept/reject decisions by the seller. To simplify notatiwe writeE S, 1 for the case where at most one
buyer arrives and makes an offer on the home in any wWeek.

Let A¢(P,d;) denote the conditional probability that an offer will agiwithin a week given that the
seller set the list price to b at the start of the week and the duration since the last cfféy. iLet O;
be the highest offer received at stage 1, 2,3 of the “bargaining process.” L&t(O;|0;_1,P,d;) denote
the seller's beliefs about the offer the buyer would maketagesj given that the buyer did not walk in
response to the seller’s rejection of the buyer’s offeragsj — 1. If the seller accepts offeé;, let N;(O;)
denote the net sales proceeds (net of real estate comnsis&@as, and other transactions costs) received
by the seller. The seller must decide whether to accept thproeeeds\;(O; ), thereby selling the home
and terminating the selling process, or reject the offerlapk that the buyer will submit a more attractive
offer, or that some better offer will arrive from another gutial buyer in some future week.

If a seller rejects the offeD;, there is a probabilityw; (O;,P,d;) that the buyer will “walk” and not

make a new offer as a function of the last rejected ofgr,and the current staté, d;). With this notation

16 Note however that our framework also accommodates thelgligsbf “auctions”, i.e. situations where multiple buyeare
bidding simultaneously for a home.
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we are ready to write the equation for the within week probienich determine€ S, and completes

the Bellman equation. We have

ES:a(Rd) = A (PA)Sa(P.) + [1-M(P.)] | max[N(O), ES1(O1.P.c)] u(OR c)dOL.
4)
The functionE$1+1(Ol, P.d) is the expectation of the subsequent stages of the withekweargaining
process” conditional on having received an initial offeafand conditional on the beginning of the week
state variableg,P,d;). We can write a recursion for these within-week expectede/éinctions similar to

the overall backward induction equation for Bellman’s étumaas a “within-period Bellman equations”

ES.1(OnPd) = wi(OsP.ck)S1(Pdk+1)+

[1-w(OyP.h)] | max[N(02). ES1(02, P k)] f2(02|01, Rc)dO;. (5)

and

ES.1(02,Pd) =  wp(O|Ph)S41(Pk+1)+

1 n(Oz|P.ch)] | max(i(02). §1(P1)] fo(0slOz, Pck)dOs. ()

What equation 7?) tells us is that after receiving 2 offers and rejecting teeond offerO,, the seller
expects that with probability, (O, |P, d;) the buyer will walk, so that the bargaining ends and the sglle
expected value is simply the expectation of next periodsie/§ 1 (P, d; + 1). However, with probability
1— wp(02|P,d;), the buyer will submit a third and final offéDs which is a draw from the conditional
density f(O3|O2,P,d;). Once the seller observé3;, he can either take the offer and receive the net
proceeds\;(O3), or reject the offer, in which case the potential buyer Isafigg sure and the seller’s
expected value is the next week value functi§n,;(P,1). Note that the second argument, the duration

since last offer, becomes 1 at wdek 1 reflecting that an offer arrived at wetk

4 Models of Bidding by Prospective Buyers

Our initial intention was to develop a highly flexible modéboiyer behavior that could be consistent with
a wide range of theories of buyer behavior. We attempted timate the distribution of the first offer

f1(O1|P,d) and the conditional densitiefg(O;|O;_1,P,d) representing the improvement in bids when the
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seller rejects the previous bid and the buyer offers at hgldtages 2 and 3 using non-parametric and semi-
parametric estimation methods in a semi-parametric t@p-approach to the estimation of our model of
seller behavior.

Unfortunately, this strategy did not work. Although we watge to estimate the bid densitigsunder
fairly weak assumptions, when we used these estimatedtigsnsi solve for the optimal selling problem
we obtained unreasonable results, including predictibasthe seller should set infinite list prices.

One important fact about observed bidding behavior is thate is a positive probability that a
prospective buyer will submit a bid equal to the current fisice. In the English housing data, over
15 percent of all accepted offers are equal to the list pmiweaver 10 percent of afirst offers are equal
to the list price. Further, we also observe offerexteswf the seller’s list price. For example, over 2%
of all first offers are above the list price, and nearly 4% bhatepted offers are higher than the list price
prevailing when the offer was made.

Thus, any estimation of the offer distributions needs tamant for mass points in the distribution,
particularly at the list price. We found that we obtainedaamonable implications for the seller model
even when we imposed a fair amount of parametric assumptinrthe offer distributions, which were
intended to help enforce “reasonable” behavioral implocet for the seller.

One of these parametric models is a double beta distributitina mass point at the list price. An
example of the double beta density function for bids is presgkin the left hand panel of figure 4.1 below.
There is a right-skewed component of the bid distributiothtoleft of the list price mass point, and then
a smaller left skewed beta distribution above this masstpdine most important part is the piece below
the list price, which captures the “underbidding” that is ffredominant outcome of matches between a
buyer and the seller. The right skewed beta component hds asggport the intervel 25, 1] where we
have normalized the bid as a ratio of the current list pricéhefhouseP. Thus, the lower suppor5
represents a bid equal tg4 of the current list price of the home.

The distribution plotted in the left hand panel of figure 4 hctually a rescaled version of the double
beta distribution. The figure does not include the mass m@itite list price due to problems with plotting
density values and the mass point on the same scale. Thedyetiydcomponent to the left of the mass
point the list price has been scaled to have a total masébptrepresenting the probability that a bid will
be strictly below the list price. The component of the betdrtiution above 1 is scaled to have a total

mass of.05, representing a 5% probability of receiving a bid styietbove the list price. The remaining
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Figure 4.1 Double Beta Distribution of Bids and the implied expected bid function

mass is a 10% probability of receiving a bid equal to the litep

Based on initial empirical work, we judged this double betadel to be a good approximation to
the actual distribution of bids we observe in the Englishdiog data. The double beta distribution was
specified so that the probabilities of receiving a bid beleguyal to, or strictly above the list price was
given by a trinomial logit model and th@,b) parameters of the beta distributions were specified as
(exponential) functions of state variables in the mode).(sBumber of weeks on the market, the list price,
and other variables). Unfortunately, as we see in the rigindhpanel of figure 4.1, the results of this
model have unreasonable implications for sellers’ bebdigut the relationship between the list price and
the expected bid submitted by buyers. The expected bidiam& a monotonically increasing function
of the list price. It seems quite unreasonable that a sdilenld expect to receive to roughly double the
expected bid on his house by doubling the list price, butithéxactly what the results from an unrestricted
reduced form estimation of the offer distribution implies!

Further, our reduced form estimation results for the arnate of matches resulted inpsitiverela-
tionship between list price and arrival rates of buyersneafeer controlling for unobserved random effects,
as represented by thg term in the seller’s financial value of the home. Combiningstihtwo results, it
is clear that any seller with such beliefs would find it optintaset an arbitrarily large list price for their
homes, something we never observe in practice. So clearhg s some problem with the flexible two

step approach to estimating the seller model.
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The problems we experienced are probably not due to a mifisption of beliefs, since our reduced
form model is a highly flexible specification capable of clgsgpproximating the actual distribution of
bids (and rates of arrival of matches). We believe the probedue to theendogeneity of list pricedn
particular, unobservable characteristigsthat increase the financial value of a home also tend to iserea
the list price, and also bids made on a home. If we fail to @dritr these unobservables (as we have
in our initial reduced form estimations), it is perfectlynoeivable that the endogeneity problems could
be strong enough to produce the spurious and implausibletooic relationship between list price and
expected bid values that we see in figure 4.1.

It might be possible to try to use more sophisticated reddiced econometric methods to overcome
the endogeneity problems. However it is clear that therselbehavior is largely determined by the seller’'s
beliefs about buyers. Particularly important are the selleeliefs about how the list price affects the rate
of arrival of offers and distribution from which these offeaire drawn from when they do arrive. Thus,
there is a huge amount of information that can be broughtdoibesstimating these rather slippery objects
by adopting a fully structural, simultaneous approach toregion where we estimate the sellers beliefs
along with the other unknown parameters of the seller (bgydiscount rate, and the parameters affecting
hassle costs, and so forth) using a nested numerical solapproach. Under this approach we would
solve the seller's dynamic programming problem repeatéathydifferent trial values of the parameters
governing the seller's beliefs as well as the other parametbthe model. Trial parameter values that
produce “unreasonable” beliefs for the seller (such as shiowfigure 4.1) would be discarded by this
algorithm since these parameter values imply an optiméihgedtrategy that is greatly at odds with the
behavior we observe in the data.

While it may ultimately be possible to estimate fairly fleelspecifications for sellers’ beliefs about
buyer bids and arrival rates (such as the double beta disttband even more flexible semiparametric
specifications for the offer distributions), we have deditigt it would be best to start by providing more
structure on the bid distribution. There are two main readon this. First, even if we were able to
successfully estimate the parameters of the double bet&lnagdstructural parameters in a maximum
likelihood or simulated minimum distance estimator, thexld be the issue of how to interpret these
estimated coefficients in terms of an underlying model oflbicbehavior.

Instead, we felt that more insight could be gained by trymuild some sort of rudimentary model

of bidding behavior on the part of buyers. By placing moradtire on the offer distributions we obtained
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much more control over the estimation of the model. This eemlly important since small movements
in the parameters for beliefs can result in “unreasonabliefeéand these unreasonable beliefs can lead
to discontinuous “bang-bang” type shifts in the optimalisglstrategy. The semi-reduced form model
has fewer free parameters than the more flexibly specifiasceztiform models of bidding behavior, the
parameters are more readily interpretable, and it is e&sisee whether the estimated parameters are
unreasonable or not, and how to constrain parameters tedneble” sections of the parameter space.

The “semi-reduced form model” of buyers’ bidding behavi@arides the distribution of bids from
two underlying “semi-structural” objects: 1) a specificatiof buyers’ bid functionsb(v,|,F), and 2) a
specification of the distribution of buyer valuatiomgy|F,|), wherev is the buyer’s private valuation of
the home/F is the financial value of the home, ahds the current list price. In order to maintain the
homogeneity restriction, we assume thandF only enterb andh in a ratio form, i.e. ap =1/F. Thus,
in the subsequent notation we will write these objectb(ag) andh(v|p).

We put “structural” in quotes because a fully structural eloof buyer behavior would derive the
buyers’ bid functions from yet deeper structure: from thieitson to their search and bargaining problem.
We eventually want to extend the model in this direction, sinte the English housing data contain
relatively little data on buyers other than the bids they enmkmatches observed in the data set, it seems
sensible to start out with a less complicated and detailedeinaf their behavior. In particular, since we
do not have any data that follows buyers as they search aniffegedt homes and allow us to see homes
they visit and don’t make offers on and homes they visit andrddke offers on, it seems that a more
complicated buyer search model will have many additionshpeters characterizing buyer search costs
and opportunity sets and preferences for different looatend types of houses. The presence of so many
additional parameters in the absence of good data on how$agaually search and decide which houses
to bid on could lead to severe identification problems if weehi@ rely only on a highly self-selected data
set of actual matches. This is our justification for failiogoursue a more detailed model of buyer behavior
at this point.

The simplest specification for bid functions that we couidktof that yields an offer distribution with

a mass point at the current list price of the house is thevdtig class of piecewise linear bid functions:

ri(pv ifvelv,vg)
b(v,p)=14 p if ve [vi,vi+k(p)) (7
ra(p)v ifve [vi+k(p),v
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wherev andv are the lower and upper bounds, respectively, on the suppdine distribution of buyer
valuations (to be discussed shortly). To ensure contirafib(v,|) as a function of/, r; andr, must satisfy

the following restrictions

p = n(pv
p = ra(p)(vit+k(p) 8)
This implies that
. p
AT
B p
r2(p) = m 9)

Thus, the bid functions are fully determined by the two fiows ri(p) andk(p). The first function
determines how aggressive the bidder will be in terms of vilzation of the buyer’s true valuation the
buyer is willing to bid, for the first bid (we will consider specifications for 2nd and 3rd bid function
below). The closer;(p) is to 1 the more “aggressive” the buyer is in his/her bidding the closer they
are to truthful bidding). We assume that the buyer integoife list pricd as a signal from the seller about
what the seller’s reservation value is and as a signal of leasanable the seller is. If the list price ratio
p is substantially bigger than 1, the buyer will interpresths a sign of an “unreasonable” list price by
the seller, and so the buyer will respond by shading theitda@ higher degree. Conversely, a seller that
“underprices” their home by setting a list price less thanfthancial value will result in more aggressive
bidding by buyers, i.er1(p) will be closer to 1 wherp < 1. Thus, we posit that, (p) < 0, so that a seller
who considers overpricing their home will expect that bayaill shade their first bids to a greater degree.

The bid functions have a flat segment equal to the list pricedtuations in the intervaly, vi +k(p)].

As we noted above, this flat section is empirically motivatgdhe fact that we observe a mass point in
bid distributions at the list price. By adjusting the lengftthis flat segmeri(p) we can affect the size of
the mass point in the bid distribution and thereby attemptatch observed bid distributions.

We posit thak(p) < 0 for reasons similar to the assumption thgtp) < 0: a seller who overprices
his/her home by setting a list price bigger than 1 will resula shorter range of valuations over which
buyers would be willing to submit a first offer equal to thd [isice. Conversely, if a seller underprices
his/her home by setting a list price less than 1, there shioelld wider interval of valuations over which

the buyer is willing to submit a first offer equal to the listqa. Observe that since the probability of a first
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offer equal to the list price is the probability that valeas fall into the intervalvy,vi + k(p)], it is not
strictly necessary fdk'(p) < 0 in order for the probability of making an offer equal to tie price to be a
declining function of, which is another feature we observe in the English housatg. dHowever initially
we will assume thak/(p) < 0, but we can obviously consider relaxations of this conditater.

The left hand panel of Figure 4.2 plots examples of bid fuumdtifor four different values gb. These

bid functions were generated from the following specifimasi for the function;(p) andk(p):

ri(p) = .98(1-y(p))+-85¢(p)
k(p) = .12(1-y(p))+.07/(p) (10)
where
V) = t—. CED

We see that the bid function for the highest list price, i@ d list price ofp = 1.62 given by the blue
dotted line in the left hand panel of figure 4.2, involves thestrshading and lies uniformly below the bid
functions at other list prices. It follows that the list priof p = 1.62 isdominatedin terms of revenue to
the seller by lower list prices. However, at more moderatepliices, the bid functions generally cross each
other and so there is no unambiguous ranking based on singhdnce of the bid functions. For example
if we compare the bid function for a list price pf= 1 with the bid function with a list price op = 1.09
(the former is the orange dotted line and the latter is thiel set line in the left hand panel of figure 4.2),
we see that the bid function for the lower list pripe= 1 is higher for buyers with lower valuations and
also for buyers with sufficiently high valuations, but thd fiinction withp = 1.09 (corresponding to a 9%
markup over the financial value of the home), is higher foragrmediate range of buyer valuations. Thus
the question of which of the two list prices result in highgpected revenues depends on the distribution
of buyer valuations: if this distribution has sufficient rmas the intermediate range of buyer valuations
where the bid function for the higher list prige= 1.09 exceeds the bid function for the lower list price
p =1, then the expected bid from setting the higher list prickexiceed the expected bid from setting a
lower list price. Of course this statementisnditionalon a buyer arriving and making a bid: we need to
factor in the impact of list price on the arrival rate to cortgpthe overall expected revenue corresponding
to different list prices.

The right hand panel of figure 4.2 shows how the bid functidrenge in successive bidding stages.

Bid functions for later bidding stages dominate the bid fiores for earlier bidding stages, resulting in a
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Bid functions b(v,l,s), v=valuation, |=list price, s=stage, s=3 Bid functions at successive biddings stages: b(v,l,s), v=value, I=list price, s=stage
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Figure 4.2 Piecewise linear bid functions for different lig prices and bidding stages

monotonically increasing sequence of bids that is condistéth what we almost always observe in the
English housing data. However, there are intervals of valina where the bids lie on the flat segment of
the bidding function, so this model can generate a sequdnmdsowhere a previous bid (equal to the list
price) is simply resubmitted by the bidder. This is also siting we observe in the English housing data.

We complete the description of the semi-reduced form mogealdscribing assumptions about the
distribution of buyers’ valuations for the homig(v|p). We assume thdi(v|p) is in the Beta family of
distributions and thus it is fully specified by two paramsté,b), as well as its supporfy,v]. We do
not place any restriction on the distribution of valuatioms particular, it might be the case that buyers
who have relatively higher than average valuations for &mgikiome may choose to make offers: this
would argue for a “positively biased” specification wh&rgv|p} > p. The direction of the bias might also
depend on the list price: overpriced homes that have beeheomarket for a long time might be more
likely to attract “vultures” i.e. buyers with lower than amge valuations who are hoping to get a good
deal if the seller “caves”. We could imagine many other typlestories or scenarios. All of these suggest
allowing for a more general model of valuations of the fofitv|p,d) where the distribution of valuations
of buyers who make an offer on a home with a price ratip @also depends on the duration since the last
offer d and the length of time that house has been lidted,

While there is a value (in terms of additional flexibility ihe types of bid distributions that can be

generated) by allowing for flexibility in the distributiorf buyer valuations, it is clear that if we allow
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arbitrary amounts of flexibility then we might run into thersasorts of paradoxes that we illustrated for
the fully reduced form specification of buyer bidding beloaviln particular if the distribution of buyer
valuations shifts upward sufficiently quickly as the lisicprrises, then it is clearly possible that such a
model could result in expected bids that are a monotonidadigeasing function op, just as we observed
in the double beta specification in figure 4.1. In additiorréhean be difficult identification problems
since higher bids can be increased by either a) fixing a sefeoéwise linear bid functions but shifting
the distribution of valuation to the right, or b) fixing a dibution of valuations but allowing the piecewise
bid functions to rise. For this reason, we have started bydithe support an¢a,b) parameters of the
distribution of valuations and focus on estimating the paeters of the piecewise linear bid functions.
Let B(u|a,b) be a beta distribution on thi®, 1] interval with parameterga,b). We can derive the
distribution of bids from this distribution by first resaadj this distribution to thev,Vv] interval to get the

distribution of valuation$d (v) given by
H(v) = Pr{¥<v} =B((v—v)/(V-V)[a,b). (12)

The left hand panel of figure 4.3 plots an example of a betaildigion of valuations on the interval
[v,V] = [.5,3] for different values of théa, b) parameters. These parameters give us the flexiblity totaffec
both the mode and the tail behavior of the distributions jrestelently of each other. For fixagincreases
in b decrease the expected vakigv} and move the mode towards zenod thin out the upper tail, whereas
for fixed b, increases im increase the mode, the mean, and thickens the upper tdil\gfalthough larger
changes are required &to produce comparably dramatic shiftshi{v) compared with changes In at
least fora > 1.

The right hand panel of Figure 4.3 plots the implied probgbihat an offer equals the list price, as
a function ofp at successive stages of the within week bargaining procedsuiers whose distribution
of valuations is a beta distribution on the supdd5, 1.8] with parameterga, b) = (4.5,12). We see that
these implied probabilities are roughly in line with the al&r the limited range of list prices that we
observe in the English housing data (i.e. a mean first offgrithroughly equal to the financial value, i.e.
E{b(v,p)} ~ 1, where the mean value @fis approximately equal t0.@5. This implies that;(p) ~ .95
whenp ~ .95. Actually, for the specification af (p) given above, we have (1.05) = .9248.

The implied distribution of bidsG3(x|a, b, p), is given by

G(xja,b,l) = Pr{b(v,p) <x}
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Figure 4.3 Beta distribution of buyer valuations and implied probabilities of bidding the list price

= Pr{i<b*(x,p)}
= B(b'(xp-Vv)/(V-Vlab). (13)

Due to the presence of the flat segment, the usual notion afvansie of the bid functon does not exist.
However if we interpret the inverse of the bid function at tkdue p as the intervalvy,vi +Kk(p)], we
obtain a distribution of bids that has a mass point in theidigion of bids at the list price, consistent with
what we observe in the English housing data.

In summary we can write the distribution of bids implied by semi-reduced form specification of

bidding behavior explicitly in terms of the functiong(p) andk(p) as

B((x/r1(p) —Vv)/(V—V)|,ab) if x € [v, p)
G(xla,b,p) = ¢ B((k(p) + p/r1(p) +k(p) —Vv)/(V—V)[a,b) —B((p/r1(p) —v)/(V—V)|ab) if x=p
B((x(p/ri(p) +k(p)) —v)/(V—Vv)|a,b) if xe (p,v]
(14)

Using this distribution function, we can compute theected bid function «E~J| p} as
Eblp) — [xG(dxab.p)
\
- / b(v, p)H (dv). (15)
\

Note that the expectation depends both on the list price arttiefinancial value because bids are inter-

preted as ratios of list price to the financial value of the Bom
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Figure 4.4 Expected bids as a function of the list price and luiding stage

Figure 4.4 plots the expected bid functions for severakdifit specifications of the distribution of
valuations. We see that the expected bid functions are wdhand are maximized at list prices that are
higher than 1, providing an incentive for the seller to “quése” when the seller sets a list price. Of course
this is not the full story, since the seller must also accdanthe effect of the list price on arrival rates
of buyers. The dynamic programming problem takes both fadtdo account, as well as other dynamic

considerations and the fixed menu costs involved in chargiadjst price.

5 Empirical Results

This section presents econometric estimates of our modbkeadfiouse seller’s decision via two different
estimation methods: a (quasi) maximum likelihood apprd@MLE), and a simulated minimum distance
approach (SMD). In general terms, the objective of bothhestion methods is to find estimates of the
unknown parameters of our semi-reduced form model of bglbighavior that enable the predicted opti-
mal selling strategy from our dynamic programming modeldstHit the actual selling behavior that we
observe in the English housing data. The current versioheofitodel has 26 unknown parameters that we
estimate, and most of these parameters affect the sellditsfdabout the arrival rate of buyers and the

nature of the bargaining process when a buyer arrives andsraakoffer.
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As we noted in section 3, we have adopted a “full solution”rapph to estimation — that is, we
estimate the seller’s belief parameters by repeatedly rinaly resolving for the optimal selling strategy
for different trial values of the parameters in an innneraiit programming subroutine while an outer
optimization algorithm searches for parameters that maeirthe likelihood (for the QMLE estimator) or
minimize a quadratic form in a vector of actual versus simagdanoments of interest from the real and
simulated housing data (for the SMD estimator). We foundttiefull solution approach resulted in much
more sensible outcomes, because this approach enforcesgtiieement that the implied optimal selling
strategy should be close to the selling behavior we obsérve.

Before we go into further detail about the estimation meshaue illustrate our principal empirical
findings in figure 5.1 below. As we noted in the introductionr main empirical finding is that our model
of optimal selling by a rational seller is able to fit the kewtires we observe in the English housing
data, particularly the observed stickiness in list pricEse left hand panel of figure 5.1 plots the optimal
list prices, reservation values and the value functionesponding to the estimated parameters from the
model. The top blue line is the optimal list price, and noticat it is nearly flat as a function of weeks
on the market. The most significant drop in list prices ocininseek 74, when the list price drops from
P =.9819 toP = .7000 (recall that the list price is represented as a ratibeattual list price of the home
in £ to the seller's unobserved financial value of the home). ibwarsion of the model the selling horizon
is assumed to b& = 80 weeks, so the final price cut in the last period, plottedfasther list price cut to
a list price of 0, actually corresponds to withdrawing thenledrom sale in the last period of the model.

The other three solid color lines in the left hand panel ofrighi1 are the seller’s reservation values at
the three stages in the “bargaining process” of our models&®dahat even though list prices are essentially
flat as a function of duration since listing, the reservajoices decline more or less continuously over
time, and their rate of decrease accelerates after a hoadzeka on the market unsold for over one hear.
At this point the price the seller is willing to accept droppidly, falling below 90% of the seller’s estimate

of the financial value, even though the seller maintainsisigtice at slightly above his/her estimate of

17 Recall that we were not successful in using a “semiparamatm step” approach to estimation where we attempted to
estimate a much less restrictive “fully reduced form speaifon” of the sellers’ beliefs via flexible non-parametaicd semi-
parametric methods in the first stage, and then estimatethaining “preference parameters” for the seller in the séctage.
We have speculated that endogeneity issues, particutelgresence of unobserved characteristics of a home thebastated
with arrival rates, bids, and bargaining behavior, to bpoesible for the failure of the semi-parametric two steprapph: so far
we have not been able to determine any way to deal with théeexis of unobserved variables that act as confoundingblasia
in the first stage of the two stage estimation strategy.
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Figure 5.1 Estimated Optimal Selling Strategy

the financial value of the home.

The right hand panel of figure 5.1 illustrates the optimalpiice decision rule in detail in week 2 of
the selling process. The unconstrained optimal list priee the price the seller would choose if there
were no menu costs to changing the list pricePis- 1.0226, i.e. a 2.26% premium above the seller's
estimate of the financial value of the home. However at the time seller first listed the home, the optimal
list price at that point waP = 1.0299, i.e. a nearly 3% markup over the seller's estimate efitrancial
value. What the right hand panel of figure 5.1 shows is thaptbeence of a fixed menu cost creates an
inaction zoneabout the unconstrained optimal list priceR& 1.0226. That is, for any list price that is
sufficiently close to this unconstrained optimal valueh@itabove or below), the gains the seller would
expect from reducing the list price do not exceed the smatitnmst, which we estimate to be less than
K = .00006, or 6 thousandths of 1% of the seller’s financial valugn® home. This would be less than
£12 for a home with a financial value 6200 000.

It follows that since the initial list pric® = 1.0299 lies within this inaction zone after 2 weeks on the
market, in fact the seller will not adjust the list price ineke2, but rather continue to maintain the initial
list price of P = 1.0299. In fact, in simulations of the optimal strategy, itlwibt be optimal for a seller
who has not received any acceptable offers on his/her honegltwe the list price untthe 26th week that
the home is on the markeAt that point gain from reducing the list price from the inity optimal value

of P =1.0299 to the optimal value that prevails in week B6+ 1.0085 is large enough to overcome the
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Figure 5.2 Simulated Outcomes of the Optimal Selling Stratgy

menu cost, and so the seller announces a large, disconsirubin the list price at this time.

Figure 5.2 illustrates the foregoing discussion by plgttiwo simulated realizations of the optimal
selling strategy. In the left hand panel we see that thersaiéentains his/her initial list price for the first
26 weeks, but no offers were received. Then in the 27th weelsétier reduced the list price by just
over 2% and in the 30th week a buyer arrive and made an initladdpual to 83% of the list price, which
the seller rejected. This is illustrated by the red dot inlégfehand panel of figure 5.2. Then the buyer
increased her offer with a bid equal to 86% of the list pricd dre seller rejected this too (illustrated by
the blue square). The buyer then made a final offer of 87.5%epfist price and since this exceeded the
seller’s reservation value 08744 (this latter number is as a ratio of the seller’s findnatue, which is
approximately equal to the list price also at this pointg $eller decided to accept this final counteroffer.
The right hand panel of figure 5.2 illustrates a case wherdler seceives no offers at all until the 60th
week on the market, at which point an offer arrives that exjttad seller’s list price, which the seller had
reduced in the 26th week to a value just slightly higher ttregir financial value. The seller accepted this
first offer immediately, since it substantially exceedesltier reservation value d3320.

The other significant point to notice about the optimal sglistrategy at this point is that the seller’s
reservation valuedeclineat each successive stage of the “bargaining process.” Tdsomewe obtain
this prediction in our model is due to the assumptions ugdeylthe bidding automata that constitute our

model of buyer behavior. Our seller does use all informat@mdetermine the “type” of the buyer based
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on the buyer’s initial bid. Indeed, we presume that the sallgo knows the coefficients of the piecewise
linear bid function used by the buyer and inverts this fumttd determine the buyer’s bid (unless the buyer
bids at the seller’s list price, in which case the seller datpws that the buyer’s valuation is on the flat
segment of the piecewise linear bid function). Howeverahbse of the exogenous probability that a buyer
will walk if the seller rejects the buyer’s previous bid, tiidel tells us that it is optimal for the seller to
lower his/her reservation price when evaluating a new difethe same buyer. The intuition is that the
seller regards the buyer as a “fish nibbling at the bait” andoitild be better to sell now at a somewhat
lower price than to try to be too greedy and risk the chancetitieabuyer would walk if the seller rejected
the buyer’s new offer. If the current buyer leaves, the séh@ws that it could be many weeks before the
next interested buyer arrives who is willing to make an offiethe home.

Before we turn to a discussion of the details about the ettnmand overall fit of the model, it is
useful to illustrate some of the rich implications of our rebfbr some counterfactual parameter values.
Figure 5.3 illustrates the impact on the value function aggkrvation prices if we change the seller’s
beliefs about the rate of arrival of buyers to make the drrizge significantly more sensitive to the list
price than our estimation results indicate are the cases,Tihwa binary logit specification of the arrival
rate, there are four coefficients, a constant t8ggthat governs the overall rate of arrival, a coefficient on
the list priceB,7, and two other dummy variables that are designed to cagterbigher rate of arrival of
buyers in the first 10 weeks that a home is listed for &g and819. Our QMLE parameter estimates
result in an estimated constant termfgf = —2.018 and an estimated coefficient of the list price equal
to B17 = —0.28962. In figure 5.3 below we illustrate how the solution deswhen we change these
coefficients toB;5 = —1.0 and817 = —1.5. The sum of these two coefficients is approximatelg.5,
which is slightly lower than the sum of of the two estimatedfticients, thus implying a somewhat lower
rate of arrival of buyers under the counterfactual of sgttist price aP = 1.

The changes in the optimal selling strategy resulting frbim $eemingly small change in the seller’s
beliefs are striking: while the initial list price is somesttsmaller than the previous (estimated) model
illustrated in figure 5.1 (i.eP = 1.0017 versus® = 1.00299), the optimal solutions diverge dramatically
after the 9th week on the market. In the version of the modereskhe arrival rate is more sensitive to the
list price, the seller reduces the list priceRe= 0.7 in the 9th week and keeps this value in all subsequent
weeks of the selling horizon. We also see an interestingtsita with an “inverted” selling strategy, i.e.

where the seller’s reservation values higherthan the list price. This is an example of anderpricing
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Seller’s List Price, Reservation Values, and Value Function
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Figure 5.3 Optimal Selling Strategy Under Different Arrival Rate Beliefs

strategythat we discussed in the introduction: the seller lowerdigh@rice significantly below the seller’s
belief about the true financial value of the home in order &t tauyers through the door”. Once the buyers
actually come to view the home they are willing to pay morenttiee list price, and this is reflected by the
seller’s reservation price functions, which are not dracadlyy lower than the reservation prices illustrated
in the left hand panel of figure 5.1. Indeed, simulations &f thodel show that the seller expects to earn
96% of the financial value from following this underpricingategy — only slighly lower than what the
seller would expect to earn under the original model usiegetimated arrival rate parameters.

Now that we have a better idea of the types of outcomes thatemsible from the dynamic program-
ming model, we can turn to the details on how we estimated mnkaawn parameters of the model. The
quasi-maximum likelihood estimator (QMLE) was constrddyy writing a likelihood for as many of the
statistically “non-degenerate” components of the modgb@ssible. Letd denote the 26« 1 vector of
unknown parameters that we are interested in estimatingg(tdescribed shortly). The optimal strategy
from the solution to the dynamic programming model resuitan initial list price ratioPy(8) that all
sellers are assumed to list their homes at. In addition, theehresults in a contingent sequence of sub-
sequent list priceB (0|R_1(0),...,Py(0)) that represent the history dependence in list prices grfsom

the presence of a fixed menu cost of changing the list pricdluarated in figure 5.2 and the discussion
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above. The solution to the DP model also results in a sequeinseller reservation valuegR(s,0)},
s=123andt=0,1,..., T — 1, whereT is the selling horizon which we have assumed to be fixed at
T = 80 weeks. Finally, our semi-reduced form model of biddinbaséor results in a stochastic arrival
process of bids according to a non-stationary Markoviainalrate function and probability of walking in
the event a bid is rejected (to be described below), and gtehdition of bids generated from our assumed
beta distribution of buyer valuations and the piecewisedirbidding functions.

Using this solution, it is possible to derive non-degereethstribution for the some components of the
observables from which a likelihood function can be corged. For example, the initial list price has a

lognormal distribution given by the relation

Po = exp{XB+Nno}Po(0), (16)

wherenyg is the normally distributed unobserved component of thkeisglfinancial value of the home,

Fo=exp{XB+no}. If Pyis the actual list price set by the seller (in £), then we cavesequation ??) for

No and use this constructed residual to estimatg(fthe) parameters of the assumed normal distribution

of ng along with the other parametersérin a lognormal likelihood equation for the initial list pés.
However as we noted above, once the initial list price isrdaiteed, the subsequent sequence of list

prices for the home evolve as a deterministic recurrenceioel
P =R(6|R-1(6),....Po(6)) 17)

which is a statistically degenerate model of subsequent @djustment since price declines of certain
magnitudes and at certain durations will have zero protbahif occurring for any given value of the
parameters). This degeneracy can easily result to a “zero likelihoodfgm” whereby even though any
initial list price can be rationalized for some choicerpf many of the subsequent list price values will
be predicted to have zero probability of occurring by our elodVhile it is possible to introduce other
state variables or other unobservables that can resultsiiy@probabilities of price changes of various
sizes and at different durations, it is very difficult to alléor a sufficiently flexible specification without
introducing somed hocelements to the model, and increasing the computationdeburf evaluating the
likelihood.

For example, if we were willing to assume that the seller slesdist prices that are rounded to the
nearest multiple of £1000, and that there were unobservdbjéP)} that were additive components of

the cost of changing the list price to an alternative vdduéhen it would be possible to recast the seller’'s
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problem as a standard dynamic discrete choice problem #vatleen analyzed elsewhere (see, e.g. Rust
(1988)). However besides the fundamental arbitrarineskeoiding what value/procedure the seller uses
to “round” their list prices, the additional unobservab{egP)} ordinarily lead to a high dimensional in-
tegration problem if they are serially correlated over titieve make the standard assumption following
Rust (1988) that these unobservables Idde(both across different list pricd® and over time) extreme
value random variables, then conditionalmthe likelihoodL(Py,...,Pr|6,n0) of observing a sequence
of list prices(Py, ..., Pr,) in weekT; by selleri is a product of multinomial logit conditional choice prob-
abilities that take the form of discrete Markov transitiawlpabilitiesTi(P; |P,_1,0,n0) that the seller will
set a list price of} in weekt conditional on setting a list price &, in the previous week and conditional
on the unobservable component of the seller’'s financialeyvajy. Thus to compute the likelihood for a
single seller, we would need to integrate this likelihoodhwispect to the normal density fgg, i.e. we
compute the unconditional likelihood as

foo

L(Po,Pr,...,Pr|0) :/ L(Po,Px1,...,Pr|68,n0)f(no)dno = L(Po,Py,...,Pr|6,u+02)@(2)dz  (18)

—00

where@is the standard normal density.

While this approach can be used to deal with statistical miegeies in the dynamics of list prices, there
are still other places where statistical degeneracies arithis model. For example, while the distribution
of the first offer submitted by a bidder is statistically ndegenerate, as it can be derived from the beta
distribution of buyer valuations (which is an unobservabl¢ghe econometrician) and the piecewise linear
bidding strategy that we assume buyers use — see equafibn{the subsequent offers made by a bidder
are predicted to be a deterministic function conditionaktmn first offer, and thus this model will result
in zero likelihood problems if we attempt to write a full likeood function for all parts of the data we
observe.

Thus, rather than attempt to introduce artificial devicetryao produce a full, statistically nonde-
generate likelihood function, we opted to use a “quasi” mmann likelihood approach, where the “quasi’
denotes the use @d hoc“measurement error” assumptions (assumptions that we ticeally believe
because we do not believe there is any significant measutesrren in our data), to derive a likelihood.
Thus, if we assume that subsequent list prices are conttedibg additive, normally distributed measure-
ment errors, it is possible to write a likelihood for the emequence of list prices, and components of this

likelihood after the (legitimate) likelihood for the irgili list price can also be interpreted as a non-linear
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least squares approach where we try to find valudstbat minimize the squared deviations between the
actual list prices and the ones predicted by our model.

Similarly we can include additive normally distributed raeeement error to the subsequent bids after
the initial rejected bid to generate binomial probit comgatis that describe the probability a seller will
accept or reject a sequence of bids from a buyer in any givéahmahe alternative interpretation is that
this probit is just a device for smoothing out a (degeneradiLator function that predicts that any bid in
excess of the seller’s reservation value will be acceptel priobability 1 and any bid that is less than the
reservation value will be rejected with probability 1.

We will not go into further details and take the space to distuarite down the quasi maximum
likelihood function in all of its (gory) detail, but sufficé to say if one was willing to assume that there
was measurment error in the list prices and bids, that thasiquaximum likelihood would be a legitimate
and nondegenerate full likelihood function under thesemgsions about measurement error.

It is useful to describe the functional forms for the arripabbabilities and the probabilities that a

buyer will walk if a previous offer was rejected. The arripabbabilities are given by

M(Pdk) = exp(B16+ 017P + 6151 {2 <t <5} + 619l {6 < 6 < 10}) (19)
B T 1 exp(B16+ B17P + 818l {2 <t < 5} + 010l {6 < 6 < 10})

Similarly the probability of walking is also specified as aduinial logit model involving 6 coefficients
(021,...,026) Where, for example, the stage 1 probability of walking (tree probability the buyer leaves

after the seller rejects the buyer’s first offer) is given by

~exp(B21+ 022(01/P))
(0L P ) = 1 exp(Ba1+ 822(01/P)) .

The expressions foe, (02, P,d;) and w(Os,P,d;) are the same as above, but involve the coefficients
(B23,024) and (025, 026), respectively.

The first 15 parameters of the mod@y, ...,015) are used to specify the piece-wise linear model of
bidding described in section 3. Due to the concerns aboutifamtion, we did not attempt to estimate
the parameters of the beta distribution of buyer valuatidds assumed that this distribution had support
[v,V] = [.85,1.8] (recall these values are ratios of the financial value of tmad) sov = 1.8 indicates a
buyer whose private valuation of the home i8 times its financial value), and the, b) parameters of
the beta distribution arga, b) = (4.5,12.0), resulting in the distribution of valuations displayed lire teft
hand panel of figure 4.3.
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Recalling the discussion in section 4, we can write the pwesselinear bid functions as functions of

the parameter vectdras follows

rs(p) = r15(8)(1-v(p)) +T1s(O)y(p)

ks(p) = Kks(8)(1—Y(p))+ks(B)Y(P) (21)
where
VP = o, 22)

ands denotes thell stage of the bargaining subganser 1,2,3. Thus,ris(p) is the bid ratio (the ratio
of the buyer’s valuatiow that the bidder is willing to bid) in the first linear segmefttwe bid function in
stages of the bargaining subgame. Similark(p) is the length of the flat segment of the bid function at
the list price. This determines the probability that thedauyill submit a bid equal to the list price. The

final segment of the bid function iss(p). We assume that this is given by

ras(p) =Tas(8)ris(p), (23)

so only three additional coefficien{s,1,T22,T23) to specify the upper linear segment of the bid functions
corresponding to bids in excess of the list price.

Thus, there are a total of 15 coefficients required to spehiypiecewise linear bid functions: the 6
coefficients(r5(8),T1s(0)), s= 1,2,3 determining the first linear segment of the bid functionewehe
list price, the 6 coefficientgk (8),ks(8)), s= 1,2,3 determining the length of the flat segments corre-
sponding to bids equal to th list price, and the 3 remainitig tarms(T»s(0)), s= 1,2,3 determining the
slope of the positively sloped component of the bid funcfmmbids above the list price.

We found if we tried to estimate these 15 coefficients diyetrtl an unrestricted QMLE or SMD
estimation algorithm, the algorithm would quicky produialtvalues for these parameters that would fail
some basic monotonicity conditions to ensure that the badtfans are not downward sloping, that the
bids at the lowest list price dominate the bids at the higligsprice, and that the bid functions at higher
stages of the bidding process dominate bid functions atrieteges (this latter requirement ensures that
the sequence of counteroffers submitted by a buyer arecilysincreasing sequence, with the exception
of possible ties at the list price).

The following equations describe a 1 : 1 mapping betwR¥rand a restricted subset &> where the

above constraints are all satisfied with probability 1:
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8, = log(1/ry;—1)

(
0, = log((1—ry1)/(riz—ra1)— 1)
B3 = 109((1—ry5)/(ri3—ryp) —1)
8, = log(ry;/f11—1)
05 = log((r1z—T11)/(T2—T11) — 1)
B = log((r13—T12)/(Ti3—T12) — 1)
87 = log(l/ky;—1)
Bs = 109((1—Ki1)/(kio—Ki1) —1) (24)
By = 109((1—Kkip)/(kiz—Kio) —1)
810 = log(kyy/ki1—1)
811 = log((kyp,—ki1)/(kiz—ki1) —1)
812 = log((kyz—ki2)/(kiz—ki2) —1)
013 = log(1/rp;—1)
B1a = l0g((1—r21)/(rp—121) —1)
B15 = l0g((1—r2p)/(r3—1r20) —1)

Using this mapping, we can conduct an unrestricted pararseggch ove(0s,...,015) and rest assured
that the implied coefficients of the piecewise linear biddtions will obey the requisite monotonicity con-
ditions. It is essentially a clever way of imposing ineqiyationstraints that avoids the use of constrained
optimization algorithms, which are typically less effidiemd less reliable optimizers than unconstrained
optimization algorithms.

In summary, coefficient&,, ..., 0:5) are the parameters specifying the seller’'s beliefs abeypitce-
wise linear bid functions used by bidders. Coefficieffiss,...,019) are the parameters specifying the
sellers’s beliefs about the arrival probability of buyemsd parameteréd,;,...,0,6) are the parameters
specifying the seller’s beliefs about the probability a dauyill walk at each stage of the bargaining sub-
game if the buyer’s previous offer was rejected.

The remaining parameter of the modekis= exp{620}, the fixed menu cost of changing the list price.
The remaining parameters of the seller's problem have bred.fiWe assumed that the seller’'s subjective
discount factor i§ = 1, corresponding to a 0% annualized subjective interest aaid we assumed that the
seller’s beliefs about the distribution of buyer valuaiaa the time invariant beta distribution discussed
above and presented in the left hand panel of figure 4.3. litiaddwe fixed several other parameters

that relate to the continuation value of withdrawing the lednom the market and the weekly holding cost
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functionh (P, d;) given in equation??). As per our previous discussion about the difficulty of itfgmg
the continuation value given that none of the 780 sellersuingample withdrew their homes from the
market (i.e. all were eventually successful in sellingtihemes), we simply assumed tisit(P, d;) = .2,
i.e. the continuation value is 20% of the seller’'s estimdtiéhe financial value of the home. We assumed

that the holding cost was a simple linear increasing funotibduration on the market

he(P,ck) = ho(1—w(t)) +hrw(t), (25)

wherew(t) =t/T andt is number of weeks the home has been on the market. In thesgsakented
here, we assumed thla§ = .007 andhr = .008, so that the weekly hassle costs of having a home listed
for sale start at @ percent and increase to80of the financial value of the home. Thus for a home with
a financial value of £100,000, this holding cost starts atO£@ér week and increases to £800. These
numbers may seem relatively high, but we found that the isoisitof the model were relatively insensitive
to the particular values we used. However in the next seat®will show how the solution to the seller's
problem changes for desperate sellei.e. one for whom the weekly holding costs are substantially
higher than what we assumed here. The main effect of lowehagveekly holding costs in a uniform
(i.e. parallel) way is to make the seller slightly more aggiee in the list prices he/she sets, and in the
reservation values. In effect, the holding costs are anatlg to reflect an “impatient seller” and when
the seller is quite impatient (i.e. has high holding cost®),seller prices less aggressively and is willing to
accept lower offers in order to sell the home more quickly avald having the selling proceeds consumed
by the holding costs.

The only other parameters in our model are the fixed and Var@ists associated with selling the
home, mainly due to real estate fees and other closing cbhtsreal estate commissions charged by the
British real estate agency we are studying are admirablydpw).S. standards, the commission rate is
only 1.8% of the sale price of the home. We assume that theeardmmission is paid by the seller but the
buyer pays for all other fixed selling expenses associatddthe final closing, including the seller’s legal
fees and taxes. Thus, we used the following specificatiothionet sale proceeds from selling the home
as a function of the accepted offer

Ny (O) = .982+ 0. (26)

Table 5.1 presents the QMLE parameter estimates. We do es¢qtr standard errors because due to

lack of smoothness in the QMLE objective function (discdselow) we are not sure that we have truly
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Table 5.1 Parameter Estimates of the Seller Model

Parameter Description QMLE Estimate SMD Estimate
01 riq 0.944 0899
0, I 0.964 Q933
03 i3 0.969 Q944
04 T11 0.601 Q567
05 T2 0.635 Q610
05 T13 0.707 0687
07 kiq 0.104 Q086
O3 Kio 0.120 Q104
B9 ki3 0.138 Q122
010 K11 0.052 Q042
011 k12 0.068 Q057
012 ki3 0.076 Q065
613 s 0.755 Q759
014 [ 0.805 0808
015 I3 0.867 0868
B16 arrival constant —-2.018 —-1.981
017 list price coefficient —0.289 —0.296
015 coefficient ofl {1 <t <5} 0.449 Q461
B19 coefficient ofl {6 <t < 10} 0.212 Q400
620 K (menu cost) (0006 000004
021 walk prob constanfs= 1) -3.771 —3.918
622 walk prob offer coeff(s= 1) 2.729 2800
023 walk prob constanfs = 2) —4.965 -5.121
024 walk prob offer coeff(s = 2) 4.310 4454
025 walk prob constanfs = 3) —5.274 -541
026 walk prob offer coeff(s= 3) 6.110 6369

maximized the likelihood function and we do not trust theliianal asymptotic approximations based on

taking numerical derivatives of the QMLE objective functivith respective the parameters in order to

compute a numerical Hessian and information matrix. Thedstal “sandwich formula” involving these

objects is the misspecification consistent estimator ofathymptotic covariance matrix of the QMLE

parameter estimates, see White (1982).

The simulated minimum distance estimator (SMD), sometiatgs referred to as a “simulated method

of moments estimator”, estimat@sy minimizing a distance function constructed as quadfatin be-

tween anN x 1 vector of moments about housing transactions that we lactiaserve in the English

housing data, call thim, and a conformabl®l x 1 vector of simulated moments, call thig(8), formed

by creating an artificial data set with the same set of 780 Isom#h the same set of observable charac-
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teristics X and same hedonic values X3} (where thef coefficients are computed from a first stage
regression using the data, independent of the housing mduelsimulatedS times and the individual
moments from eachHD simulation are averaged to form the vector of simulated nmisTag(6). Then
the SMD criterion is

8 = argminm— mg(8)]'W[m— mg(0)] (27)

whereW is anN x N positive definite weighting matrix. The results we reporntehare based on a diagonal
weighting matrix so the SMD criterion is equivalent to a foofnweighted nonlinear least squares. We
chose the weights so that the moments we consider the mosttempto try to match are given precedence.

The SMD and QMLE constitute different statistical objeetiunctions so it should not be surprising
that each results in somewhat different parameter estimbteheory, if the model was correctly specified
and if the global optimum of each of these criteria were olgtdj then asymptotically the two different
sets of parameter estimates should converge to the samg gguof parameter valu€s. However more
realistically our model is likely to be misspecified in imfant respects and parameters that maximize the
QMLE criterion are not necessarily close to the ones thaimae the SMD criterion. Further, as we
discuss below, both of these objective functions are gaigggd functions of the parameters, and while
we tried diligently to search the 26 dimensional paramgiacs to ensure that the parameter estimates we
report in Table 5.1 are global and not just not local optimsizeve cannot provide any guarantee that this
is the case.

Despite these caveats, it is reassuring that the two setarahyeters are not far from each other.
This is an independent check on the validity of each of thamagion criteria, since data problems or
programming errors can easily result in problems in thessitzal objective functions that can distort the
parameter estimates. The SMD criterion is based on a totdl-ef286 individual moments. We do not
have space here to list all of these moments. A subset of tieemis that we used are reported in table 5.2
below, along with the weights we used for each moment. Inékalts presented in tables 5.1 and 5.2 we
used equal weights of 1 for & = 286 moments.

While the SMD and QMLE parameter estimates are not drantigtiddferent from each other in
table 5.1, small changes in the parameters can result Iy g changes in the objective function value.
In part this reflects the lack of smoothness in the estimatrdaaria. For example, we used the converged
value of the QMLE estimates in the first column of table 5.1h&sstarting values for the SMD estimator.

The value of the SMD criterion at the QMLE parameter estimatas 657836 but the final value that the
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Nelder Mead (nonsmooth) optimizer located results in @&gadh value of 379476. Thus, the algorithm
found substantial improvements in the objective functigrthanging certain components @fn order to
better fit certain moments in our list bf = 286 “moments of interest.”

Table 5.2 compares a selected subset of 44 of the univeie-@86 moments that we used to estimate
the parameters of the seller's model by SMD. The reader dhioust that we have not “cherry picked”
moments that are most favorable to our model, and a tabletimpares the entire set of 286 moments
is available on request. What table 5.2 shows is that the huagitures a broad array of features in the
London housing data, not just the stickiness of list pric&srting with the first moment in table 5.2, we
see that (as promised in section 3) the SMD parameter essrdatsatisfy the “rationality constraint” that
the seller’s financial value is an unbiased expectation@ftttimate selling price. The moment compares
the mean of the ratios of the actual sale price for each of@8dhduses sold to the hedonic price €Xf}

(in the Actual Value column) to the mean of the same ratio flohD simulations of the model with the
same 780 houses and the same hedonic values, but with theedige being that the simulated transaction
price is generated from our model. We see that the actual miohas a mean of nearly 100%, which is
to be expected given that the hedonic value is by constru@iounbiased predictor of the actual sales
price. The fact that the simulated moment is also equal taitates that the rationality constraint, i.e.
that the financial value is a conditional expectation of ttkia sales prices, does hold in our model. To
see this recall that the financial value is givenfby= exp{ X+ no} whereng constitutes unobservables
characteristics of the home. Recall that we assumgeid be normal with meap and standard deviation
o, but we constrainegl such that for any value af, the mean of the lognormally distributed random
variable exgno} is 1. This implies that if the hedonic price component of thaficial value expXp} is

an unbiased predictor of the sales price of the home, therilldbefinancial valug= = exp{XB+no}. We
regard the fact that the best fitting parameter estimate®rizatically” enforce the rationality constraint
(without us having to impose it) is further evidence in fawbhypothesis that the selling behavior that we
observe in the English housing data can be well approximagearimodel of rational sellers.

The second row of table 5.2 compares the standard deviatithre gatio of sale price to the hedonic
value and the fact that these standard deviations are d@swther way of saying that the model captures
the overall dispersion of sales prices, not just the meamevaln fact the model provides an extremely
accurate approximation of thieitial distribution of list prices in addition to the final sales price.

Rows 3-6 of table 5.2 show that the model does a good job ofidagtthe price stickiness: it closely

45



matches the fraction of sales which involved no list pricarges and 1 list price change. The model
slightly overpredicts the fraction of homes that have 2 orenist price changes, but this can be improved
by increasing the size of the menu cost slightly. Note froble®.1 that the SMD estimate of the menu
cost of changing list prices i = 0.00004, which is only 23 of the QMLE estimate of this value.

Rows 7-9 of table 5.2 show that the model does not do quite #snsterms of matching the fraction
of accepted offers equal to, below, and above the list pritke model predicts that 26% of all sales
should be at the list price, which is higher than the 15% vakeeobserve in the English housing data.
The model underpredicts the number of transactions thairdmiow the list price (64% versus 81%) and
it underpredicts the fraction of sales that occur above iteptice (4% versus 10%). We believe these
predictions can be improved with modest changes to the pesvalues that shift the distribution of bids
by buyers, and also the reservation prices charged by sefBarerall, we think the model is generally in
the “ballpark” of what we observe in the data, however.

Rows 11-14 of table 5.2 show that the simple binomial logitdeiaf arrival rates provides a good
overall approximation to the number of matches (i.e. offende on homes. The mean number of
matches in the simulated data44, is just modestly higher than the mean number of matchesbaerve
in the data, 134. Rows 16-18 show that the model also generally approeisnidie non-stationary pattern
of arrival rates, with a significantly higher arrival raternftches in weeks 2-5 and 6-10.

Rows 19-27 show that the model provides a reasonably godalicion of the mean duration to sale
and the survival function of unsold homes at various dunatiafter the initial listing. In general, the
survival function from the model is slightly higher than wieserve in the data, and this higher survival
function implies a higher duration to sale in the model (12k& compared to what we observe in the data
(10 weeks). Again, we believe it is possible to improve thefithe model by small adjustments to the
parameters that result in a faster rate of decline in therselleservation prices relative to bids made by
buyers. The equal weighting of &ll= 286 moments in our initial SMD estimates in table 5.1 placedan
importance on fitting moments we consider less important thaments in rows 19-27, so by increasing
the weights on these moments (and other moments in table &.@onsider especially important), we
expect a revised version of the SMD estimates will resuluipstantially better fits than we report here.

Rows 28-30 of table 5.2 show that while the model does acelyrapproximate the mean time to the
first match, it substantially overpredicts the mean durgtito the 2nd and 3rd matches. This could be a

sign of “clustering” in matches that our model does not autfyeaccount for. Recall that our formulation
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of the seller model allows the duration since last offeto be a state variable in the model. We did not
actually use this state variable in the version of the mogj@brted here. By including this duration we can
capture the clustering phenomenon by allowing the offévarrates to be elevated in the weeks following
a previous match. This would enable the model to better axppede the mean times to a 2nd and 3rd
match.

Rows 31-34 of table 5.2 show that the model is generally abliaick the dynamics of list price
markups and reductions as a function of duration on the maiKee model predicts a somewhat lower
initial markup of the list price over the hedonic value thaa wbserve in the data .4 versus 15),
but both the simulated and actual trajectories provide tititianal evidence of list price stickiness, and
confirm the model’s ability to capture this key feature of tlaea.

Rows 35-39 show that our piecewise linear model of biddingalr and the assumed beta distribu-
tion of buyer valuations provide a good approximation taliid behavior. The mean ratio of the first offer
to the list price in the data is 94% versus 93% in our model. Mibeel overpredicts the fraction of first
bids equal to the list price (16% versus 10%), but this carebgedied by reducing the length of the flat
segment of the bidding function at the list price. Conversgleé model somewhat underpredicts the frac-
tion of first offers that are below the list price and overpceithe fraction of first offers that are above the
list price. Further experimentation with the parameterthefbeta distribution of buyer valuations (which
is currently fixed at the initial values we guessed as digmiabove) should result in a substantially better
fit. Row 39 shows that the model predicts that only 27% of adit foffers are accepted whereas in the
data we see that nearly 42% of first offers are accepted. Vilvbehat this is another sign that the seller
reservation prices are currently somewhat too high andidHall off at a faster rate with duration on the
market. We know how to fix this issue too, mainly by adjusting urrently fixed) initial guess for the
holding cost functiori (d).

Rows 40-44 present the same comparison, but for the secterd.dofVe see a rather closer correspon-
dence between the model and the data here, except that thel owaat predicts the fraction of second
offers that are above the list price. This can be fixed by #digghe estimates of how buyers adjust
their counteroffers in successive stages of the bargasibgame. The current estimates suggest that our
model has buyers being somewhat too aggressive in imprdk@igcounteroffer in response to an initial

rejection by the seller.
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6 Implications of the Model

Not yet written up: to be presented in the seminar

7 Conclusions

Not yet written up: to be presented in the seminar
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Table 5.2 Actual and Simulated Moments

Moment Actual Value Simulated Value

1 mean sale price/hedonic price ratio .B9 1005
2 standard deviation of sale price/hedonic price ratio .929 312
3 % of homes with no list price changes 37 764
4 % of homes with 1 list price change 20 202
5 % of homes with 2 list price changes 91 29
6 % of homes with 3+ list price changes 00 05
7 % of accepted offers equal to list price 25 26
8 % of accepted offers below list price 80 636
9 % of accepted offers above list price 40 4.0
10 % of homes never sold ® 0.07
11 % of homes with no matches 00) 0.0
12 % of homes with 1 match 76 726
13 % of homes with 2 matches T4 212
14 % of homes with 3+ matches 45 6.2
15 Mean number of matches a4 134
16 Prob of match in week 1 1D 9.2
17 Prob of match in weeks 2-5 B 137
18 Prob of match in weeks 6-10 13 128
19 Mean duration to sale (weeks) 20 120
20 % of homes unsold after 2 weeks 92 941
21 % of homes unsold after 4 weeks .g1 778
22 % of homes unsold after 8 weeks .84 517
23 % of homes unsold after 10 weeks .236 428
24 % of homes unsold after 15 weeks .22 288
25 % of homes unsold after 20 weeks 44 202
26 % of homes unsold after 26 weeks .40 122
27 % of homes unsold after 40 weeks .82 36
28 Mean time to first match .8 8.7
29 Mean time to second match 54 9.2
30 Mean time to third match A 100
31 Mean list/hedonic price ratio at list 106 1035
32 Mean list/hedonic price ratio at week 5 1P5 1035
33 Mean list/hedonic price ratio at week 10 w4 1034
34 Mean list/hedonic price ratio at week 20 ®1 1022
35 Mean first offer/list price 90 934
36 % of first offers equal to list 10 159
37 % of first offers below list 82 764
38 % of first offers above list B 7.6
39 % of first offers accepted 5 270
40 Mean second offer/list price 455} 940
41 % of second offers equal to list .67 5.8
42 % of second offers below list aB 850
43 % of second offers above list 8 91
44 % of second offers accepted B4 597
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