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1 Introduction

Survey sampling is principally conducted to gather complete information on all sampling units.

Due to a variety of reasons, nonresponse is an unfortunate but endemic feature of sample surveys.

Indeed, many surveys now incorporate categories for nonresponse.1 For a fraction of the subjects

either no data at all are available or information on one or more variables is missing. Indeed,

some sampling units may simply refuse to participate at all in the study or answer the questionaire

incompletely. The interviewer may not be able to contact all the sampling units or fails to ask all

questions. Some questionnaires or parts thereof may be destroyed in data processing. Conversely,

there are also cases where the presence of missing values is a deliberate part of the sampling

process. In variable probability sampling, for example, an observation is randomly drawn from

the population and the stratum to which it belongs is identi�ed, the observation being retained

in the sample with a probability de�ned by the agent who collects the sample.2 Because the

latter sampling scheme deliberately generates incomplete data, the mechanism which governs the

missingness pattern is known. In the former situation, which is the subject of this paper, in

contradistinction, nothing is generally known about the missingness mechanism as data is missing

for reasons beyond the control of the researcher.

In econometrics, nonresponse has been addressed in the extensive literature on sample selection

pioneered by Heckman (1976) and also in the context of panel data studies, where often some

sampling units will drop out after participating in the initial waves of the survey; see, for example,

Ridder (1990), Fitzgerald, Gottschalk and Mo�tt (1998) and Hirano, Imbens, Ridder and Rubin

(2001). In contrast, Horowitz and Manski (1995, 1998, 2001) provide a general discussion of

nonparametric identi�cation for regression with missing data on either (both) the variable of interest

or (and) the covariates. An enormous statistical literature has also been developed to address the

issue of nonresponse; see inter alia Little and Rubin (2002) and Schafer (1997). The recent issues,

Part 4, 2005, and Part 3, 2006, of Journal of the Royal Statistical Society Series A (Statistics in

Society) present a number of studies of statistical and econometric interest in which nonresponse

features importantly. Texts, see, e.g., Cameron and Trivedi (2005) and Wooldridge (2009), devote

sections to consideration of missingness. Two forms of missing data are commonly distinguished:

unit nonresponse (UNR), where for some sampling units no data at all is available, and item

nonresponse (INR), where only part of the information is missing. For the former class, much of

the literature suggests the use of weighting adjustments, which involve the assignment of weights

to respondents to compensate for their systematic di�erences relative to nonrespondents. For the

latter form of nonresponse, many papers propose imputation inference procedures in which the

1The Canadian Out-of-Employment Panel Survey allows \Refuse" or \Don't know" as responses in all questions.
The British Household Panel Survey records \missing or wild", \inapplicable" or \not answered" for some income
related questions.

2Moreover, the statistical literature often deals with two-stage sampling designs where in a �rst stage the main
sample is collected and in a second stage further variables, more expensive and/or di�cult to collect, are obtained
but only for a subset of the survey participants.
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missing values are �lled in to produce complete data sets.

Many empirical studies, however, do not adopt either of these approaches or that taken in this

paper, simply discarding all sampling units with missing values and employing the usual inference

procedures associated with random sampling. This practice may seriously bias results when the

characteristics of respondents and nonrespondents di�er systematically. This nonignorable nature

of nonresponse arises because the rate of response may di�er across the possible values taken by

the dependent variable, i.e., the missing data mechanism is endogenous. Therefore, the observed

data provides a distorted picture of the features of the underlying population of interest.

This paper proposes a uni�ed likelihood-based approach for parametric discrete choice models

with missing data in a cross-section context. We address a general formulation of missing data

which encompasses both INR and UNR, situations where, due to the nature of some of the ques-

tions contained in the survey, some sample units either omit the answer to particular questions or

refuse to participate in the survey at all. In addition, we allow for the availability of an independent

supplementary random sample (SRS) on the covariates. Such information might naturally arise

from census data; see, e.g., Cosslett (1981a), Lancaster and Imbens (1996) and Hellerstein and Im-

bens (1999). Analysis focusses on this general set-up, which may then be specialized for particular

missingness schemes including pure INR and UNR and the absence of a SRS. The model appro-

priate for the available data necessarily becomes an involved function of the underlying structural

model for discrete choice and the missing data mechanism. An additional complication typically

arises since conditional maximum likelihood estimation is no longer e�cient in the presence of

nonresponse.

Our approach is semi-parametric. Incomplete data patterns are underpinned by (unknown)

missing data mechanisms which are assumed to be completely determined by the discrete outcome

variable, i.e., nonresponse is conditionally independent of covariates given the outcome variable.

This speci�cation for nonresponse may not be unreasonable in situations where outcomes are asso-

ciated with social stigma or related to income or wealth and may be of relevance in situations when

the outcome variable is latent and only partially observed as illustrated in the simulation section of

this paper. Thus, because of the discrete nature of the outcome variable, the probabilities de�ning

nonresponse do not require a priori knowledge, but rather are treated as additional parameters to

be estimated.3 To achieve an economy of notation, the main part of the text con�nes attention

to this formulation. Appropriate modi�cations are described which enable this assumption to be

relaxed straightforwardly to permit a degree of discrete dependence on covariates, a formulation

which is of especial relevance and interest if some covariates are also discrete. Our approach has the

particular advantage that all patterns of missingness may be subsumed in our framework albeit at

the expense of a loss of e�ciency in circumstances when covariates may only be partially observed.

The distribution of the covariates is handled nonparametrically by regarding covariates as discrete,

a treatment which parallels that of empirical likelihood and related methods with the covariate dis-

crete probabilities consequently concentrated out on application of maximum likelihood; see inter

3An alternative approach would speci�y response probabilities parametrically but with the attendant potential
for functional form misspeci�cation.
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alia Owen (2001), Smith (1997, 2001), Newey and Smith (2004) and the references therein. This

approach is also adopted in the choice-based (CB) sampling literature, i.e., where covariates are

sampled randomly conditional on discrete choice outcomes; see inter alia Cosslett (1981a, 1981b,

1993, 1997) and Imbens (1992). Indeed, central to our analysis is a recognition of the similarity

between nonresponse and CB samples. Consequently, all of the aforementioned incomplete data

patterns may be formulated as modi�cations of CB sampling. Therefore, application of maximum

likelihood (ML) in our context is semi-parametrically e�cient and may be regarded as an adap-

tation and extension of Imbens' (1992) e�cient generalized method of moments (GMM) approach

for CB sampling; see also Cosslett (1981a, 1981b).4

This paper is organized as follows. Section 2 formalizes the model speci�cation for the missing

data problems of interest. Section 3 details the observed data likelihoods. GMM estimators are

developed and their large sample properties presented in section 4. Speci�cation tests are described

in section 5. Extensions to our basic framework are considered in section 6. Section 7 reports some

simulation evidence on the performance of some of the proposed estimators based on an application

where nonresponse has been considered to be a potentially serious problem. Finally, section 8

concludes. Some technical details are relegated to Appendices A and B. Appendix C details how

the missingness mechanism employed in the main body of the paper may be weakened to permit a

discrete dependence on covariates.

2 Model Speci�cation

2.1 Some Notation

Of central concern is the population conditional distribution of the discrete outcome variable Y

which takes values in the set Y = f1; :::; Cg of C mutually exclusive alternatives given the vector

of covariates X with sample space X . The random variable Y and vector X are de�ned on Y �X
with population joint density function

f(y; x; �) = Pfyjx; �gfX(x); (2.1)

where the discrete probability Pf�j�; �g is known up to the p-dimensional parameter vector �. The
marginal density function fX(�) for X is unknown and does not depend on �. Hence, in the absence

of nonresponse, e�cient estimation of and inference for � would be based on the conditional density

Pfyjx; �g. Where there is no loss of clarity, we suppress the dependence on � of (2.1) and other
joint density functions. The superscript 0 is used to denote true values of parameters.

The population marginal probability of observing Y = y is

Qy = PfY = yg

=

Z
X
Pfyjx; �gfX(x)dx; (2.2)

4Subsequent to the preparation of earlier versions and the �rst submission [Ramalho and Smith (2003)] of this
paper, we became aware of Tang et al. (2003), which adopts a similar formulation for the missing data mechanism.
However, Tang et al. (2003) for the discrete choice setting considered here is UNR and is thus a special case of our
approach being expressed directly as CB sampling; see, e.g., Cosslett (1981a, b), Imbens (1992) and section 6.1.
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where 0 < Qy < 1, y 2 Y, and
P
v2Y Qv = 1. Auxiliary information on the probabilities Qy, y 2 Y,

may be available or they may in fact be known, e.g., from a large random sample like a census.

In the former circumstance, this information is incorporated as in the data combination literature,

e.g., Imbens and Lancaster (1994), whereas in the latter case it is treated as exact similarly to the

choice-based sampling literature, e.g., Manski and Lerman (1977), Imbens (1992) and Wooldridge

(1999, 2001). Cf. section 6.2.

2.2 Survey Sampling Structure

The survey objective is to collect a random sample of size N of complete observations on Y and

X. Suppose, however, that only some sampling units provide all the information requested. These

respective samples are designated the initial (or incomplete) and complete samples. Let n denote

the number of sampling units which provide information on Y .

Assumption 2.1 (Initial Sample.) The initial sample is a random sample of size N .

The sample size N is always known for pure INR, since either Y or X are measured for all units.

Although the number of unit nonrespondents and, thus, N may not be known to the econometrician,

our exposition assumes this knowledge since the analysis is straightforwardly adapted for situations

when N is unknown; see section 6.1.5

We additionally assume that an independent supplementary random sample (SRS) of observa-

tions of size m on X is drawn from the population of interest.

Assumption 2.2 (Supplementary Random Sample (SRS).) The SRS of observations of size m on

X is independent of the initial sample.

Let the binary indicator S take value 1 when the sampling unit belongs to the supplementary

data set and 0 otherwise. Also de�ne Nm = N +m and nm = n+m. We assume a SRS is always

available. If unavailable, the analysis may be adapted by suitably rede�ning all probabilities given

below, suppressing S = 0 and replacing Nm by N . Alternative Y = y is chosen by Ny individuals,

of whom only ny provide information on Y . Hence, N =
P
v2Y Nv and n =

P
v2Y nv. As all

incomplete data problems considered here involve missing data on Y , we always observe ny, n and

m but never Ny, y 2 Y.

2.3 Missing Data Mechanism

De�ne the binary indicators

IY =

�
1 if Y is observed
0 otherwise

and IX =

�
1 if X is observed
0 otherwise

:

5Information on N improves inference for the parameters of interest; cf. (3.2) and section 6.1 below. See Li
and Qin (1998) for a discussion of several examples of biased data where such information improves semiparametric
likelihood-based inference.
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Respondent units correspond to the event fIY = 1; IX = 1g whereas INR and UNR are associated
with fIY = 1; IX = 0g [INR(y)], fIY = 0; IX = 1g [INR(x)] and fIY = 0; IX = 0g [UNR]
respectively. This descriptive scheme for nonresponse is quite general. Albeit at the expense of a

loss of information, sampling units that provide Y and partial information on X may be treated

as INR(y) whereas those that provide partial information on X only are treated as UNR.

Conditional independence assumptions are a critical aspect of our analysis and permit a semi-

parametric analytical framework to be adopted. Assumptions of this type are quite familiar in

econometrics and are a common feature of the treatment e�ects and nonclassical measurement er-

ror literatures; see, e.g., Imbens (2004) and Hu and Schennach (2008). These assumptions, adopted

to incorporate general forms of missingness into our analysis, may be relaxed if certain categories of

nonresponse are ignored as described below. The nonresponse mechanism is primarily determined

by Y which may be empirically reasonable when outcomes are associated with social stigma or

related to income or wealth and is of relevance in situations when the outcome variable is latent

and only partially observed, see, e.g., section 7.1. Appendix C details how a discrete dependence on

covariates may be incorporated. To achieve an economy of notation, however, we con�ne attention

in the main part of the text to missingness mechanisms determined purely in terms of Y .

Assumption 2.3 (Conditional Probability of Observing Y .) Observation of Y is conditionally

independent of X given Y ; i.e.,

Py = PfIY = 1jY = y;X = xg (2.3)

= PfIY = 1jY = yg;

where 0 < Py < 1, y 2 Y, x 2 X .

In all cases, we assume that 0 < Py < 1. If Py = 0, alternative Y = y would never be observed. If,

on the other hand, Py = 1, then there would be no missing values among units with Y = y.
6

Assumption 2.4 (Conditional Probability of Observing X.) Observation of X is conditionally

independent of X given Y and IY = 1 and of X and Y given IY = 0; i.e.,

Gy = PfIX = 1jIY = 1; Y = y;X = xg (2.4)

= PfIX = 1jIY = 1; Y = yg;
GX = PfIX = 1jIY = 0; Y = y;X = xg (2.5)

= PfIX = 1jIY = 0g;

where 0 < Gy � 1, 0 � GX � 1, y 2 Y, x 2 X .

In cases when Gy = 1 X is observed for all units that reveal Y and if in addition GX = 1 INR(x)

obtains whereas Gy = 0 and G
X = 0 yields pure UNR.

6Identi�cation necessitates the conditional independence of IX also from Y given IY = 0 in (2.5).
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Figure 1 presents the missingness mechanism structure in the absence of a SRS and summarises

the probabilities for the di�erent missingness categories together with the attendant sample sizes

de�ned above together with nyx =
PNm
i=1(1� si)i

Y
i i
X
i I(yi = y), n

nr
x =

PNm
i=1(1� si)(1� i

Y
i )i

X
i , and

nu =
PNm
i=1(1�si)(1�i

Y
i )(1�iXi ) denoting respectively the numbers of y-respondents which provide

information on X, INR(x) units, and UNR units. The event hierarchy adopted in Assumptions

2.3 and 2.4 and illustrated in Figure 1 is general, other possible structures being observationally

equivalent.

Figure 1 about here

By Assumptions 2.2 and 2.3, PfIY = 1jY = y;X = x; S = 0g = PfIY = 1jY = yg = Py.

Furthermore, from Assumptions 2.2, 2.3, and 2.4, PfIY = 1; IX = 1jY = y;X = x; S = 0g = PyGy
etc., i.e., conditional probabilities of observing respondent, INR(y), INR(x) or UNR units given

(Y;X) although dependent on Y are independent of X.

Aspects of Assumptions 2.3 and 2.4 may be dispensed with if observations on INR(y), INR(x)

or UNR units are ignored or are unavailable. E.g., if consideration is con�ned to respondent

and UNR units only, Assumption 2.4 may be dropped by rede�ning probabilities conditional on

fIY = 1; IX = 1g and fIY = 0; IX = 0g, i.e., Py = PfIY = 1; IX = 1jY = y;X = x; fIY = 1; IX =
1g; fIY = 0; IX = 0gg, y 2 Y, and, in particular, Gy = 1, y 2 Y, and GX = 0, cf. (2.3), (2.4) and
(2.5). See section 6.1 for related discussion.

Combining (2.2), (2.3) and (2.4), the probability of observing a respondent unit is

PfIY = 1; IX = 1g =
X
v2Y

PvGvQv; (2.6)

which, because, in general, Py and Gy are unknown, will also be unknown even if Qy, y 2 Y, are
known.

If the rate of response is the same for all alternatives, i.e., Py = P and Gy = G, y 2 Y, data
are missing completely at random (MCAR) since (IY ; IX ) is independent of (Y;X); see Little and

Rubin (2002, p.12). Note that, although the missingness mechanism is ignorable, INR(y) units

are not; see section 5.1. Ignorable nonresponse requires the additional condition G = 1, in which

case the complete sample is also random. If, however, INR(y) units are discarded and probabilities

(2.3), (2.4) and (2.5) consequently rede�ned conditional on the complement of fIY = 1; IX = 0g,
then Gy = 1, y 2 Y, and nonresponse is ignorable if data MCAR. Random sample ML applied to

the complete sample fIY = 1; IX = 1g units may then be used.7

7If only information on X was missing, IY = 1 and, thus, Py = 1, y 2 Y, i.e., pure INR(y). Hence, according to
the mechanism (2.4), data would be missing at random (MAR), since the probability of recording X is independent
of X after controlling for Y ; see Rubin (1976) and Little and Rubin (2002). The missingness mechanism is thus
ignorable for likelihood-based inference; cf. (3.3). Most of the statistical literature on nonresponse focusses on data
MAR, dealing mainly with procedures for imputing missing values; see, e.g., Little and Rubin (2002) and Schafer
(1997).
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2.4 Missing Data Formulation by Strati�cation

An important point of departure for this paper is the adaptation of the approach taken in the CB

sampling literature to the missing data problems considered here. In order to do so, we reinterpret

the di�erent forms of response and nonresponse as strata for each discrete value of Y . A further

stratum including SRS units is added. The proportions of each of the C y-respondent strata, i.e.,

IY = 1, in the sample and in the population are denoted by Hy and Qy respectively; see (2.2). Each

of the C y-nonrespondent strata, i.e., IY = 0, has sampling proportionHnr
y but the same population

proportion Qy. Therefore, the initial random sample is interpreted as a combination of two CB

samples consisting of respondent and nonrespondent sampling units. Finally, the SRS stratum has

a proportion of PfS = 1g = Hs in the sample, while in the population, as the supplementary

sample is random, we observe units from this stratum with probability 1.

The probability of observing a y-respondent unit and Y = y is

Hy = PfIY = 1; Y = y; S = 0g; (2.7)

while the corresponding probability for y-nonrespondent units is

Hnr
y = PfIY = 0; Y = y; S = 0g: (2.8)

Aggregating over Y yields the probability of observing, respectively, y-respondent, PfIY = 1; S =
0g =

P
v2Y Hv, and y-nonrespondent units, PfIY = 0; S = 0g =

P
v2Y H

nr
v . Hence,

PfS = 0g = 1�Hs
=

X
v2Y

Hv +
X
v2Y

Hnr
v :

From Assumption 2.2, by independence, the marginal population probability Qy = PfY =

yjS = 0g. Thus, as PfY = y; S = 0g =
P1
i=0 PfIY = i; Y = y; S = 0g,

Qy(1�Hs) = Hy +Hnr
y ; (2.9)

which permits the elimination of the unknown sample probabilities Hnr
y , y 2 Y. Also, by Assump-

tions 2.2 and 2.3, cf. (2.9), since Py = PfIY = 1jY = y; S = 0g,

Py =
Hy

Qy (1�Hs)
: (2.10)

From (2.10), as 0 < Py < 1 by Assumption 2.3, 0 < Hy < Qy (1�Hs). In all cases Hy may be
estimated from the incomplete sample as ny=Nm. Hence, (2.10) may be used to estimate Py when

Qy is either known or estimated by the methods set out in section 4.

3 Observed Data Likelihoods

This section considers the likelihood function for the observed data, as well as other sampling

densities of interest. We use the generic notation h(�) for sample density functions.

[7]



The joint sample density function for Y , X, IY , IX and S is

h(y; x; iY ; iX ; s) =

�h
h(y; x; iY = 1; iX = 1; s = 0)i

X
h(y; iY = 1; iX = 0; s = 0)(1�i

X )
iiY

�
h
h(x; iY = 0; iX = 1; s = 0)i

X
h(iY = 0; iX = 0; s = 0)(1�i

X )
i(1�iY )�1�s

� h (x; s = 1)s

=

�h
(Pfy; IY = 1; IX = 1; S = 0gh(xjy))iX (Pfy; IY = 1; IX = 0; S = 0g)(1�iX )

iiY
�
"
(
X
v2Y

Pfv; IY = 0; IX = 1; S = 0; gh(xjv))iX

� (
X
v2Y

Pfv; IY = 0; IX = 1; S = 0; g)(1�iX )
#(1�iY )9=;

1�s

[HsfX(x)]
s : (3.1)

The second equality in (3.1) arises since h(xjy; iY ; iX ; S = 0) = h(xjy) because, from Assumption

2.2, h
�
xjy; iY ; iX ; S = 0

�
= h

�
xjy; iY ; iX

�
and h

�
xjy; iY ; iX

�
= h (xjy) by Assumptions 2.3 and 2.4,

the latter equality paralleling CB sampling. Therefore, eliminating the dependence on the unknown

probabilities Hnr
y using (2.9),

h(y; x; iY ; iX ; s) =

("�
Hy
Qy
GyPfyjx; �gfX(x)

�iX

�
�
Hy
Qy
(1�Gy)

Z
X
Pfyjx; �gfX(x)dx

�(1�iX )#iY

�

24 X
v2Y
(1�Hs �

Hv
Qv
)GXPfvjx; �gfX(x)

!iX

�
 X
v2Y
(1�Hs �

Hv
Qv
)(1�GX )

Z
X
Pfyjx; �gfX(x)dx

!(1�iX )35(1�iY )
9>=>;
1�s

� [HsfX(x)]s

=

8<:
"�
Hy
Qy
GyPfyjx; �gfX(x)

�iX
(Hy(1�Gy))(1�i

X )

#iY
(3.2)

�

24 (1�Hs �X
v2Y

Hv
Qv
Pfvjx; �g)GX fX(x)

!iX

�
 
(1�Hs �

X
v2Y

Hv)(1�GX )
!(1�iX )35(1�iY )

9>=>;
1�s

[HsfX(x)]
s:

[8]



The constituent of (3.2) associated with the joint indicator (1� S)IYIX contains information pro-
vided by respondent units and corresponds to the complete data density. Crucially, this component

fundamentally di�ers from the population joint density function (2.1) of Y and X which would be

appropriate under random sampling. Hence, unless the data are MCAR, in which case Hy=Qy and

Gy are invariant and thus irrelevant for likelihood-based inference, and Gy = 1, y 2 Y, random
sample procedures should not be used with the complete sample; see section 5.1. The second, third

and fourth terms in (3.2) detail information provided by INR(y), INR(x) and UNR nonrespondent

units, the second and third terms containing additional information on the discrete outcome vari-

able and covariates respectively with the fourth term merely incorporating information on the total

sample size N which is employed in the estimation of Hy, Hs and G
X . The �nal component of (3.2)

is information on X provided by individuals in the SRS. Note that the same data on respondent

and SRS units is observed for all missingness patterns.

The joint sample likelihood (3.2) also allows the incorporation of other nonrespondent data

structures. If X is only partially observed, then such sample units may be treated as either INR(y)

or UNR at the expense of an attendant loss of information and consequent estimator ine�ciency.

Note that the data on X reported by INR(x) and SRS units enter (3.2) in quite di�erent ways.

3.1 Unit and Item Nonresponse

The sample density function (3.2) is straightforwardly specialised to pure INR by setting GX = 1

yielding the joint sample density function for Y , X, IY , IX and S as

hINR(y; x; i
Y ; iX ; s) =

8<:
"�
Hy
Qy
GyPfyjx; �gfX(x)

�iX
(Hy(1�Gy))(1�i

X )

#iY
(3.3)

�
 
(1�Hs �

X
v2Y

Hv
Qv
Pfvjx; �g)fX(x)

!iX (1�iY )9=;
1�s

[HsfX(x)]
s :

Pure INR(x) (INR(y)) nonresponse is obtained if Gy = 1 (Py = 1), y 2 Y, and, since IX = 1

(IY = 1), terms indexed by 1� IX (1� IY) are suppressed.
Correspondingly, for pure UNR, setting Gy = 1 and GX = 0 in (3.2), thus suppressing terms

indexed by IX
�
1� IY

�
and IY

�
1� IX

�
,

hUNR(y; x; i
Y ; iX ; s) =

8<:
�
Hy
Qy
Pfyjx; �gfX(x)

�iX iY  
1�Hs �

X
v2Y

Hv

!(1�iX )(1�iY )9=;
1�s

� [HsfX(x)]s : (3.4)

3.2 Ancillarity

E�cient likelihood-based inference may be conducted by conditioning on weakly exogenous or,

equivalently, (partially) ancillary statistics, see Engle, Hendry and Richard (1983) and Basu (1977).
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3.2.1 Density function of X

In contrast to the population density function (2.1), the covariates X are in general not ancillary

for �, i.e., the sampling density hX(x) of X obtained from (3.2) is functionally dependent on �; viz.

hX(x) =
1X
s=0

1X
iY=0

1X
iX=0

X
v2Y

h(v; x; iY ; iX ; s) (3.5)

= fX(x)

 
(1�Hs)GX �

X
v2Y

Hv
Qv
(GX �Gv)Pfvjx; �g+Hs

!
+(1�Hs)(1�GX ) +

X
v2Y

Hv(G
X �Gv):

Conditional ML given X is therefore ine�cient and estimation should be based on (3.2).8 For

pure INR(x), however, hX(�) reduces to the population density function fX(�). In this case, as the
density fX(�) factors out, e�cient inference for � can be conducted based on the conditional density
given X, suppressing the index IX ,

hINR(x)(y; i
Y ; sjx) =

8<:
�
Hy
Qy
Pfyjx; �g

�iY  
(1�Hs �

X
v2Y

Hv
Qv
Pfvjx; �g)

!(1�iY )9=;
1�s

[Hs]
s:
(3.6)

3.2.2 Joint Density of IY , IX and S

In contradistinction to that for X, the joint density of the indicators IY , IX and S does not depend

on �, viz.,

h(iY ; iX ; s) =
X
v2Y

Z
X
h(v; x; iY ; iX ; s)dx

=

8><>:
24 X

v2Y
HvGv

!iX  X
v2Y

Hv(1�Gv)
!(1�iX )35iY

�

24 (1�Hs �X
v2Y

Hv)G
X

!iX

�
 
(1�Hs �

X
v2Y

Hv)(1�GX )
!(1�iX )35(1�iY )

9>=>;
1�s

[Hs]
s: (3.7)

However, as the conditional density for Y and X given IY , IX and S obtained from (3.2) and (3.7)

also involves the parameters Hy, Gy, G
X and Hs, IY , IX and S are not ancillary for �. Therefore,

similarly to Imbens (1992) and Imbens and Lancaster (1996) for endogenous strati�ed sampling,

estimation is based on the unconditional likelihood function (3.2).

8For a discussion on the issue of covariate ancillarity for problems when data MAR, see Lawless, Kalb
eisch and
Wild (1999).
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4 E�cient Generalized Method of Moments

This section considers ML estimation applied to the (unconditional) log-likelihood function based on

(3.2). The marginal distribution fX(�) of X is treated semiparametrically by de�ning the covariate

sample space X as if it is discrete with associated probability masses de�ned by PfX = xg = �x,
0 < �x < 1, x 2 X .9 From an e�ciency standpoint, this analytical device is innocuous; see

Theorem 4.2 and Appendix B. The nuisance parameters �x, x 2 X , may be concentrated out as
demonstrated in Appendix A resulting in a set of moment indicators which represent an adaptation

and extension to the missing data context of the basis of the e�cient GMM estimation method

developed by Imbens (1992) for CB sampling.10 The marginal population stratum probabilities

Qy, y 2 Y, may be either unknown or auxiliary information may be available as in section 6.2.
Our reinterpretation of incomplete data problems for discrete choice models using a CB sampling

setting suggests that some of the estimators originally proposed for that set-up may be relevant

here also. In particular, as noted in section 6.1, all CB sampling estimators may be used to deal

with UNR when the initial sample size N is unknown.

The remainder of this section is organized as follows. Section 4.1 derives the moment indicators

appropriate for handling all the missing data patterns considered in this paper. Section 4.2 details

the large sample properties of the resultant GMM estimator.

4.1 Moment Indicators

The (unconditional) log-likelihood function based on (3.2) is

logL =

NmX
i=1

�
(1� si) iYi i

X
i log

�
Hyi
Qyi

GyiPfyijxi; �g�xi
�

(4.1)

+ (1� si) iYi (1� i
X
i ) log (Hyi(1�Gyi))

+ (1� si) (1� iYi )i
X
i log

 
(1�Hs �

X
v2Y

Hv
Qv
Pfvjxi; �g)GX�xi

!

+(1� si) (1� iYi )(1� i
X
i ) log

 
(1�Hs �

X
v2Y

Hv)(1�GXi )
!
+ si (logHs + log �xi)

)
;

where Qy =
P
x2X �xPfyjx; �g, y 2 Y. Maximization of (4.1) is undertaken subject to the restric-

tion
P
x2X �x = 1.

9If X is assumed to consist of each observation on X then this approach directly parallels that of Cosslett (1981a,
1981b, 1993, 1997) and is equivalent to one based on empirical likelihood [Owen (2001)]. Chamberlain (1987) uses
this method to deduce the semi-parametric e�ciency lower bounds for both unconditional and conditional moment
restriction models in a random sampling setting.
10Although our discussion emphasises GMM, other asymptotically equivalent methods such as general empirical

likelihood (GEL) [Smith (1997, 2001) and Newey and Smith (2004)] are applicable. GEL includes empirical likelihood
[Qin and Lawless (1994), Imbens (1997) and Owen (2001)], exponential tilting [Kitamura and Stutzer (1997) and
Imbens, Spady and Johnson (1998)] and the continuous updating estimator [Hansen, Heaton, and Yaron (1996)] as
special cases. GMM and GEL estimators are identical for the just-identi�ed context of this section; cf. section 6.2.
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From Appendix A, (A.8), (A.9) and (A.10), the system of GMM moment indicators is

Ht : (1� s)iY 1
Ht
I(y = t)� (1� s)(1� iY)(1� iX ) 1

1�Hs �
P
v2Y Hv

�(1� s)(1� iY)iX 1

1�Hs �
P
v2Y

Hv
Qv
Pfvjx; �g

Pftjx; �g
Qt

; t 2 Y; (4.2)

Gt : (1� s)iY(iX �Gt)I(y = t); t 2 Y; (4.3)

GX : (1� s)(1� iY)(iX �GX ); (4.4)

Hs : s�Hs; (4.5)

� : (1� s)iY iX @ logPfyjx; �g
@�

(4.6)

+((1� s)iX + s)

�
 
1� (1�Hs �

X
v2Y

Ov
1�Gv

)(1�GX )
1�Hs �

P
v2Y

Hv
Qv
Pfvjx; �g

1�Hs �
P
v2Y Hv

�
X
v2Y

Ov
Pfvjxi; �g

Qv

!�1X
v2Y

�
Ov �

1

1�Hs �
P
v2Y Hv

� (1�Hs �
X
v2Y

Ov
1�Gv

)(1�GX )Hv

!
1

Qv

@Pfvjx; �g
@�

� (1� s) (1� iY)iX 1

1�Hs �
P
v2Y

Hv
Qv
Pfvjx; �g

X
v2Y

Hv
Qv

@Pfvjx; �g
@�

#
;

Qy : Qy � ((1� s)iX + s) (4.7)

�
 
1� (1�Hs �

X
v2Y

Ov
1�Gv

)(1�GX )
1�Hs �

P
v2Y

Hv
Qv
Pfvjx; �g

1�Hs �
P
v2Y Hv

�
X
v2Y

Ov
Pfvjxi; �g

Qv

!�1
Pfyjx; �g;

Ot : (1� s)iY(1� iX )I(y = t)�Ot; t 2 Y; (4.8)

where I(�) denotes an indicator function. The system of moment indicators (4.2)-(4.8) incorporates

the additional parameters Oy, y 2 Y, alongside Qy, y 2 Y, with associated moment indicators
(4.8) and (4.7). The presence of the additional terms in (4.2) re
ects the additional information

conveyed by the covariate information from nonrespondents for the stratum probabilities, Hy, over

and above that of the sample proportions, ny=Nm, y 2 Y. The �rst component in (4.6) is the
score vector associated with random sample ML based on the complete sample. The other terms

e�ectively mean-adjust this moment indicator vector to achieve consistent parameter estimation.11

11The ML estimators Ĝy = nyx=ny, Ĝ
X = nnrx =(N � n) and Hs = m=Nm for Gy, G

X and Hs from (4.1) are also
the marginal ML estimators obtained from (3.7). The derivation of the moment indicators (4.2)-(4.8) from (A.8),
(A.9) and (A.10) makes use of the identities nu = (N � n)(1 � ĜX ), N � n = Nm(1 � Ĥs �

P
v2Y Ôv=(1 � Ĝv)),

ny � nyx = ny(1� Ĝy) and NmÔy = ny � nyx.
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For some missingness patterns, the moment indicator system (4.2)-(4.8) substantially simpli�es

with some terms and indexes being eliminated; cf. section 3.1. Additionally, some parameter

moment indicators are also completely suppressed, e.g., for pure INR(x), Gy, y 2 Y, and GX and
for UNR, Gy, y 2 Y, GX and Oy, y 2 Y. In the latter case, Ĥy = Ôy = ny=Nm, y 2 Y, and the
moment indicator (4.2) for Ht simpli�es to (1� s)iYI(y = t)�Ht, t 2 Y.

In general, unless data are MCAR and Gy = 1, y 2 Y, and, thus, the second and third terms in
(4.6) vanish, conventional random sample estimators applied to the complete data set are inconsis-

tent. However, Carroll, Ruppert and Stefanski (1995, p.184) and Allison (2001, p.7), aver that as

long as fIY = 1; IX = 1g is conditionally independent ofX given Y , i.e., the missingness mechanism

Assumptions 2.3 and 2.4, then estimators for the slope parameters of logit models remain consistent

in apparent contradiction to the results presented here. As shown in Ramalho and Smith (2003,

section 4.4), their conjecture results from the particular properties of the multiplicative intercept

model (MIM) class, which includes the logit model as a particular case and is also widely discussed

in the CB sampling area. The CB sampling literature demonstrates that both intercept terms and

marginal choice probabilities Qy are not separately identi�ed in MIM when these probabilities are

unknown. Moreover, except for the shift in intercept terms, all parameters in MIM are consistently

estimated by random sample ML; see, e.g., Hsieh, Manski and McFadden (1985) and Weinberg and

Wacholder (1993). UNR preserves these two characteristics. However, neither of these properties

can be extended to the general case considered here unless incomplete units are discarded which

again reduces to UNR. See Ramalho and Smith (2003, section 4.4) for a detailed discussion of these

points. If one wishes to include the additional information from nonrespondents and/or the SRS

in the estimation procedure, then the GMM estimator proposed here is appropriate.

4.2 GMM Estimation

Let ' denote Hy, Gy, y 2 Y, GX , Hs and � together with Qy and Oy, y 2 Y, and '0 the true
value of '. De�ne g(') as the vector of moment indicators obtained after stacking (4.2)-(4.8). A

subscript i denotes evaluation at observation (yi; xi; i
Y
i ; i

X
i ; si), (i = 1; :::; Nm).

The GMM objective function is de�ned by

Ĵ(') = ĝ(')0Ŵ ĝ('); (4.9)

where Ŵ is a positive semi-de�nite weighting matrix. The vector ĝ(') =
PNm
i=1 gi(')=Nm is the

sample counterpart of the moment conditions E
�
g('0)

�
= 0, where E[�] denotes expectation taken

over h(y; x; iY ; iX ; s) of (3.2). Let '̂ denote the minimiser of (4.9).

We invoke the following standard regularity conditions which are su�cient for the consistency

and asymptotic normality of '̂. See Imbens (1992) and Newey and McFadden (1994, Theorems 2.6

and 3.4).

Assumption 4.1 (a) �0 2 int(�), � a compact subset of Rp; (b) H0
y > 0, G0y > 0, y 2 Y,

(GX )0 > 0 and H0
s > 0.
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Assumption 4.2 (a) Pfyjx; �g is twice continuously di�erentiable in � 2 �; (b) Pfyjx; �g and
@Pfyjx; �g=@� are continuous at each � 2 �; (c) Pfyjx; �g > 0, y 2 Y, for all x 2 X and � in an

open neighbourhood of �0; (d) fX(x) > 0 for all x 2 X ; (e) 1 �Hs >
P
v2Y(Hv=Qv)Pfvjx; �g for

all x 2 X and ' in an open neighbourhood of '0.

Assumptions 4.2 (c) and (d) ensure that Q0y > 0, y 2 Y. Assumption 4.2 (e) requires a positive
sample (and population) probability of observing fIY = 0; S = 0g, an assumption which is not
required for UNR when N is unknown.

Let G0 = E
�
@g('0)=@'0

�
and 
0 = E

�
g('0)g('0)0

�
. Note that the parameter vector '0 is

just-identi�ed.

Assumption 4.3 (a) Ŵ
p!W , W positive de�nite; (b) '0 is the unique solution to E[g('0)] = 0;

(c) E[sup' kg(')k2] <1 and E[sup'2N k@g(')=@'0k] <1 where N is a neighbourhood of '0; (d)


0 is nonsingular; (e) G0 is full column rank.

These conditions lead to the following result.

Theorem 4.1 (Consistency and Asymptotic Normality of '̂.) If Assumptions 2.1-2.4 and 4.1-4.3

are satis�ed then

'̂
p! '0; N1=2

m

�
'̂� '0

� d! N(0; (G0)�1
0(G0)0�1); (4.10)

where
p! and

d! denote convergence in probability and distribution respectively.

WhenX is discrete, '̂ is the ML estimator for '0 and is, thus, asymptotically �rst order e�cient.

Asymptotic e�ciency, in the semiparametric sense, is proved for the general case analogously to

Theorem 3.3 in Imbens (1992); see Appendix B.

Theorem 4.2 (Semiparametric E�ciency of '̂.) If Assumptions 2.1-2.4 and 4.1-4.3 are satis�ed

then '̂ achieves the semiparametric e�ciency bound.

5 Speci�cation Tests

5.1 Missing Completely At Random

In practice, whether the missingness mechanism is ignorable would be unknown. If information on

the population probabilities Qy were available, a comparison of Qy with the sampling proportion

Hy might be used to draw rough conclusions about the nature of the missing data. More formally,

speci�cation tests for the null hypothesis of data MCAR may be constructed as described below.

If the data are MCAR, Py and Gy are constant for all y 2 Y, i.e., Py = P and Gy = G, y 2 Y;
see below (2.6). From (2.10), the MCAR null hypothesis is

Hy
Qy

= P (1�Hs); Gy = G; y 2 Y: (5.1)

[14]



GMM estimation under (5.1) using the moment indicator systems (4.2)-(4.8) is straightforward.

From (3.2), the joint sample density becomes

hMCAR(y; x; iY ; iX ; s) =
h
Pfyjx; �giX (Qy)1�i

X
i(1�s)iY h

P i
Y
(1� P )1�iY

i1�s
�
h
Gi

X
(1�G)1�iX

i(1�s)iY h
(GX )i

X
(1�GX )1�iX

i(1�s)(1�iY )
�
�
Hs
s (1�Hs)1�s

�
fX(x)

(1�s)iX+s:

Therefore, the MCAR estimators are ~P = n=N , ~G =
P
y2Y nyx=n,

~GX = nnrx =(N�n), ~Hs = m=Nm,
~Oy = (ny � nyx)=Nm and ~Hy = ~Qy ~P (1� ~Hs), where, from (4.7),

~Qy =
1

Nm

NmX
i=1

((1� si)iXi + si)
 
1� (1� ~Hs �

1

1� ~G

X
v2Y

~Ov)(1� ~GX )

�
X
v2Y

~Ov
Pfvjxi; ~�g

~Qv

!�1
Pfyjx; ~�g; y 2 Y:

and, from (4.6), the MCAR estimator ~� satis�es12

0 =

NmX
i=1

(1� si)iYi i
X
i

@ logPfyijxi; ~�g
@�

+ ((1� si)iX + si)
 
1� (1� ~Hs �

1

1� ~G

X
v2Y

~Ov)(1� ~GX )

�
X
v2Y

~Ov
Pfvjxi; ~�g

~Qv

!�1X
v2Y

~Ov
1
~Qv

@Pfvjxi; ~�g
@�

;

Let ~' denote the MCAR estimator for '. A test for data MCAR may be based on the di�erence

of estimated GMM criteria (4.9) under null and alternative hypotheses; i.e., the statistic

Nm[ĝ( ~')
0
̂�1ĝ( ~')� ĝ('̂)0
̂�1ĝ('̂)]; (5.2)

where 
̂ =
PNm
i=1 ĝ('̂)ĝ('̂)

0=Nm. Under the MCAR null hypothesis (5.1), the statistic (5.2) will

converge in distribution to a chi-square random variable with 2(C � 1) degrees of freedom. See
Newey and West (1987) for other asymptotically equivalent test statistics.

In general, random sample ML applied to the complete sample will yield consistent estimators

only if data MCAR and either G = 1, i.e., the event fIY = 1; IX = 0g is not observed, or INR(y)
units are ignored and the probabilities Hy, Gy = 1, y 2 Y, and GX rede�ned accordingly as in

section 2.3; cf. (4.6). The relevant null hypothesis data MCAR now is

Hy
Qy

= P (1�Hs); y 2 Y: (5.3)

The appropriate data likelihood under the alternative now imposes Gy = 1, y 2 Y, in (3.2) and,
consequently, the moment indicator and parameter vectors g(') and ' are de�ned with Gy, y 2 Y,
12Note that

P
v2Y(Hv=Qv)@Pfvjx; �g=@� = (Hy=Qy)

P
v2Y @Pfvjx; �g=@� = 0,

P
y2Y(Hy=Qy)Pfyjx; �g =

Hy=Qy and
P

y2Y Hy = P (1�Hs).
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deleted. The estimators under (5.3) for P , GX , Hs, Oy and Hy are de�ned as above with ~�

now the random sample ML estimator on fIY = 1; IX = 1g units and ~Qy =
PNm
i=1((1 � si)iXi +

si)Pfyjxi; ~�g=(nm+nnrx ). Let '̂ and ~' denote the unrestricted and (5.3) estimators for '. Under the
null hypothesis (5.3), the statistic (5.2) converges in distribution to a chi-square random variable

with C � 1 degrees of freedom.

5.2 Missing Data Mechanism

The conditional independence Assumptions 2.3 and 2.4 of section 2.3 is crucial to the foregoing

analysis. We initially concentrate on a useful diagnostic for the credibility of Assumption 2.3 with

a speci�cation test for Assumption 2.4 brie
y outlined at the end of the section. Consider the

generalisation of (2.3) given by

Py(x) = PfIY = 1jY = y;X = xg:

The sample density (3.2) is then modi�ed as

h(y; x; iY ; iX ; s) =

("�
Py(x)

Py

Hy
Qy
GyPfyjx; �gfX(x)

�iX

�
�
Hy
Qy
(1�Gy)

Z
X

Py(x)

Py
Pfyjx; �gfX(x)dx)

�(1�iX )#iY

�

24 X
v2Y

1� Pv(x)
1� Pv

(1�Hs �
Hv
Qv
)Pfvjx; �gGX fX(x)

!iX

�
 X
v2Y

Z
X

1� Pv(x)
1� Pv

(1�Hs �
Hv
Qv
)Pfvjx; �g(1�GX )fX(x)dx

!(1�iX )35(1�iY )
9>=>;
1�s

�[HsfX(x)]s:

The proposed speci�cation test for Assumption 2.3 is based on the Lagrange multiplier principle;

see inter alia Newey and West (1987). First, the probability Py(x) is parameterised as Py(x) =

Py(z
0
y�y) where zy = zy(x) is a vector of independent functions of the covariates and Py(0) = Py,

y 2 Y. Secondly, log-likelihoods are constructed based on the sample density (5.4); cf. (4.1).
Thirdly, the moment indicator corresponding to �y is obtained by di�erentiating the resultant

log-likelihood with evaluation at �y = 0, y 2 Y; viz.

�t : P 0t(0)Qt(1�Hs)(1� s)
"
zti

X

 
iY
1

Ht
I(y = t)� (1� iY) 1

1�Hs �
P
v2Y

Hv
Qv
Pfvjx; �g

Pftjx; �g
Qt

!

+ E[ztjY = t](1� iX )
�
iY
1

Ht
I(y = t)� (1� iY) 1

1�Hs �
P
v2Y Hv

��
; (5.4)

t 2 Y, where P 0t(�) denotes the derivative of Pt(�) with respect to its argument. Note that the �rst
term of (5.4) is proportional to zt multiplied by the component of the Ht moment indicator (4.2) for
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x-respondent units whereas the second term is E[ztjY = t] times the component in (4.2) relevant

for x-nonrespondent units. Fourthly, to creat an operational statistic only the �rst term in (5.4)

suitably reweighted is retained with the observation invariant proportional factor P 0t(0)Qt(1�Hs)
omitted, i.e.,

�t : (1� s)ztiX
 
iY

1

GtHt
I(y = t)� (1� iY) 1

1�Hs �
P
v2Y

Hv
Qv
Pfvjx; �g

Pftjx; �g
GXQt

!
; t 2 Y:

(5.5)

Note that observation of INR(x) sample units is required for the moment indicator (5.5). A simple

modi�cation of (5.5) appropriate for all missingness patterns is given by13

�t : zt

�
(1� s)iX iY 1

GtHt
I(y = t)� Pftjx; �g

Qt

�
; t 2 Y: (5.6)

Let q(') de�ne the vector of moment indicators obtained from g(') de�ned in section 4.2 aug-

mented by (5.5) or (5.6). Let Q(') = @q(')=@'0. Correspondingly, de�ne q̂(') =
PNm
i=1 qi(')=Nm,

Q̂(') =
PNm
i=1Qi(')=Nm and �̂(') =

PNm
i=1 qi(')qi(')

0=Nm. Therefore, a GMM Lagrange multiplier

speci�cation test for Assumption 2.3 is given by

LM = Nmq̂('̂)
0�̂('̂)�1Q̂('̂)

�
Q̂('̂)0�̂('̂)�1Q̂('̂)

��1
Q̂('̂)�̂('̂)�1q̂('̂); (5.7)

cf. Newey and West (1987). If Assumptions 2.3 and 2.4 are satis�ed LM has a limiting chi-square

distribution with degrees of freedom
P
v2Y dim(�v).

A diagnostic for Assumption 2.4 is designed similarly by generalising (2.4) and (2.5) respectively

as PfIX = 1jIY = 1; Y = y;X = xg = Gy(z
0
Gy�Gy) and PfIX = 1jIY = 0; Y = y;X = xg =

Gy((z
X )0�X ) where zGy = zGy(x) and z

X = zX (x) with Gy(0) = Gy, y 2 Y, GX (0) = GX .

Operational moment indicators are then de�ned as zGt(1 � s)iY(iX � Gt)I(y = t), t 2 Y, and
zX (1�s)(1�iY)(iX �GX ), i.e., zt and zX multiplied by the moment indicators for Gt (4.3) and GX

(4.4).14 A GMM Lagrange multiplier speci�cation test for Assumption 2.4 is then de�ned as in LM
(5.7) and has a limiting chi-square distribution with degrees of freedom

P
v2Y dim(�Gv)+ dim(�

X )

under Assumptions 2.3 and 2.4.

6 Extensions

6.1 Unknown N

To adapt analysis to the unknownN case, one of the nonrespondent categories should be suppressed.

E.g., in the absence of UNR units, the density function of the observed data is, of course, is identical

13The implicit null hypotheses corresponding to (5.5) and (5.6) under Assumption 2.4 are the sub-hypotheses

E[zt

�
Pt(x)

Pt
�
P

v2Y(1� Pv(x))Pfvjx; �gP
v2Y(1� Pv)Pfvjx; �g

�
jY = t] = 0;

E[zt

�
Pt(x)

Pt
� 1

�
jY = t] = 0; t 2 Y:

14The implicit null hypothesis corresponding to these moment indicators comprises the sub-hypotheses
E[zGt(Gt(x)�Gt)jY = t] = 0, t 2 Y, and E[zX (GX (x)�GX )] = 0.
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in form to that for pure INR; see (3.3). It is important, however, to note that the probabilities

Hy, Gy and G
X in (3.2) are now de�ned conditionally on the complement of fIY = 0; IX = 0g; in

particular, GX = 1. Clearly, Assumption 2.4 relating to GX is no longer required.

If, additionally, there are no item nonrespondents, probabilities are conditional on fIY = 1; IX =
1g. Hence, Gy = 1, y 2 Y, and Assumption 2.4 may be dropped completely. Therefore, rede�ning
the stratum sampling probability HyGy as Hy = PfY = y; S = 0jIY = 1; IX = 1g, the density
function (3.3) becomes

h(y; x; iY ; iX ; s) =

�
Hy
Qy
Pfyjx; �gfX(x)

�iY iX (1�s)
[HsfX(x)]

s : (6.1)

Now PfS = 0jIY = 1; IX = 1g =
P
v2Y Hv, and, thus, from Assumption 2.2, 1 �Hs =

P
v2Y Hv

since PfS = 0g = PfS = 0jIY = 1; IX = 1g. Note that Qy may no longer be written in terms of
Hy as in (2.9). Furthermore, the relation between Py, Hy, Hs and Qy, noting (2.6), is now given

by

Hy =
PyQy (1�Hs)P

v2Y PvQv
; (6.2)

cf. (2.10). Therefore, Hy is no longer necessarily less than Qy. Moreover, even if Hy and

Qy are known, the probabilities Py are not identi�ed although their ratios are from Py1=Py2 =

(Hy1=Hy2)=(Qy1=Qy2), which is, of course, 1 all y for data MCAR. In contrast with the known N

case, Hy = Qy (1�Hs) all y characterizes both data MCAR and the absence of missing data.15

The density function (6.1) coincides with that for CB sampling with (without) a SRS, see, e.g.,

Cosslett (1981a), and in the absence of a SRS corresponds to exactly that examined in Tang et al.

(2003) when adapted for our discrete outcome setting. Inference procedures appropriate for CB

samples may therefore be used when N is unknown and in the absence of item nonrespondents.

Hence, our estimator, when simpli�ed to deal with this case, coincides with Imbens' (1992). Simi-

larly, Cosslett's (1981a) ML estimator for CB samples combined with a SRS of covariates, may be

employed to describe unit nonresponse if information on N is ignored. However, in the same sense

that Imbens (1992) simpli�ed Cosslett's (1981a, b) estimator for CB samples, the GMM estimator

for UNR derived here is substantially simpler than that corresponding to Cosslett (1981a).

Furthermore, our estimator embeds Lancaster and Imbens' (1996) e�cient GMM estimator for

case-control binary models with contaminated controls, where there are two strata, one consisting

of a random sample where only the covariates are observable, the other including units choosing

Y = 2 where X is fully observed.16

15The sample density under MCAR now becomes

h(y; x; iY ; iX ; s) = Pfyjx; �gi
Y iX (1�s)

h
Hs
s (1�Hs)

iY iX (1�s)
i
fX(x)

iY iX (1�s)+s;

with the MCAR estimators ~� the random sample ML estimator, ~Hs = m=nm and, from (4.7), ~Qy =Pnm
i=1 Pfyjxi; ~�g=nm, y 2 Y. Under the MCAR null hypothesis H0 : Hy = Qy (1�Hs), y 2 Y, the statistic

(5.2) will converge in distribution to a chi-square random variable with C degrees of freedom.
16In this case, Y = f1; 2g, P1 = 0 and P2 = 1. Hence, Assumption 2.3 where 0 < Py < 1 is relaxed to 0 � Py � 1.
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6.2 Information on Qy

To incorporate additional information on the marginal probabilities Qy, y 2 Y, we follow the

approach of Imbens and Lancaster (1994). Such information may arise, e.g., from an independent

survey or a census.

Let Q̂ = (Q̂1; :::; Q̂C)
0 be an estimator for the marginal choice probabilities Q = (Q1; :::; QC)

0

based on a sample independent from the initial and supplementary random samples. Partition '

as ' = (�0; Q0)0.

Assumption 6.1 (Additional Information on Marginal Choice Probabilities.) The estimator Q̂

for the marginal choice probabilities Q0 is independent of the initial and supplementary random

samples and satis�es

N
1=2
Q (Q̂�Q0) d! N(0;�0);

where NQ is known, Nm=NQ ! �Q, 0 < �Q <1, and � is nonsingular. A consistent estimator �̂
of �0 is assumed to be available.

Let ĥ(') = (ĝ(')0; (Q̂�Q)0)0. Consider the GMM criterion

~J(') = ĥ(')0�̂�1ĥ('); (6.3)

where �̂ = diag(
̂; (Nm=NQ)�̂) with 
̂ a consistent estimator for 

0, e.g., 
̂ =

PNm
i=1 gi( _')gi( _')

0=Nm

and _' a consistent estimator for '0, obtained, for example, as in section 4.2. Let ~' = (~�0; ~Q0)0 denote

the minimiser of (6.3) and de�ne

H =

�
G� GQ
0 �IC

�
;� = diag(
; �Q�);

where G = (G�; GQ) is partitioned conformably with ' = (�
0; Q0)0.

Theorem 6.1 (Consistency and Asymptotic Normality of ~'.) If Assumptions 2.1-2.5, 4.1-4.3 and

6.3 are satis�ed, then

~'
p! '0; N1=2

m

�
~'� '0

� d! N(0; ((H0)0(�0)�1H0)�1):

Asymptotic e�ciency of ~' may be proved in a similar manner to that employed in Appendix B

for the semiparametric e�ciency of '̂.

If components of � are of primary concern rather than Q, an asymptotically equivalent estimator

to ~� is obtained by minimisation of the following GMM objective function

ĝ(�; Q̂)0(
̂�1 � 
̂�1ĜQ(Ĥ 0
Q�̂

�1ĤQ)
�1Ĝ0Q
̂

�1)ĝ(�; Q̂);

where ĤQ = (Ĝ
0
Q;�IC)0 denotes a consistent estimator for H0

Q = ((G
0
Q)
0;�IC)0. Cf. Imbens and

Lancaster (1994, pp.665-6).

If �Q = 1, then, in an asymptotic sense, Q̂ contributes no additional information to the

estimation of '0 over and above that in the main and supplementary samples and consequently
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may be ignored. Whereas, if �Q = 0, then Q0 may be treated as known and, thus, Q̂ may be

substituted for Q in system (4.2)-(4.8) rendering it over-identi�ed. An optimal GMM estimator

is then obtained using the weighting matrix Ŵ = 
̂�1 in (4.9). Similarly to Theorem 6.1 and, in

particular, (4.10),
~�
p! �0; N1=2

m (~�� �0) d! N(0; ((G0�)
0(
0)�1G0�)

�1):

7 Simulation Evidence

This section presents a simulation study based on an ordered Probit model to assess the performance

of some of the estimators developed in previous sections. To provide a realistic setting which is

likely to re
ect nonresponse as it occurs in practice, we base our investigation on a dataset where

the problem of nonignorable INR is well-documented; section 7.1 details the empirical basis for

our experiments. Section 7.2 describes the experimental design for several alternative patterns of

nonresponse based on these results and sub-samples of the dataset and section 7.3 discusses the

results.

7.1 Empirical Results for the UK Labour Force Survey

We consider an application where nonignorable nonresponse has been considered to be a potentially

serious problem. Papers such as Skinner et al. (2002) and Durrant and Skinner (2006) are especially

interested in estimating the lower end of the distribution of hourly pay in the UK using the Labour

Force Survey (LFS). Skinner et al. (2002) shows that when hourly pay is measured indirectly, the

derived variable, as a ratio of weekly earnings and weekly hours worked, it may be subject to a

large amount of measurement error. If hourly pay, the direct variable, is measured by asking the

hourly paid workers their hourly rate of pay, measurement error is, in principle, eliminated or at

least reduced. Measurements of the hourly rate are e�ectively missing for about three quarters of

the sampling units, which are typically the more highly paid employees since hourly paid workers

tend to have lower wages. Skinner et al. (2002) propose an imputation procedure to deal with the

missing values of the direct variable denoted here by hrrate. They consider the complete sample

from LFS data for the 22+ age group for June-August 1999 and, under the assumption of data

missing at random (MAR), see fn. 6, use a regression of the logarithm of hrrate on the logarithm

of the derived variable and a set of covariates to estimate the missing values of hrrate. They

concluded that the proportion of the UK population below and at the National Minimum Wage,

�xed at $3.60 in 1999 for that age group, was 5:5%.

Nonresponse here depends on the outcome variable of hourly wages. Therefore, the response

mechanism described in section 2.3 may be relevant as a description of this pattern of missingness.

However, our estimators are designed to deal with discrete response. Since the dependent variable

typically takes only a limited number of values, we restricted consideration to 2, 3, and 4 alternatives

and discretized the logarithm of hrrate as described in Table 1. The de�nition of the classes was

made in such a way that the �rst class, where Y = 1, includes individuals with an hourly rate

no higher than the National Minimum Wage of $3.60. Thus, the estimate of Q1 provides the
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proportion of the population below or at the National Minimum Wage.

Table 1 about here

We consider ordered probit models characterized by PfY = 1jxg = �(�1�x0�), PfY = jjxg =
�(�j � x0�) � �(�j�1 � x0�), (j = 2; :::; C � 1), and PfY = Cjxg = 1 � �(�C�1 � x0�), where
�j , (j = 1; :::; C � 1), are the C � 1 class limits and �(�) denotes the standard normal distribution
function. Since the class limits �j , (j = 1; :::; C � 1), are known by design, their known values are
incorporated directly in the moment conditions; see, e.g., Stewart (1983).

Essentially, the covariates are the same as those of Skinner et al. (2002) except their derived

variable is excluded to avoid their assumption of data MAR and we considered more aggregated

occupation categories. Because nonresponse only concerns the outcome variable Y , we only consider

pure INR(x) nonresponse in the absence of a SRS. Hence, Gy = 1, y 2 Y, GX = 1 and Hs = 0;

see section 3.1. Both random sample (RS) ML and (INR) GMM estimators are examined with

the results presented in Table 2. The majority of coe�cient estimates are signi�cant at the 0:01

level. Although their magnitude is often very di�erent between RS ML and INR GMM, their signs,

with the exception of that of the parameter associated with the clerical and secretarial occupation

category, are the same, coinciding with those of Table 6 in Skinner et al. (2002). Although it is not

our purpose to propose an alternative model for these data to Skinner et al. (2002), it is reassuring

to note that we obtain a not too dissimilar estimate of 7:7% for the fraction of the population below

or at the National Minimum Wage.

Table 2 about here

7.2 Experimental Design

Initial sample sizes N = 500 or 1000 were considered. These sample sizes are much smaller than

those typically encountered in microeconometrics; e.g., the LFS data set has approximately 16000

employees in the 22+ age group. Each experiment comprised 1000 replications, each of which were

collected as a random sample with replacement from the LFS data set. The discrete outcome

variable Y was generated by an ordered probit model with the classes de�ned in Table 1 for

C = f2; 3; 4g. For computational reasons, we considered only the three most signi�cant covariates
in Table 2 for INR GMM with C = 4 and thus set �0 = 2:293; 0:027;�0:671; 1:159). Table 3 details
several patterns of INR, characterized by di�erent combinations of conditional response probabilities

for Y . To mimic the missing data pattern of the LFS values of hrrate, experiments were designed

where it was especially missing for well-paid employees. The rate of response in Design c in the

higher hourly rate classes is 50%, which yields an overall rate of response, PfIY = 1; IX = 1g, of
around 54%. Design d increases those rates of response to, respectively, 70% and 73%, while Design

e permits di�erential rates of response in all classes of Y but in such a way that the overall rate of

response is again around 54%. Designs a and b allow the performance of RS ML to be evaluated

when no data is missing and data is MCAR for comparison with the misspeci�ed scenarios in

Designs c, d, and e.
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Table 3 about here

RS ML and INR GMM estimators were computed for Designs c, d, and e. We also considered

UNR and INR and UNR GMM estimation with known Qy for binary models. We only present

partial results for known Qy, since this situation is less likely to occur in practice. Indeed, the

main aim of Skinner et al. (2002) and Durrant and Skinner (2006) is precisely the estimation

of the proportion Q1 of employees below or at the National Minimum Wage in the UK. With

regard to UNR GMM estimation, in some examples for C = 3 and 4, not reported here, the

performance of UNR GMM estimation was poor, displaying wide dispersion and on occasion a

failure to converge, which lead us to suspect of the possibility of a lack of identi�cation in the

samples considered.17 Such problems are circumvented by INR GMM estimation, since covariate

information for nonrespondents is now available. RS ML estimators only are computed for Designs

a and b. Design a should act as an especially interesting reference point in terms of precision since,

as all the data is available, standard errors should be expected to assume their minima among all

the designs considered. Design b should illustrate the consistency of RS ML under data MCAR and

provide some guide to the decay in the precision due to the e�ective reduction in sample size by

50%. All computations were done using S� Plus. Additional simulation results for binary models
where the performance of RS ML, INR and UNR GMM estimators with Qy unknown and known

is compared are presented in Ramalho and Smith (2003).

7.3 Results

Summary statistics are presented in Tables 4-6, which provide estimator proportionate mean and

median bias, standard deviation and mean absolute error.

Tables 4-6 about here

As expected, RS ML estimation performs well in Designs a and b although, in the MCAR

Design b, dispersion increases substantially due to the e�ective reduction in sample size of 50%. In

all other designs, these estimators su�er from both large mean and median biases. These biases

typically increase with the variation in response probabilities Py; cf. Designs c and d in Tables 4-6

and Designs d and e in Tables 5 and 6. Biases decline somewhat when the initial sample size is

increased from N = 500 to 1000.

In general, the performance of INR GMM estimation is excellent. In most experiments they

appear both mean and median unbiased and are more precise than RS ML. In fact, the dispersion

of INR GMM estimators appears very similar to that of RS ML in Design a, which contains no

missing values. Hence, in the absence of a substantial fraction of responses, INR GMM estimation

uses the available information in such a way that the attendant negative consequences in terms of

17Note that the UNR estimator is similar to that proposed by Imbens (1992) for CB sampling. In the CB sam-
pling context, Cosslett (1993, pp.10-11) suggests that intercept terms in multinomial Probit models may be poorly
determined even if formally identi�ed by analogy with a similar issue that arises in multinomial logit models; see,
e.g., Manski and Lerman (1977) and Imbens (1992).
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precision seem almost irrelevant.18 Also note the improvement in bias when the number of classes

is increased from C = 2 to 3, although results are similar for C = 3 and 4. Naturally, for the

smaller sample size of N = 500, results are somewhat worse both in terms of bias and dispersion.

This deterioration is primarily restricted to INR GMM estimation of �1 and to a lesser extent �3.

The mean bias for �1 is at a maximum of 8:8% for Design c in Table 4 for N = 500 although median

bias is only 4:3%. Even so more than 50% of the bias of the RS ML estimator is removed. The

large standard errors for �3 in Designs c and d of Table 4 are the only cases where this statistic is

substantially larger than that of RS ML. This outturn is due to only three and one replications,

respectively, where �̂3 is larger than 6:0. If these replications were ignored the standard errors

would reduce to 0:276 and 0:238 respectively.

Sample size is more important for UNR GMM estimation. In Table 4 with N = 1000, these

estimators are approximately unbiased. Moreover, these results, with the exception of the intercept,

indicate a nice feature of UNR GMM being less dispersed than RS ML. However, for N = 500, UNR

GMM displays large mean biases for �0 and �3 together with large standard errors, especially for

�3, although median biases are much smaller with a maximum of 4:9%. Therefore, in the absence

of nonrespondent covariate information, UNR GMM estimation appears reliable with sample sizes

of at least N = 1000. For smaller sample sizes, although they display signi�cant variability, UNR

GMM is clearly superior to uncorrected RS ML estimation. However, INR GMM is clearly superior

to UNR GMM estimation, demonstrating the importance of the inclusion of available nonrespondent

covariate information.

Additional results, not reported here, for binary models with aggregate information on Q1

suggest that INR and UNR GMM estimators behave very similarly to INR GMM in the absence

of information on Q1 in Table 4. Aggregate information on Qy is therefore particularly important

for UNR GMM, producing gains in terms of bias and dispersion, particularly for the intercept.

Figures 2 and 3 about here

Figures 2 and 3 present estimated sampling densities of RS ML and INR GMM estimators

for some of the above designs. Figure 2 examines RS ML and INR GMM when C = 4 for (I)

Design b and (II) Design c, whereas Figure 3 presents results for Design e for (I) N = 1000 and

C = 2; 3 and 4 and (II) N = f500; 1000; 2000g and C = 4. Figure 2 con�rms the above conclusions
of the superiority of INR GMM over RS ML in circumstances when nonresponse is nonignorable.

Moreover, for data MCAR, INR GMM does not display a noticable de�ciency as compared with RS

ML. Figure 3 underlines the improvement in performance for INR GMM as the number of classes

C or initial sample size N increase.

These experiments and those in Ramalho and Smith (2003) con�rm that, in general, RS ML

estimation on the complete sample is only sensible when nonresponse is ignorable. Otherwise, these

18Estimators that correct for sampling issues like missing data or measurement error are generally expected to
be more disperse than uncorrected biased estimators, re
ecting the additional variability of the data. For INR
GMM estimators this loss of precision is circumvented by the inclusion of information on covariates provided by
nonrespondents, which is not used in RS ML estimation.
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estimators are inappropriate. The performance of both INR and UNR GMM estimators is very

promising. Aggregate information on Qy is especially bene�cial for UNR GMM.

8 Conclusions

This paper considers a general framework for missing data when the dependent variable is discrete.

A uni�ed semiparametrically e�cient GMM estimation and inference methodology is proposed for

such circumstances which adapts and extends that usually employed with choice based sampling.

The advantages of an integrated approach are clear with the same methodology being employed

for both model speci�cation and estimator derivation in all cases. Additionally, the investigation

of and comparison between di�erent nonresponse patterns and problems is straightforward, e.g.,

specialisation to pure unit or item nonresponse.

The critical assumption in our framework, besides the correct speci�cation of the structural

model, concerns the independence of response and covariates conditional on the discrete outcome

variable. This assumption might be expected to be relevant in a number of practical situations. In

INR(y), it is not necessarily too unreasonable to assume that covariates in
uence the choice variable

and the willingness to report that choice in a similar fashion. For UNR, this assumption is likely

to be appropriate in cases where the refusal to participate in the survey is especially motivated

by an unwillingness to reveal the value of the choice variable. We suggest how this assumption

may be weakened to allow the response mechanism to depend additionally in a discrete fashion on

covariates. Speci�cation tests are presented both for MCAR and the missingness assumption.

A simulation study reveals very promising results. The GMM estimators suggested here display

negligible bias, which is especially apparent in cases where data on the covariates from nonre-

spondents are incorporated in the estimation procedure. In contradistinction, random sample ML

estimators are considerably biased in all cases where response rates across the alternative choices

are di�erent, even in experiments where the di�erential was not very substantial. The incorporation

of aggregate information on the marginal population choice probabilities is especially advantageous

for the properties of the unit nonresponse GMM estimator.

Appendix A: Derivation of Moment Indicators

Let L denote the Lagrangean arising from (4.1) with � the Lagrange multiplier associated with the

constraint
P
x2X �x = 1. The resultant �rst order derivatives are
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@L
@Hy

=

NmX
i=1

(1� si)
�
iYi
I(yi = y)

Hy
(A.1)

�(1� iYi )
 
iXi

1

1�Hs �
P
v2Y

Hv
Qv
Pfvjxi; �g

Pfyjxi; �g
Qy

+(1� iXi )
1

1�Hs �
P
v2Y Hv

��
;

@L
@Gy

=

NmX
i=1

(1� si)iYi I(yi = y)
�
iXi

1

Gy
� (1� iXi )

1

1�Gy

�
; (A.2)

@L
@GX

=

NmX
i=1

(1� si)(1� iYi )
�
iXi

1

GX
� (1� iXi )

1

1�GX

�
; (A.3)

@L
@Hs

=

NmX
i=1

si
1

Hs
� (1� si) (1� iYi )

"
iXi

1

1�Hs �
P
v2Y

Hv
Qv
Pfvjxi; �g

(A.4)

+
�
1� iXi

� 1

1�Hs �
P
v2Y Hv

�
;

@L
@�

=

NmX
i=1

(1� si)iXi

"
iYi

 
@ logPfyijxi; �g

@�
� 1

Qyi

X
x2X

�x
@Pfyijx; �g

@�

!
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�(1� iYi )
 

1

1�Hs �
P
v2Y

Hv
Qv
Pfvjxi; �g

X
v2Y

Hv
Qv

@Pfvjxi; �g
@�

� 1

1�Hs �
P
v2Y

Hv
Qv
Pfvjxi; �g

X
v2Y

Hv
Q2v
Pfvjxi; �g

X
x2X

�x
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(1� si)iYi
�
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�
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�x
� 1

Qyi
Pfyijx; �g

�
(A.6)

+ (1� si) (1� iYi )i
X
i

 
I(xi = x)

�x
+

P
v2Y

Hv
Q2v
Pfvjxi; �gPfvjx; �g

1�Hs �
P
v2Y

Hv
Qv
Pfvjxi; �g

!#

+si
I(xi = x)

�x
� �;

@L
@�

=
X
x2X

�x � 1: (A.7)

Equating (A.1) to zero, i.e. @L=@Hy = 0, the ML estimator for Hy solves

ny

Ĥy
= nu

1

1� Ĥs �
P
v2Y Ĥv

(A.8)

+

NmX
i=1

(1� si)(1� iYi )i
X
i

1

1� Ĥs �
P
v2Y

Ĥv
Q̂v
Pfvjxi; �̂g

Pfyjxi; �̂g
Q̂y

:
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Likewise, from (A.2) and (A.3), i.e., @L=@Gy = 0 and @L=@GX = 0, Ĝy = nyx=ny and Ĝ
X =

nnrx =(N � n). The statistic Ĥs = m=Nm is the ML estimator for Hs and is obtained by �rst

multiplying (A.1) by Hy, summing over y and equating the resultant expression to zero which

yields

N � nu
1� Ĥs

1� Ĥs �
P
v2Y Ĥv

= (1� Ĥs)
NmX
i=1

(1� si)
�
1� iYi

�
iXi

1

1� Ĥs �
P
v2Y

Ĥv
Q̂v
Pfvjxi; �̂g

and then, secondly, equating (A.4) to zero.

The mass point probabilities �x, x 2 X , can be concentrated out, thus removing the dependence
on the discrete distribution of X; cf. Imbens (1992). Multiplying @L=@�x (A.6) through by �x,
summing over the points of support x 2 X , equating to zero and using (A.8) yields

�̂ = Nm � nu
1� Ĥs

1� Ĥs �
P
v2Y Ĥv

:

Substituting back for �̂ in (A.6) and again using (A.8)

�̂x =

NmX
i=1

((1� si)iXi + si)I(xi = x)

0@Nm � nu 1� Ĥs �
P
v2Y

Ĥv
Q̂v
Pfvjx; �̂g

1� Ĥs �
P
v2Y Ĥv

�
X
v2Y
(nv � nvx)

Pfvjx; �̂g
Q̂v

!�1
:

Hence, the ML estimator for Qy is given by

Q̂y =
X
x

�̂xPfyjx; �̂g (A.9)

=

NmX
i=1

((1� si)iXi + si)

0@Nm � nu 1� Ĥs �
P
v2Y

Ĥv
Q̂v
Pfvjx; �̂g

1� Ĥs �
P
v2Y Ĥv

�
X
v2Y
(nv � nvx)

Pfvjxi; �̂g
Q̂v

!�1
Pfyjxi; �̂g;

y 2 Y.
Similarly, after substituting for �̂x, x 2 X , in (A.5),

0 =

NmX
i=1

(1� si)iYi i
X
i

@ logPfyijxi; �̂g
@�

(A.10)

+((1� si)iXi + si)

�

0@Nm � nu 1� Ĥs �
P
v2Y

Ĥv
Q̂v
Pfvjxi; �̂g

1� Ĥs �
P
v2Y Ĥv

�
X
v2Y
(nv � nvx)
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Q̂v

1A�1
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Appendix B: Semiparametric E�ciency

Following Imbens (1992), we construct a sequence of parametric models which satisfy the same

regularity conditions as our model that always includes the semiparametric model. Estimator

e�ciency can be proved by showing that the Cram�er-Rao lower bound associated with this model

sequence converges to the asymptotic covariance matrix of our semiparametric estimator. For

simplicity of exposition we assume there is no auxiliary sample information on the density fX(�),
i.e., S = 0 and Hs = 0.

To construct the sequence of parametric models recall that X has density fX(�) de�ned on
X . For any " > 0, partition X into L" subsets Xl, l = 1; :::; L", where Xl \ Xm = ; if l 6=
m and kx� zk < " if x; z 2 Xl. De�ne �l(x) = 1 if x 2 Xl and 0 otherwise and f"X(x) =
fX(x)=

hPL"
l=1 �l(x)

R
Xl fX(x)dx

i
. De�ne the parameters �l = Pfx 2 Xlg =

R
Xl fX(x)dx, l =

1; :::; L".

The sequence of parametric models indexed by " is given by

h"(y; x; iY ; iX ; s) =

8><>:
24 HyGy Pfyjx; �gf"X(x)PL"

l=1 �l�l(x)PL"
l=1 �l

R
Xl Pfyjx; �gf

"
X(x)dx

!iX
(Hy(1�Gy))(1�i

X )

35iY

�

24 (1�Hs �X
v2Y

Hv
Pfvjx; �gPL"

l=1 �l
R
Xl Pfvjx; �gf

"
X(x)dx

)GX f"X(x)
L"X
l=1

�l�l(x)

!iX

�
 
(1�Hs �

X
v2Y

Hv)(1�GX )
!(1�iX )35(1�iY )

9>=>;
1�s "

Hsf
"
X(x)

L"X
l=1

�l(x)�l

#s
;

with f"X (x) a known function and Hy, Gy, y 2 Y, GX , � and �l, l = 1; :::; L", the unknown

parameters.

The ML estimator for Qy from (2.2) is de�ned as

Q̂y =

L"X
l=1

�̂l

Z
Xl
Pfyjx; �̂gf"X(x)dx:

Hence, the dependence of the likelihood equations obtained from h"(y; x; iY ; iX ; s) on �l may be

removed by the same procedure employed to remove dependence on �̂x in the system (A.1)-(A.7).
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The resultant score vector is described by the moment indicators

Ht : (1� s)iY 1
Ht
I(y = t)� (1� s)(1� iY)(1� iX ) 1

1�Hs �
P
v2Y Hv

(B.1)

�(1� s)(1� iY)iX 1

1�Hs �
P
v2Y

Hv
Qv
Pfvjx; �g

Pftjx; �g
Qt

; t 2 Y;

Gt : (1� s)iY(iX �Gt)I(y = t); t 2 Y; (B.2)

GX : (1� s)(1� iY)(iX �GX ); (B.3)

Hs : s�Hs; (B.4)

� : (1� s)iX iY @ logPfyjx; �g
@�

(B.5)
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Qy : Qy (B.6)
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1
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l=1

�l(x)

Z
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Pfvjx; �gf"X(x)dx

!�1

�
L"X
l=1

�l(xi)

Z
Xl
Pfyjx; �gf"X(x)dx;

Ot : (1� s)iY(1� iX )I(y = t)�Ot: (B.7)

De�ne the expectation E"[Pfyjx; �g] =
PL"
l=1 �l(x)

R
Xl Pfyjx; �gf

"
X(x)dx and E"[@Pfyjx; �g=@�],

E"[@2Pfyjx; �g=@�@�0] similarly. The di�erence between the moment indicators (B.1)-(B.7) and
(4.2)-(4.8) is that the respective expectations replace Pfyjx; �g and @Pfyjx; �g=@�.
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Continuous di�erentiability of Pfyjx; �g, @Pfyjx; �g=@� and @2Pfyjx; �g=@�@�0 in x implies
uniform convergence of E"[Pfyjx; �g], E"[@Pfyjx; �g=@�] and E"[@2Pfyjx; �g=@�@�0] to Pfyjx; �g, @
Pfyjx; �g=@� and @2Pfyjx; �g=@�@�0 respectively. Let 
" = E[g"('0)g"('0)0] andG" = E[@g"('0)=@'0]
where g"(') stacks the moment indicators (B.1)-(B.7). Hence, lim"!0
" = 
 and lim"!0G" =

G. Thus, the asymptotic variance matrix G�1" 
"G
0�1
" , which is the Cram�er-Rao lower bound for

the parametric ML estimator de�ned by (B.1)-(B.7), also converges to G�1
G0�1, the asymptotic

variance matrix of the GMM estimator. Therefore, the GMM estimator is semiparametrically

e�cient.

Analogously, in the presence of auxiliary information on Qy, as described in section 6.2, a

de�nition of �" and H", similar to that for 
" and G" above, allows a similar conclusion to be

reached, since the asymptotic variance matrix (H 0
"�
�1
" H")

�1 of the ML estimator converges to

(H 0��1H)�1.

Appendix C: Response Covariate Dependence

The conditional independence assumptions of section 2.3 may be weakened to allow a dependence

on �nite partitions of the covariate sample space X . Let XJj , j 2 J , where J is �nite, be a

partition of X , i.e., XJj \ XJl = ;, j 6= l, and X = [j2JXJj . De�ne the random variable J = j if

X 2 XJj , j 2 J . To incorporate dependence on covariates X, Assumption 2.3 is modi�ed to

Assumption C.1 (Conditional Probability of Observing Y .) Observation of Y is conditionally

independent of X given Y ; i.e.,

Py;j = PfIY = 1jY = y;X = xg
= PfIY = 1jY = y; J = jg;

where 0 < Py;j < 1, j 2 J , y 2 Y, x 2 X .

Assumption 2.4 may be altered in a similar fashion, i.e., Gy;j = PfIX = 1jIY = 1; Y = y; J = jg
and GXj = PfIX = 1jIY = 0; Y = y; J = jg where 0 < Gy;j < 1, 0 < GXj < 1, j 2 J , y 2 Y, x 2 X .
The choice of identical partition of X for Py;j , Gy;j and G

X
j may be relaxed straightforwardly but

at the expense of a more involved notation.

Therefore, from Assumptions 2.2, 2.3, and C.1, PfIY = 1; IX = 1jY = y;X = x; S = 0g =
Py;jGy, PfIY = 0; IX = 1jY = y;X = x; S = 0g = (1 � Py;j)GX , X 2 XJj , j 2 J , etc., i.e., the
conditional probabilities of observing respondent, INR(y), INR(x) and INR units given (Y;X) now

display a discrete dependence on X in addition to that on Y .

Mirroring (2.6) in section 2.3, PfIY = 1; IX = 1g =
P
y2Y

P
j2J Py;jGyQy;j , where Qy;j =

PfY = y; J = jg =
R
XJ
j
Pfyjx; �gfX(x)dx, cf. (2.2). Similarly to (2.7) and (2.8), de�ne Hy;j =

PfY = y; J = j; IY = 1; S = 0g with a similar de�nition for Hnr
y;j . Then Qy;j = (Hy;j +H

nr
y;j)=(1�

Hs) and Py;j = Hy;j=Qy:j(1�Hs). Cf. (2.9) and (2.10).
De�ne the binary indicators IJj = 1, if X 2 XJj , and 0 otherwise, j 2 J . Therefore, under

Assumptions 2.1-2.3 and C.1, the joint sample density function of Y , X, IY , IX , fIJj gj2J and S
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becomes

h(y; x; iY ; iX ; fiJj gj2J ; s) =

8>><>>:
264Y
j2J

�
Hy;j
Qy;j

GyPfyjx; �gfX(x)
�iX iJj 0@X

j2J
Hy;j(1�Gy)

1A(1�iX )
375
iY

�

24Y
j2J

 
(1�Hs �

X
v2Y

Hv;j
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Pfvjx; �g)GX fX(x)
!iX iJj

�

0@X
j2J

 
(1�Hs)

X
v2Y

Qv;j �
X
v2Y

Hv;j

!
(1�GX )

1A(1�iX )
375
(1�iY )

9>>=>>;
1�s

� [HsfX(x)]s:

Essentially, Hy and Qy are replaced by Hy;j and Qy;j respectively and integration over X (
R
X ) by

summation over j 2 J and integration over Xj (
P
j2J

R
Xj ). If Assumption 2.4 is also relaxed as

outlined above, Gy;j and G
X
j are substituted for Gy and G

X respectively

Analysis proceeds as in section 4 with the inclusion of these additional parameters.
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Table 1: Ordered Probit Model: Classes

Classes Y = 1 Y = 2 Y = 3 Y = 4
2 0 ≤ ln(hrrate) ≤ ln(3.6) ln(3.6) < ln(hrrate)
3 0 ≤ ln(hrrate) ≤ ln(3.6) ln(3.6) < ln(hrrate) ≤ ln(5.0) ln(5.0) < ln(hrrate)
4 0 ≤ ln(hrrate) ≤ ln(3.6) ln(3.6) < ln(hrrate) ≤ ln(4.0) ln(4.0) < ln(hrrate) ≤ ln(5.0) ln(5.0) < ln(hrrate)

[T.1]



Table 2: Ordered Probit: RS ML and INR GMM Estimation Results

RS INR
C = 3 C = 4 C = 3 C = 4

Intercept 1.493∗∗∗ 1.480∗∗∗ 2.311∗∗∗ 2.293∗∗∗
(0.042) (0.042) (0.118) (0.119)

Months employed 0.016∗∗∗ 0.016∗∗∗ 0.027∗∗∗ 0.027∗∗∗
(0.002) (0.002) (0.003) (0.003)

Part-time -0.307∗∗∗ -0.309∗∗∗ -0.667∗∗∗ -0.671∗∗∗
(0.026) (0.026) (0.063) (0.063)

Occupation

Managers, admin, professional, associate prof. 0.464∗∗∗ 0.472∗∗∗ 1.152∗∗∗ 1.159∗∗∗
(0.035) (0.035) (0.067) (0.067)

Craft and related 0.545∗∗∗ 0.546∗∗∗ 0.447∗∗∗ 0.452∗∗∗
(0.051) (0.051) (0.086) (0.086)

Clerical and secretarial -0.036 -0.035 0.176∗ 0.176∗
(0.031) (0.030) (0.093) (0.093)

Head of houshold 0.201∗∗∗ 0.208∗∗∗ 0.194∗∗∗ 0.201∗∗∗
(0.028) (0.027) (0.056) (0.057)

Married 0.163∗∗∗ 0.167∗∗∗ 0.216∗∗∗ 0.220∗∗∗
(0.026) (0.026) (0.052) (0.052)

Qualifications

Degree level 0.214∗∗∗ 0.215∗∗∗ 0.464∗∗∗ 0.464∗∗∗
(0.072) (0.071) (0.075) (0.076)

NVQ level 1/equiv -0.145∗∗∗ -0.143∗∗∗ -0.373∗∗∗ -0.372∗∗∗
(0.030) (0.030) (0.065) (0.065)

None -0.320∗∗∗ -0.328∗∗∗ -0.607∗∗∗ -0.617∗∗∗
(0.029) (0.029) (0.084) (0.084)

Pay period less than weekly -0.323∗ -0.345∗∗ -1.214∗∗∗ -1.230∗∗∗
(0.166) (0.164) (0.341) (0.326)

Size (25+ employees at workplace) 0.220∗∗∗ 0.233∗∗∗ 0.162∗∗∗ 0.173∗∗∗
(0.024) (0.024) (0.056) (0.056)

Industry

Distribution, hotels & restaurants -0.223∗∗∗ -0.230∗∗∗ -0.375∗∗∗ -0.384∗∗∗
(0.026) (0.026) (0.071) (0.071)

Industry: other services -0.301∗∗∗ -0.306∗∗∗ -0.477∗∗∗ -0.481∗∗∗
(0.049) (0.049) (0.110) (0.110)

Region: London 0.327∗∗∗ 0.336∗∗∗ 0.543∗∗∗ 0.551∗∗∗
(0.057) (0.057) (0.095) (0.096)

Notes: Estimated standard errors in parentheses; ∗∗∗, ∗∗ and ∗ denote significance at the 0.01, 0.05
and 0.10 levels respectively.
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Table 3: Experimental Designs: Missing Data Patterns

Models C = 2 C = 3 C = 4
Designs a b c d a b c d e a b c d e
P1 1.0 0.50 0.98 0.98 1.0 0.50 0.98 0.98 0.98 1.0 0.50 0.98 0.98 0.98
P2 1.0 0.50 0.50 0.70 1.0 0.50 0.50 0.70 0.70 1.0 0.50 0.98 0.98 0.80
P3 1.0 0.50 0.50 0.70 0.50 1.0 0.50 0.50 0.70 0.70
P4 1.0 0.50 0.50 0.70 0.50
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Table 4: Ordered Probit: C = 2

θ0 θ1 θ2 θ3
N Estimator Bias SD MAE Bias SD MAE Bias SD MAE Bias SD MAE

Mean Median Mean Median Mean Median Mean Median

Design a: Py = (1.00, 1.00)
500 RS .004 .003 .165 .132 .093 .048 .014 .011 .017 .019 .193 .154 .028 .004 .270 .196

Design b: Py = (0.50, 0.50)
RS .008 .004 .254 .178 .202 .070 .022 .017 .055 .039 .314 .224 .033 -.004 .473 .280

Design c: Py = (0.98, 0.50)
RS -.161 -.164 .194 .374 .183 .141 .016 .013 .105 .099 .230 .190 .126 .096 .348 .249
INR .008 .006 .159 .123 .088 .043 .014 .011 .018 .023 .198 .158 .048 .006 .611 .216
UNR .074 .049 .231 .202 .048 .014 .014 .011 -.006 -.017 .208 .164 .067 -.022 .687 .282

Design d: Py = (0.98, 0.70)
RS -.076 -.078 .181 .208 .138 .086 .015 .012 .061 .066 .210 .170 .068 .046 .260 .210
INR .007 .005 .160 .124 .083 .045 .014 .011 .017 .025 .197 .157 .034 .005 .535 .201
UNR .074 .037 .247 .204 .043 .012 .013 .010 -.014 -.010 .196 .156 .101 -.031 1.277 .321

Design a: Py = (1.00, 1.00)
1000 RS .001 .000 .121 .095 .055 .045 .009 .007 .011 .007 .139 .111 .014 .005 .177 .139

Design b: Py = (0.50, 0.50)
RS .001 .000 .154 .122 .091 .060 .013 .011 .016 .017 .195 .155 .029 .013 .247 .194

Design c: Py = (0.98, 0.50)
RS -.166 -.167 .138 .380 .146 .137 .011 .009 .084 .077 .163 .137 .104 .098 .197 .180
INR .004 .006 .112 .087 .051 .038 .010 .007 .010 .009 .145 .116 .012 .000 .169 .132
UNR .047 .029 .175 .138 .034 .026 .010 .007 -.012 -.013 .149 .120 -.009 -.013 .176 .140

Design d: Py = (0.98, 0.70)
RS -.081 -.083 .129 .196 .101 .089 .010 .008 .049 .043 .151 .123 .060 .051 .187 .155
INR .005 .003 .111 .086 .044 .034 .010 .007 .013 .007 .149 .116 .012 .001 .174 .134
UNR .050 .016 .194 .144 .031 .020 .009 .007 -.015 -.020 .144 .115 -.013 -.021 .177 .142

[T.4]



Table 5: Ordered Probit: C = 3

θ0 θ1 θ2 θ3
N Estimator Bias SD MAE Bias SD MAE Bias SD MAE Bias SD MAE

Mean Median Mean Median Mean Median Mean Median

Design a: Py = (1.00, 1.00, 1.00)
500 RS .003 .004 .144 .114 .067 .033 .011 .009 .011 .012 .163 .131 .017 .008 .200 .154

Design b: Py = (0.50, 0.50, 0.50)
RS .003 .003 .191 .150 .130 .054 .016 .013 .031 .028 .239 .189 .035 .021 .294 .222

Design c: Py = (0.98, 0.50, 0.50)
RS -.135 -.134 .181 .316 .193 .165 .014 .012 .130 .124 .212 .181 .141 .125 .249 .232
INR .024 .022 .149 .124 .047 .024 .012 .009 -.013 -.013 .183 .145 .018 -.008 .422 .178

Design d: Py = (0.98, 0.70, 0.70)
RS -.062 -.063 .163 .177 .130 .098 .012 .010 .074 .072 .188 .155 .086 .066 .254 .192
INR .017 .015 .143 .114 .049 .026 .011 .009 -.004 -.003 .172 .137 .013 -.007 .231 .159

Design e: Py = (0.98, 0.70, 0.50)
RS -.145 -.146 .173 .336 .150 .120 .013 .011 .091 .087 .202 .167 .114 .104 .241 .211
INR .019 .019 .146 .119 .048 .029 .011 .009 -.003 -.006 .177 .141 .008 -.005 .205 .156

Design a: Py = (1.00, 1.00, 1.00)
1000 RS .000 -.001 .102 .082 .034 .028 .007 .006 .008 .008 .119 .093 .007 .001 .136 .107

Design b: Py = (0.50, 0.50, 0.50)
RS .000 -.001 .132 .105 .048 .030 .010 .008 .007 .000 .167 .134 .016 .007 .199 .154

Design d: Py = (0.98, 0.50, 0.50)
RS -.138 -.139 .128 .318 .152 .146 .009 .008 .112 .104 .152 .134 .125 .115 .174 .180
INR .018 .017 .107 .091 .013 .002 .008 .006 -.014 -.018 .133 .106 -.009 -.016 .140 .110

Design d: Py = (0.98, 0.70, 0.70)
RS -.066 -.066 .115 .163 .097 .086 .008 .007 .061 .060 .134 .111 .066 .058 .155 .136
INR .011 .011 .098 .081 .021 .013 .007 .006 -.009 -.008 .128 .101 -.005 -.011 .136 .107

Design e: Py = (0.98, 0.70, 0.50)
RS -.149 -.149 .122 .342 .121 .116 .009 .007 .071 .070 .144 .120 .095 .088 .163 .155
INR .014 .013 .105 .086 .022 .011 .008 .006 -.013 -.016 .130 .102 -.008 -.011 .133 .105

[T.5]



Table 6: Ordered Probit: C = 4

θ0 θ1 θ2 θ3
N Estimator Bias SD MAE Bias SD MAE Bias SD MAE Bias SD MAE

Mean Median Mean Median Mean Median Mean Median

Design a: Py = (1.00, 1.00, 1.00, 1.00)
500 RS .003 .003 .144 .114 .067 .034 .011 .009 .012 .013 .163 .131 .017 .008 .200 .154

Design b: Py = (0.50, 0.50, 0.50, 0.50)
RS .003 .004 .193 .151 .126 .059 .016 .013 .032 .030 .241 .192 .034 .014 .295 .222

Design c: Py = (0.98, 0.98, 0.50, 0.50)
RS -.143 -.144 .174 .333 .164 .128 .013 .011 .104 .099 .203 .170 .125 .107 .244 .217
INR .020 .020 .144 .118 .045 .018 .011 .009 -.006 -.002 .176 .141 .014 -.014 .324 .168

Design d: Py = (0.98, 0.98, 0.70, 0.70)
RS -.067 -.067 .160 .183 .121 .086 .012 .010 .063 .060 .184 .151 .075 .063 .225 .182
INR .014 .013 .141 .111 .059 .025 .011 .009 .003 .007 .173 .137 .012 -.006 .207 .156

Design e: Py = (0.98, 0.80, 0.70, 0.50)
RS -.146 -.147 .171 .339 .147 .122 .013 .011 .087 .089 .200 .166 .111 .102 .240 .210
INR .018 .018 .145 .116 .052 .031 .011 .009 .000 .000 .175 .140 .017 -.006 .320 .166

Design a: Py = (1.00, 1.00, 1.00, 1.00)
1000 RS .000 .000 .102 .082 .034 .028 .007 .006 .008 .008 .119 .093 .007 .001 .136 .108

Design b: Py = (0.50, 0.50, 0.50, 0.50)
RS .000 .000 .131 .105 .049 .039 .010 .008 .006 -.004 .166 .133 .016 .006 .199 .155

Design c: Py = (0.98, 0.98, 0.50, 0.50)
RS -.148 -.148 .125 .339 .133 .126 .009 .008 .085 .085 .147 .125 .109 .100 .168 .167
INR .014 .013 .102 .084 .020 .007 .007 .006 -.009 -.016 .132 .104 -.004 -.007 .137 .108

Design d: Py = (0.98, 0.98, 0.70, 0.70)
RS -.072 -.072 .113 .173 .089 .082 .008 .007 .050 .048 .132 .108 .059 .049 .152 .131
INR .010 .010 .098 .080 .025 .020 .007 .006 -.004 -.007 .129 .101 -.004 -.012 .135 .106

Design e: Py = (0.98, 0.80, 0.70, 0.50)
RS -.150 -.150 .121 .345 .115 .114 .009 .007 .066 .066 .142 .118 .091 .086 .162 .153
INR .013 .013 .103 .085 .017 .007 .007 .006 -.010 -.015 .129 .101 -.007 -.011 .133 .105

[T.6]
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Figure 1: Missingness Structure
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FIGURE 2: ESTIMATED SAMPLING DENSITIES: C=4, N=1000

Notes: RS (solid line) and INR (dashed line) estimators. The vertical dotted line indicates the true value of the parameter.

I) Design b: P = (0.50,0.50,0.50,0.50)

II) Design c: P = (0.98,0.98,0.50,0.50)
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FIGURE 3: ESTIMATED SAMPLING DENSITIES: INR  ESTIMATORS

Note I): N=1000: C=2 (solid line), C=3 (dotted line), and C=4 (dotted-dashed line). The vertical dotted line indicates the true value of the parameter.

Note II): C=4: N=500 (solid line), N=1000 (dotted line), and N=2000 (dotted-dashed line). The vertical dotted line indicates the true value of the parameter.

I) Design e: P = (0.98,0.80,0.70,0.50)

II) Design e: P = (0.98,0.80,0.70,0.50)




