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Abstract

We propose conditions on games of incomplete information, under which solving the

game reduces to solving a corresponding game of complete information. These games

are referred to as scalable games. After establishing a link between (i) scalable games,

(ii) games of complete information and (iii) games with strategy restrictions, we present

two distinct applications. The first application demonstrates how scalable games can

be used to model complex situations in a tractable manner. For instance we provide

a tractable model of an asymmetric private value first price auction with a reserve

price and risk averse bidders. The second application shows how certain deterministic

all pay auctions with incomplete information are strategically equivalent to stochastic

contests with complete information. In particular for the two player case we show that

a contest is strategically equivalent to an all-pay auction whenever the relevant contest

success function is homogenous of degree 0 and other mild conditions are satisfied.
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1 Introduction

In this paper we study certain games of incomplete information - which we call scalable games

- where players observe their type before choosing their action. Scalable games are of interest

because they provide a link between three different ways of modeling the same phenomena.

We show that scalable games are strategically equivalent to corresponding games of complete

information where players do not observe any private information. Moreover scalable games

are strategically equivalent to other games of incomplete information where players choose

a strategy profile from a restricted set before their type is revealed. We now discuss each of

these games in turn.

Many situations where players face incomplete information can be modeled directly using

scalable games, including settings such as firms competing on price or on quantity, auction

environments and beauty contests. We show that such models (i) can capture complex

situations and (ii) can be solved by analysing a game of complete information. Therefore

using the scalable game structure provides an economist with a tractable way of solving

incomplete information games for a wide range of problems, which are difficult to solve in

general. For instance consider the case of an asymmetric private value auction with a reserve

price and risk averse bidders. This problem does not have a simple general solution. However

if the auction considered has the scalable games structure, pure strategy equilibria can be

found by solving a set of simple equations.

For every scalable game there exists a strategically equivalent game of complete information.

In particular this is interesting when the resulting complete information game has been

previously studied in the literature and hence is of interest in its own right. In order to

demonstrate this, we show that there is a mapping between the equilibria of certain all-pay

auctions and the equilibria of complete information contests with stochastic allocation rules

introduced by Lazear & Rosen (1981) and Tullock (1980). We further illustrate this point by

characterizing the two player contest success functions which are strategically equivalent to

some all pay auction where players have private values. In the contest the prize is allocated

according to a stochastic allocation rule and players know each others valuations of the prize;
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meanwhile in the all-pay auction the prize is allocated according to a deterministic allocation

rule and players do not know each others valuations of the prize. Hence the result shows

that two seemingly distinct games are strategically equivalent. In addition to this general

result covering two player contests, we give more specific results for n-player contests. First

we show that any n-player Tullock contest is strategically equivalent to some all-pay auction

where players have private values. A similar result links a common value all pay auction

and the contest success function with draws considered in Yildizparlak (2013). This shows

a surprising connection between contests with draws and common value auctions.

In a scalable game players observe their type ti ∈ Ti and then choose an action ai ∈ Ai as is

the case in standard models. On the other hand in games of strategy restrictions as proposed

by Compte & Postlewaite (2013) players choose a strategy profile σi : Ti 7→ Ai from a

restricted set Σ before observing their type. For instance Compte & Postlewaite (2013) study

the case of auctions where σi ∈ Σ whenever σi(ti) = ti− ei. We also study games of strategy

restrictions and argue that - depending on the application - certain restricted sets Σ should

be preferred to others. In the case of auctions where σi ∈ Σ whenever σ(ti) = ti × ei and

show that such a game of strategy restrictions is equivalent to some scalable game without

strategy restrictions. This gives justification for considering such a strategy restriction since

it can be shown to be strategically equivalent to a game without strategy restrictions.1

Scalable games borrow the information structure used in global games introduced by Carlsson

(1991). A state of the world θ is realized and players observe a noisy signal ti of this state,

which we refer to as the type of player i. All players then simultaneously choose an action

determining the outcome of the game. More precisely scalable games are those games that

satisfy two key assumptions namely that (i) the payoff function is scalable and (ii) the

information structure satisfies an invariance property. The first assumption - scalability of

the payoff function - captures a number of settings where the structure of the game remains

unchanged if all variables are scaled by a constant. In particular this holds when utility

functions are homogeneous of degree α, or are additively invariant. This captures a large

1We have not been able to find similar justification for the strategy restriction considered by Compte &
Postlewaite (2013).
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family of games studied in the literature including (i) models with quadratic utility, (ii)

auctions and procurement contests, (iii) certain public good problems and many others.

Many situations of incomplete information can be described using a scalable payoff function.

The second assumption is equivalent to requiring that the shape of the distribution of types

is common knowledge among players, but - after observing his type - a player receives no

information about what quantile of the distribution his type was drawn from. This ensures

that a player’s type does not provide the player with information about his rank. Such an

assumption is approximately satisfied in the model considered by Abreu & Brunnermeier

(2003) and in the model considered by Klemperer (1999). Although the assumption does

not hold in models with a proper prior, it does hold in several models using a diffuse prior.

Together these two assumptions imply that the game - and hence the decision problem -

solved by a player does not look fundamentally different depending on his type. In these

games incomplete information arises from uncertainty over types and over the state of the

world. The main contribution of this paper is to show that equilibria of a scalable game can

be found by studying a related complete information game. First this provides a simple way

to find the equilibrium of the original game of incomplete information. Secondly - in the

case where the complete information game has independent interest - the original game of

incomplete information gives an alternative description of the strategic situation studied in

the game of complete information.

In this paper we primarily focus on the Nash equilibria of scalable games where players use

certain scalable strategies. These strategies are scaled in the same way as the information

structure and the payoff structure. Therefore in the equilibria considered, players not only

consider a very similar decision problem, they also act in very similar ways whatever their

type: for instance in an auction setting all players might bid a constant proportion of their

valuation. In these equilibria both the decision problem and the action chosen are scaled by

the player’s type.

In section 7 we consider the assumption of a scalable information structure in combination
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with the improper prior in some more detail. We show that together they give rise to a key

property that both provides intuition for the result and plays a central role in our analysis.

This key property is referred to as maximal rank uncertainty and means that a player’s type

does not provide him with any information about his rank compared to the types of other

players. The probability a player assigns to being in any rank is the same for all of his types.

A related property is studied by Morris & Shin (2007) in the case of global games.

The remainder of the paper is structured as follows. We first discuss related literature

and present an illustrating example. In section two we present the model and formally

introduce the class of scalable games. Section three provides the analysis of scalable games

and establishes the link between scalable games and the corresponding games of complete

information. Section four establishes the link between scalable games and corresponding

games with strategy restrictions. Section five and six cover cover the applications discussed

above. In section seven we discuss the key property, while section eight concludes.

1.1 Related Literature

In the literature, models which either satisfy the definition of a scalable game or can easily

be modified to become a scalable game, have been used to model specific situations of

uncertainty. As mentioned above, the formation of asset price bubbles studied by Abreu &

Brunnermeier (2003) is one such model. Other examples include the clock games considered

by Brunnermeier & Morgan (2010), a recent paper on double auctions by Satterthwaite et al.

(2014), as well as supply function competition studied by Vives (2011). While these papers

provide models for specific situations, we aim at providing a general tool to model situations

of incomplete information using a scalable information structure.

The information structure of the proposed class of games has close links with the literature

on global games introduced by Carlsson & Van Damme (1993) and considered in Morris &

Shin (2002) among others. As in global games, players face uncertainty about the state of

the world θ which is drawn from a diffuse prior. Moreover each player does not observe θ but

instead receives a partially informative signal ti about the state of the world, where ti = θ+zi
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and zi can be interpreted as a noise term. However, in global games the main objective is

equilibrium selection which arises since coordination is more difficult when the state of the

world is unknown. Moreover the games considered in this paper do not necessarily have

dominance regions and a player’s signal typically enters his payoff function directly. Above

all the focus of this paper lies on the characterization of equilibria rather than equilibrium

selection.

The framework proposed also has close ties with the literature on quadratic utility models a

comprehensive treatment of which is provided in Angeletos & Pavan (2007) for a continuum

of players, while Ui & Yoshizawa (2014) consider a discrete number of players. In these games

there is also uncertainty about the state of the world and players receive a noisy signal of

the state. Quadratic utility models typically focus on the social value of information and

the role of information acquisition.2 Applications to Cournot competition are provided by

Vives (1988) and Myatt & Wallace (2013).

As in this paper, players receive a signal about the state of the world which can be interpreted

to be a player’s type and may enter a players payoff function directly. On the one hand,

scalable games make stronger distributional assumptions on the state and the signals: the

information structure in a quadratic utility model is affine, satisfying the assumption that

E[θ|ti] = αti + β; in the related scalable game in additive form we require the shape of the

distribution to be the same for all types and hence E[θ|ti] = ti + β. On the other hand,

scalable games make weaker assumptions on the payoff function. While the payoff function

in most quadratic utility models depend on the actions of others only through the aggregate,

the payoff assumption in this paper is substantially weaker and allows for a much wider

range of applications.

Although equilibria in scalable strategies arise in both scalable games and in models with

quadratic utility, these equilibria in scalable strategies are driven by different factors. In

a quadratic utility model a player observing a higher signal, knows that in expectation the

2For models with endogenous information structures see for example Colombo & Pavan (2014) Myatt &
Wallace (2012) and Pavan (2014).
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state has gone up and so has the aggregate action of other players. Since his utility function is

quadratic he wants to raise his action in the same way. Due to the affine relationship between

signals, the player uses a scalable strategy profile to increase his action. On the other hand,

in the model outlined below, scalable strategies arise, because both the information structure

and the payoff structure are scaled for any type. This different mechanism is suitable for

different applications across a variety of type spaces.

Finally considering a translation from one game to a strategically equivalent game, which is

easier to solve, has also been proposed by Baye & Hoppe (2003) in the case of rent seeking and

patent races. However they consider relationships between games of complete information,

while we consider translations from an incomplete information game to a corresponding

complete information game. To fix ideas we now consider an example

1.2 Example

We now introduce a simple example to illustrate the strategic equivalence of certain games

that are closely related, but have a different information structure. Three cases are dis-

tinguished (i) players face uncertainty about the types of other players, (ii) players face

uncertainty because the translation from actions to outcomes is noisy and (iii) a complete

information game.

Consider a world with two competing countries labeled {1, 2} who actively exert their in-

fluence in a certain region. At time θ a new militant group emerges, which threatens the

security of one country but furthers the interests of the other. It is assumed that countries

have no prior information about when the new group will emerge, and this is modelled by θ

being drawn from a diffuse prior with g(θ) = 1 for all θ ∈ R.

Each country does not immediately learn of this new development, but rather learns at some

time ti = θ + zi, where each zi is independent of θ and is distributed uniformly over the

interval [0, 1]. After learning of the event each country must choose a time ai ≥ ti at which

to decide upon a response. It is assumed that decisions are immediately put into action.
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Since better intelligence will lead to more effective intervention, it is assumed that the payoff

associated with executing an action at time ai is ui(ai, ti) = ai− ti. However so that the two

countries do not enter into direct conflict, only the first action chosen is executed, and the

second mover receives a payoff of ui(ai, ti) = 0. As will be clear from the formal definition

that follows this game is a scalable game.

In order to solve this scalable game we look for a symmetric equilibrium in scalable strategies

of the form σi(ti) = ti + e∗. Since the strategy of country j is assumed to be monotonic, the

maximization problem of country i can be written as follows:

max
ai

{
Vi(ai|ti)

}
= max

ai

{
F
(
σ−1
j (ai)|ti

)
(ai − ti)

}
Differentiating this equation leads to the following first order condition:

dVi(ai|ti)
dai

= F
(
σ−1
j (ai)|ti

)
+

1

σ′
(
σ−1(ai)

)f(σ−1
j (ai)|ti

)
(ai − ti)

In equilibrium the following first order condition must be equal to 0 when ai = σi(ti). Using

the fact that for all ti (i) σi(ti) = σj(ti), (ii) σ′(ti) = 1 and (iii) σi(ti)− ti = e∗ we reach:

F (ti|ti) + f(ti|ti)e∗ = 0

It can be calculated that F (ti|ti) = 0.5 while f(ti|ti) = 1. Hence e∗ = 0.5 and indeed

σi(ti) = ti + 0.5 corresponds to an equilibrium in scalable strategies. This completes the

analysis of the scalable game.

Consider now that instead of delay both countries learn of the emergence of the new militant

group immediately and so ti = θ. Again each country chooses a time ai at which to decide

upon a response. However in this version of the game there is a delay between the decision

to act and the implementation of the action itself. Indeed the action only comes into effect

at a time ai + zi where again zi is drawn from a uniform distribution over the interval [0, 1]

for each i ∈ {1, 2}. Country i is the first mover only if ai + zi < aj + zj and in this case

country i receives a payoff of ui(ai, ti) = ai− ti. The second mover again receives a payoff of
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u(ai, ti) = 0. Although this second game is a game with uncertainty over the state of nature

rather than over types, it bears a strong resemblance to the first game.

In order to solve this game we look again for an equilibrium in scalable strategies of the form

σi(ti) = ti + e∗. The maximization problem of player i can be written as follows:

max
ai

{
Vi(ai|ti)

}
= max

ai

{
P
(
ai + zi < aj + zj

)
(ai − ti)

}
Note that ai = ei − ti and aj = ej − tj. Making ei the choice variable and re-writing the

maximization problem accordingly leads to:

max
ei

{
Vi(ei + ti|ti)

}
= max

ei

{
P
(
ei + zi < ej + zj

)
ei

}
Writing the left-hand side in terms of an integral leads to:

max
ei

{
Vi(ei + ti|ti)} = max

ei

{
ei

∫ 1

0

∫ 1

0

1{ei + zi < ej + zj}dzidzj
}

Note that the right-hand side depends only on (ei, ej). This motivates us to consider the

game of complete information without types.

Finally suppose that each country learns of the emergence of the new militant group at time

0 and so ti = θ = 0. Each country then chooses a time to wait ei = ai− ti. After choosing a

time to wait payoffs are realised and are given as follows:

φi(ei, ej) = ei

∫ 1

0

∫ 1

0

1{ei + zi < ej + zj}dzidzj

Here we have defined a game of complete information using the maximization problem of the

previous game. After evaluating the integral, the payoff function can be written as follows:
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φi(ei, ej) =



0 if ei > ej + 1

(1−ei+ej)2
2

ei if ej < ei < ej + 1[
1− (1−ej+ei)2

2

]
ei if ej − 1 < ei < ej

ei if ei < ej − 1

Again we look for a symmetric pure strategy equilibrium of the form (e∗, e∗). Differentiating

with respect to ei and using the fact that ei = ej = e∗ leads to:

δφ(ei, ej)

δei
= −e∗ + 0.5

Since at equilibrium this first order condition must be equal to 0 it follows that e∗ = 0.5 is

the only candidate equilibrium. Indeed it can be shown that it is a symmetric pure strategy

equilibrium. This proves a particular case of the theorem showing that σi(ti) = ti + e∗ is

an equilibrium of the initial scalable game if and only if (e∗, e∗) is an equilibrium of the

corresponding complete information game. The next section now formalizes this claim in a

general setting.

2 Model

First consider a finite set of players I = {1, ..., n}, each of whom have a type ti ∈ (ti, ti) = Ti

and choose actions ai ∈ (ai, ai) = Ai. Note that it is assumed that Ai and Ti are open

intervals for all i ∈ I. We use t = (t1, . . . , tn) and a = (a1, . . . , an) to denote the vector of

types and the vector of actions respectively. Moreover t−i (or a−i) is used to mean the vector

t (or a) excluding the i’th element. Secondly define a domain to be a set (θ, θ) = Θ ⊆ R,

from which the state θ is drawn.3 Without loss of generality we consider the case where

Ai = Ti = Θ for all i ∈ I. Thirdly consider a strictly increasing differentiable function G(θ)

- referred to as a generator - where G is a bijection from Θ to R. An environment {I,Θ, G}

is made up of a set of players I, a domain Θ and a generator G.

3We allow for the case where θ = −∞ or θ =∞
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The generator G is associated with (i) an improper prior g(θ), (ii) binary operators ⊕G
and 	G and (iii) a set of strategies ΣG. We now introduce each of these components.

The derivative of the generator G(θ) is denoted by g(θ), which corresponds to an improper

prior over the state space Θ. Given a generator G, we define the operators a ⊕G b =

G−1
(
G(a) +G(b)

)
and a	G b = G−1

(
G(a)−G(b)

)
. The two important examples are given

in the table below:4

Θ G(θ) g(θ) a⊕G b a	G b

R θ 1 a+ b a− b

R++ ln(θ) 1
θ

a× b a÷ b

The first case of a uniform improper prior where Θ = R and g(θ) = 1, has been used

in the global games and auction literature.5 Meanwhile the second case where Θ = R++

and g(θ) = 1
θ

plays an important role in our applications. Other cases shed light on the

extent to which strategy restrictions can be justified by appealing to games without strategy

restrictions. Results obtained using improper priors closely correspond to results obtained

using suitably chosen proper priors; a formal discussion of improper priors can be found in

Hartigan (1983).6

Remembering that Ti = Ai = Θ, a strategy for player i is a mapping σi : Θ 7→ Θ. We define

the set of strategies associated with a generator G : Θ 7→ R as follows:

ΣG :=
{
σi| for some ei ∈ Θ, σi(ti) = ti ⊕G ei for all ti ∈ Θ

}
In the special case where Θ = R and G(θ) = θ, the set ΣG contains the additively scalable

strategies of the form σi(ti) = ti + ei. Similarly when Θ = R++ and G(θ) = ln(θ), the set

ΣG contains the multiplicatively scalable strategies of the form σi(ti) = ti × ei. Throughout

4Note that (a⊕G b)⊕G c = a⊕G (b⊕G c). Moreover it is easy to check that (a⊕G b)	G c = a⊕G (b	G c).
This ensures standard addition and subtraction can be used.

5See for example Klemperer (1999) and Morris & Shin (2002)
6In the appendix it is shown that when δ is small, results obtained under the uniform prior g(θ) = 1

closely correspond to results obtained using the proper prior g(θ) = 1
2δ e
−δ|θ|. This result is easily generalised

to other improper priors.
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the paper we will use σ(t) = (σ1(t1), ..., σn(tn)) to denote the vector of strategy profiles and

x⊕Gk to mean (x1⊕Gk, x2⊕Gk, . . . , xn⊕Gk) where k is a constant. Similarly, x⊕Gy means

(x1 ⊕G y1, x2 ⊕G y2, . . . , xn ⊕G yn). Finally we define 0G = G−1(0) and note that 0G ∈ Θ.

2.1 The Game

In this paper we consider one shot simultaneous move games in incomplete information. The

game is described by the environment {Θ, I, G} along with a utility function for each player

given by ui(a, θ, ti) and a conditional distribution function of a player’s type given each state

θ ∈ Θ, denoted by Fi(ti|θ). These functions are assumed to be independent conditional on

θ.

The timing can be thought of as follows: first the state θ is drawn from the domain Θ

according to the improper prior g(θ), but is not observed by the players. For each player

i ∈ I, a type ti is drawn from the conditional distribution function Fi(ti|θ). Each player

privately observes his type but does not observe the state nor the types of his opponents.

We assume that conditional on their type, players form beliefs about the state according to

Bayesian updating on the uninformative prior. Hence the conditional probability that player

i assigns the to the state being less than θ can be written as follows:

Gi(θ|ti) =

∫ θ
−D fi(ti|θ̃)g(θ̃)dθ̃∫
Θ
fi(ti|θ̃)g(θ̃)dθ̃

(1)

These conditional probabilities about the state are relevant for the player when determining

his expected payoff and hence when choosing an action.

Having observed his type each player chooses an action ai and receives a payoff ui(a, θ, ti).

To summarise, a game with an improper prior is composed of the following elements:

Γ = {Θ, I, g, (Fi)i∈I , (ui)i∈I}
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2.2 Scalable payoff structure

We now define a scalable payoff structure which is composed of an environment {I,Θ, G}

and a set of payoff functions (ui)i∈I . The payoff function of player i is given by ui : (Aj)j∈I×

Θ × Ti 7→ R and maps (i) the actions (a1, ..., an) of all players, (ii) the state θ and (iii) the

type ti of player i to a payoff. Informally a payoff function is scalable if when the inputs

of ui are scaled the corresponding payoff is scaled in a similar way. For instance an auction

without an entry fee described by a scalable payoff function since scaling the valuation and

the bids of all players leaves the payoffs agents receive unchanged except for a scaling factor.

However an auction with entry costs is not described by a scalable payoff function, since

scaling the valuation and bids of all players changes the burden of the entry cost relative to

the potential reward. Formally we now introduce a scalabel payoff structure as follows:

Assumption 1 (Scalable payoff structure). There exist functions Ci(ti) : Θ 7→ R++ and

Di(ti) : Θ 7→ R, such that for all i ∈ I, for all k, ti, θ ∈ Θ and for all a ∈ Rn:

ui(a; θ; ti)−Di(ti)

Ci(ti)
=
ui(a⊕G k; θ ⊕G k; ti ⊕G k)−Di(ti ⊕G k)

Ci(ti ⊕G k)

Note that this assumption refers to the opeartor ⊕G and hence depends on the generator

function G. For this reason we say that the payoff structure is scalable with respect to

G if the utility functions satisfy assumption 1. To show that this payoff assumption can

capture several economic environments, we now prove two lemmas and provide a number of

examples:

Lemma 2.1. Suppose Θ = R and G(θ) = θ. Moreover suppose for all i ∈ I, for all

θ, k, ti ∈ Θ and for all a ∈ Θn:

ui(a; θ; ti) = ui(a + k; θ + k; ti + k)

Then the payoff structure is scalable.

The payoff structure in this case is homogeneous of degree zero in the log transform. It can

easily be seen that Assumption 1 is satisfied by setting Ci(ti) = 1 and Di(ti) = 0 for all
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ti ∈ Θ, for all i ∈ I. One environment that satisfies this case is a beauty contest where

agents want their move ai both to be close to the true state θ and to be close to the average

move. Such a contest can be summarised by the following payoff function, where r ∈ [0, 1]

captures the relative importance of being close to the true state and of being close to the

average move:

ui(a; θ; ti) = −(1− r)
(
ai − θ

)2

− r
(
ai −

1

|I|
∑
j∈I

kj

)2

Note here that ti does not directly enter the payoff function and is simply a signal player

i uses to gain information about the value of θ and inform his decision. Beauty contests

with similar payoff structures have been considered by Morris & Shin (2002) and Myatt &

Wallace (2012).

Lemma 2.2. Suppose Θ = R++ and G(θ) = ln θ. Moreover suppose that for some α ∈ R+

for all θ, ti, k ∈ Θ and for all i ∈ I, for all a ∈ Θn:

ui(a; θ; ti) = kαui(a.k; θk; tik)

Then the payoff structure is scalable.

This lemma shows that - by considering a suitable domain Θ and suitable distribution

function G - any payoff function which is homogenous of degree α can be captured. One

example that satisfies this structure is a first price auction with a combination of private

values and common values. Let tβi capture the private value element of a player’s valuation

and θ1−β capture the common value element of a player’s valuation. Player i submits a bid ai

and if he submits the highest bid he wins the object and pays his bid. If he submits the lower

bid he does not win the object and pays nothing. This is summarised by the function below,

where β ∈ [0, 1] captures the relative importance of private values and common values:

ui(ai, aj; θ; ti) =

 tβi θ
1−β − ai if ai > aj

0 otherwise
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As well as being able to model several auction environments, quadratic utility models - which

are homogenous of degree two - can be captured in this setting. One example of a quadratic

utility model that can be captured is a model of Cournot competition with linear demand.

Here ai captures the quantity player i produces, and θ represents a demand shock about

which agents are imperfectly informed. The price is given by
(
θ −

∑
j∈I aj

)
and hence the

payoff of agents becomes:

ui(ai; θ; ti) = ai

(
θ −

∑
j∈I

aj

)
Further applications to auctions are studied in section 6. Having given examples of the

environments that can be captured by scalable payoff functions, we now turn attention to

the second assumption.

2.3 Scalable information structure

We now define a scalable information structure which is composed of an environment {Θ, I, G}

and a set of conditional distributions (Fi)i∈I . The conditional distribution associated with

player i is given by Fi : Ti ×Θ 7→ [0, 1], where Fi(ti|θ) captures the probability that - given

the state is θ - the type of player i is less than or equal to ti. It is assumed throughout that

Fi(ti|θ) is differentiable with respect to ti, with derivative fi(ti|θ). Moreover we assume that

ti and tj are independent conditional on θ whenever i 6= j. With this in mind, we define a

scalable information structure as follows:

Assumption 2 (Scalable information structure). For all i ∈ I and for all k, θ, ti,∈ Θ:

Fi(ti|θ) = Fi(ti ⊕G k|θ ⊕G k)

Similarly this assumption refers to the operator ⊕G and depends on the generator function

G. Therefore we say that the information structure is scalable with respect to G if the

conditional distribution functions satisfy assumption 2. This assumption captures the fact

that the conditional distribution of types has a similar shape when θ is changed. When
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a ⊕G b = a + b this implies that conditional beliefs are additively invariant: that is to say

the shape of the distribution is common knowledge but players do not know their position in

the distribution. For instance this holds when players know that the distribution is uniform

over the interval [θ − 1, θ + 1], but do not necessarily know the value of the state θ. This is

illustrated in Figure 1.

fi(ti|θ) fi(ti|θ′)

θ θ + 1θ − 1 θ′ θ′ + 1θ′ − 1

Figure 1: Uniform:Additive

Meanwhile when a ⊕G b = a × b this assumption implies that conditional beliefs are ho-

mogenous of degree 0. For instance this holds when players know that the distribution is

uniform over the interval [0, 2θ], but do not necessarily know the value of the median θ. This

is illustrated in Figure 2.

2.4 Scalable games

Above we have introduced all components and assumptions necessary to define a scalable

game Γ = {Θ, I, G, (Fi)i∈I , (ui)i∈I}. If players’ utility functions and the information structure

are scalable with respect to G, then we say that the game is scalable. Formally:
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fi(ti|θ)

fi(ti|θ′)

θ θ′

Figure 2: Uniform: Multiplicative

Definition 1. Scalable Game The game Γ is a scalable game, if it is a one shot simultaneous

move game and satisfies Assumptions 1 and 2, of the payoff structure and the information

structure being scalable.

2.5 Equilibrium

The equilibrium concept used when analysing scalable games is Bayesian Nash equilibrium.

Using σ(t) = (σ1(t1), . . . , σn(tn)) to denote a strategy profile, formally an equilibrium is

defined as follows:

Definition 2 (Equilibrium). The strategy profile σ(t) is an equilibrium of the scalable game

Γ, if and only if for all players i ∈ I and for all types ti ∈ Θ and all deviations ai ∈ Θ it

holds that:∫
Θn
gi(θ|ti)

n∏
j 6=i

fj(tj|θ)ui
(
σi(ti), σ−i(t−i); θ; ti

)
dt−idθ ≥

∫
Θn
gi(θ|ti)

n∏
j 6=i

fj(tj|θ)ui
(
ai, σ−i(t−i); θ; ti

)
dt−idθ

This definition says that in equilibrium player i with type ti has no incentive to deviate

from his prescribed strategy σi(ti) to another strategy ai. To calculate his expected utility

from playing a certain strategy, players consider the likelihood of the state being θ and the
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opponents’ types being t−i. This is captured in the expression gi(θ|ti)
∏n

j 6=i fj(tj|θ).

2.6 Expected payoff function against scalable strategies (EPFASS)

The focus of this paper lies on a special class of equilibria, where all players follow strategies

of the form σj(tj) = tj ⊕G ej, which we call scalable strategies. If G(θ) = θ, then scalable

strategies are additively linear of the form σj(tj) = tj + ej. Meanwhile if G(θ) = ln(θ), then

scalable strategies are multiplicatively linear of the form σj(tj) = tj.ej. In order to simplify

notation when considering these equilibria, we introduce the expected payoff function against

scalable strategies (henceforward EPFASS) describing a player’s expected payoff when he has

a certain type ti and all players j use scalable strategies of the form σj(tj) = tj ⊕G ej. The

EPFASS is given as follows:

Definition 3 (EPFASS).

Vi(ei|e−i, ti) =

∫
Dn

gi(θ|ti)
∏
j 6=i

fj(tj|θ)ui
(
ei ⊕ ti, e−i ⊕ t−i; θ; ti

)
dθ
∏
j 6=i

dtj

This additional notation completes the description of a scalable game and we now turn to

the analysis.

3 Analysis

First we introduce the complete information game ΓN induced by a scalable game. This

game is in normal form, and hence there is no uncertainty over the types of each player.

The formal definition of the complete information game induced by a scalable game is given

below:

Definition 4 (Complete information game). The complete information game ΓN = {I, (Ai)i∈I , (φi)i∈I}

induced by a scalable game

Γ = {Θ, I, G, (Fi)i∈I , (ui)i∈I} has the following payoff function:

φi(ei, e−i) =

∫
Θn

n∏
j=1

fj(zj|0G)ui

(
ei, e−i ⊕G z−i 	G zi; 0G 	G zi; 0G

) n∏
j=1

dzj
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We refer to the variables of integration (z1, ...., zn) as payoff shocks. Taking expectations

over these payoff shocks leads to the formation of the new payoff functions φi(ei, e−i). Note

that these payoff functions induce a complete information game without uncertainty.

The following proposition formally links the payoff function of the complete information

game to the EPFASS of the original scalable game. This result is central to the analysis and

is formally stated as follows:

Proposition 3.1. For all i there exists functions Ci : Θ 7→ R+ and Di : Θ 7→ R such that

for all ti ∈ Θ

φi(ei, e−i) =
1

Ci(ti)

[
Vi(ei|e−i, ti)−Di(ti)

]
This proposition shows that a scalable game with ex-ante uncertainty over types is closely

related to the corresponding game of complete information with interim uncertainty over

payoff shocks. In particular there is a close correspondence when players choose scalable

strategies σ = (σi)i∈I where σi(ti) = ti ⊕G ei in the scalable game and pure strategies

e = (e1, ..., en) in the complete information game.

This proposition links the EPFASS of the incomplete information game to the payoff func-

tion of the complete information game. Focusing on scalable strategies, the assumptions

of the payoff structure and the information structure being scalable (assumptions 1 and 2),

allow us to reduce the dimensionality of the decision problem. Up to a normalization, the

maximization problem looks the same for all types and can hence be written as the game of

complete information defined in equation 4. Although this proposition is the central part of

the result, the proof is relegated to the appendix, as it is notationally cumbersome. Using

Proposition 3.1 we can now state the main result of the paper:

Theorem 3.2. Consider a scalable game Γ. The strategy profile σ∗ = (σ∗1, ..., σ
∗
n) where

σi(ti) = ti ⊕ e∗i is a Nash equilibrium of this game , if and only if the strategy profile e∗ =

(e∗1, ..., e
∗
n) is a Nash equilibrium of the corresponding complete information game ΓN .

The proof can be found in the appendix.
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This theorem shows that there is a correspondence between the equilibrium in scalable

strategies of a scalable game and the pure strategy Nash equilibrium of the corresponding

complete information game. This is useful because it means that an economist can model

uncertainty using a scalable game, but in order to find an equilibrium it is sufficient to analyse

a corresponding complete information game. Using scalable games enables the difficult

problem of finding equilibria of models of incomplete information to be reduced to the simpler

problem of finding equilibria of models of complete information.

Using a scalable game to analyse a situation with uncertainty in a tractable manner is similar

to the approach taken by Abreu & Brunnermeier (2003), who analyse asset-pricing bubbles.

Indeed minor changes in modelling choices7 ensure that the model considered by Abreu &

Brunnermeier (2003) can be written as a scalable game. The equilibrium in scalable strategies

found in this paper could be found by examining a game of complete information: the choice

problem is essentially the same to that of a complete information game. This example shows

that scalable games are a useful tool for modelling a wide range of uncertainties in a tractable

manner.

4 Strategy restrictions

In this section we investigate a link between scalable games and games with strategy re-

strictions. In a game with strategy restrictions, players are required to choose their strategy

from a limited set of strategies. Recently Compte & Postlewaite (2013) consider strategy

restrictions in auctions. Their relationship with their approach is discussed in more detail

below.

In this section we highlight a relationship between such games with strategy restrictions

and scalable games. This provides a foundation for games with strategy restrictions as it

demonstrates that under certain conditions a game in which strategy restrictions are imposed

is equivalent to a scalable game without strategy restrictions. Moreover we show what type

7In particular using an improper prior rather than a specially designed proper prior
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of strategy restrictions can be justified in this way, which depends on the game.

A game with strategy restrictions is defined by a set of players I, a an action space for each

player Ai = (a, a), a set of types for each player Ti = (ti, ti), a payoff function for each

player (πi)i∈I a probability distribution function h and a set of strategies Σ. Here each πi is

a mapping πi : (Ai)i∈I × Ti 7→ R, while h : (Ti)i∈I 7→ R. As before we apply normalisations

if necessary, and without loss of generality assume Ai = Ti = (θ, θ) = Θ for all i ∈ I.

A strategy for player i is again a mapping σi : Θ 7→ Θ and Σ denotes a collection of such

strategies. Therefore after appropriate normalizations a game with strategy restrictions

can be captured by ΓR =
{
I,Θ, (πi)i∈I , h,Σ

}
. It is assumed that types are distributed

independently with h(t) =
∏

i∈I hi(ti).

In order to ensure that players indeed obey the strategy restriction, each player chooses a

strategy σi ∈ Σ before observing his type.8 This means that the maximization problem that

players face can be written as follows:

max
σi∈Σ

{∫
Θn
h(t)ui

(
σi(ti), σ−i(t−i)

)
dt
}

(2)

Equilibrium requires that no player can gain in expectation by deviating from one strategy

σ∗i to another strategy σ̂i. As well as taking expectations over the types of other players,

each player also takes expectations over his own type. This captures the fact that a player

does not know his type when choosing his strategy:

Definition 5. The strategy profile σ∗ = (σ∗1, ..., σ
∗
n) is an equilibrium if for all i ∈ I and σ̂i∫

Θn
h(t)ui

(
σ∗i (ti), σ

∗
−i(t−i)

)
dt ≥

∫
Θn
h(t)ui

(
σ̂i(ti), σ

∗
−i(t−i)

)
dt

Let S be the set of all strategies σi : Θ 7→ Θ. In the special case where Σ = S, players are

unrestricted. Therefore the interest in games of strategy restrictions lies in the case where

Σ ⊂ S. The following result shows how certain games with strategy restrictions correspond

to scalable games without strategy restrictions.

8Note that if players choose their strategy conditioning on their type, they may choose a different strategy
profile for each realisation of the type, hence creating a new strateg profile not necessarily in Σ.
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Theorem 4.1. Suppose G is a bijection between Θ and R and consider a game with strategy

restrictions ΓR =
{
I,Θ, (πi)i∈I , H,ΣG

}
. Define the corresponding scalable game

Γ =
{
I,Θ, (ui)i∈I , F, g

}
where

1. g(t) = G′(t)

2. F (t|θ) = H(t	G θ)

3. ui(a; ti; θ) = πi(a	G θ; ti 	G θ)

Then σ∗ is an equilibrium of the game with strategy restrictions ΓR if and only if σ∗ is an

equilibrium of the scalable game Γ.

Therefore when Ai = Ti = Θ for all i ∈ I and Σ = ΣG, then a game with strategy re-

strictions has the same equilibria as some corresponding scalable game. This means that

strategy restrictions can be justified whenever Theorem 4.1 can be applied. Theorem 4.1

shows that any equilibrium of ΓR reached by applying the strategy restriction ΣG corre-

sponds to an equilibrium of a scalable game Γ with (i) no strategy restrictions, (ii) a similar

payoff function and (iii) a different information structure. In many cases the payoff functions

directly correspond:9 for instance the case of private value auctions and multiplicative strat-

egy restrictions corresponds to the case of private value auctions with a scalable information

structure.

To summarize this analysis provides foundations for certain games of strategy restrictions

and gives a modeler guidance on which family of strategy restrictions is most appropriate for

which problem. In particular additive strategy restrictions are likely to be more appropriate

when Ai = Ti = Θ = R, while multiplicative strategy restrictions are likely to be more

appropriate when Ai = Ti = Θ = R++. For this reason we believe that in the context

of auctions when each valuation ti ∈ R++, the multiplicative strategy restrictions may be

have stronger foundations than the additive strategy restrictions considered by Compte &

Postlewaite (2013).

9 Suppose for some function ψi : Θn 7→ R that πi(a; ti) = ψi(a 	G ti) then ui(a; ti; θ) = πi(a; ti). This
makes the games directly comparable: for instance a private value auction with strategy restrictions will be
associated with a private value auction under a scalable information structure.
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5 Application - modeling complex situations

The aim of this section is to show how scalable games can be used to build tractable models of

complex situations. Examples of incomplete information games that can sensibly be stated

in a way to fit the suggested framework include various auction formats including both

private and value auctions in either a first price, all pay or fractional all pay setting. Indeed

the double auction framework considered by Satterthwaite et al. (2014) is an example of an

existing model in the literature, where the scalable games structure ensures tractability of

an otherwise complex situation. Another situation that can be modelled using a scalable

games structure is the formation of asset price bubbles. The setting described by Abreu &

Brunnermeier (2003) can be easily adapted to fit assumptions 1 and 2 and to illustrate the

same effects. The advantage of using scalable games is that the procedure for finding an

equilibrium is particularly simple.

Both the applications considered by Abreu & Brunnermeier (2003) and Satterthwaite et al.

(2014) require the domain to be Θ = R and the function G(θ) = θ. Our applications consider

a different domain namely Θ = R++ and the function G(θ) = ln(θ). This is particularly

appropriate when it is natural to restrict the type space to the positive numbers, such as

when a player’s type represents his valuation for an object. When Θ = R++ and G(θ) = ln(θ)

it follows that a⊕G b = ab. It follows that the complete information game corresponding to

a scalable game of this form is given as follows:

φi(e) :=

∫
z∈Rn

(
n∏
j=1

fj(zj|1)

)
ui

( 1

zi
e.z;

1

zi
, 1
) n∏
j=1

dzi (3)

This form will be used repeatedly in the applications that follow.

5.1 Auctions with risk aversion and a reserve price

Here we consider risk averse players competing in a first price auction with a reserve price.

The variable θ denotes the reserve price, while the parameter ri ∈ [1,∞) captures the level of

risk aversion of player i. In the auction examples considered here no symmetry assumptions
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are made: players may be drawn from different distributions with Fi 6= Fj for i 6= j; moreover

players may have different levels of risk aversion with ri 6= rj when i 6= j. The utility function

of the scalable game is given as follows:

ui(a; θ; ti) =

 (ti − ai)ri if ai > aj whenever i 6= j and ai > θ

0 otherwise

(4)

In this case the complete information game is {I, (φi)i∈I} where for each i ∈ I:

φi(ei, e−i) = (1− ei)ri
∫ ∞

1
ei

∫
Rn−1
++

∏
j∈I

fj(zj|1)1{eizi>ejzj}
∏
j 6=i

dzjdzi (5)

Here the complete information game can be interpreted as follows. The term (1 − ei)
ri

corresponds to the utility that player i will receive in the case that he wins. Meanwhile the

term inside the integral represents the probability with which player i will win the auction

given that he bids according to a multiplicative strategy σi(ti) = tiei. If player i is to win a

number of inequalities must hold: first player i must submit the highest bid with ai > aj for

all j which corresponds to the inequality eizi > ejzj; secondly player i must bid above the

reserve price with ai > θ which corresponds to the inequality 1
zi
> ei. This shows that the

link between the scalable game and corresponding complete information game.

5.2 Fractional all-pay auctions with private and common values

We now turn attention to all-pay auctions, where the parameter γ denotes the extent to which

costs are incurred by a bidder regardless of the outcome of the auction. At the extremes,

γ = 1 captures the case of a first price auction and γ = 0 captures the case of an all-pay

auction. Intermediate values of γ ∈ (0, 1) capture intermediate cases where a player pays

some fraction of his bid in the event of losing the auction. In this case θ is used to model

a common value component of the good. In such a model players’ valuations ti could be

considered as noisy estimates of the common value θ. In this model we allow for the utility of

a player to depend on some combination of the common value θ and their noisy estimate ti.
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The parameter β ∈ [0, 1] captures the importance of the common value component compared

to the private value. The utility function of the scalable game is given as follows:

ui(a; θ; ti) =

 tβi θ
1−β − ai if ai > aj whenever i 6= j

(1− γ)ai otherwise

(6)

This leads to the following game of complete information

φi(ei, e−i) =

∫ ∞
0

fi(zi|1)
∏
j /∈I

Fj

(eizi
ej

)
(zβ−1
i − γei)dzi − (1− γ)ei (7)

The complete information game in this case is somewhat harder to interpret, because the

probability of winning and the valuation player i places on the good are related: indeed if

the idiosyncratic shock zi is higher, then player i is on the one hand more likely to win the

auction but on the other hand will value the object less. This relationship is reflected in

the fact that the term representing the valuation (zβ−1
i − 1) now enters the integral and is

decreasing in zi.

5.3 Second price auctions with common values

Second price auctions with a common value component are an important class of auctions

and have been studied by Milgrom (1981), Milgrom & Weber (1982) and Liu (2014)amongst

others. This class of auctions can also be modelled in this framework. In this case we

consider a pure common value auction with two players where each player has a common

value θ for the good and each receives a noisy signal ti which is correlated with the common

value θ.10 The utility function of the scalable game is given as follows:

ui(a; θ; ti) =

 θ − aj if ai > aj whenever i 6= j

0 otherwise

(8)

In this case the corresponding game of complete information is given as follows:

10The n-player case and case with private and common values are similar.
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φi(ei, ej) =

∫ ∞
0

∫ ∞
0

fi(zi|1)fj(zj|1)1{eizi≥ejzj}

( 1

zi
− ejzj

zi

)
dzjdzi (9)

=

∫ ∞
0

∫ eizi
ej

0

fi(zi|1)fj(zj|1)
( 1

zi
− ejzj

zi

)
dzjdzi

(10)

We now give some guidance on how to find equilibria to these games of complete information,

and argue that such a task would be much easier than trying to solve the more general

problem without scalability assumptions.

5.4 Finding pure strategy equilibria

When finding pure strategy equilibria of the complete information games given above, the

first order conditions δφi(ei,e−i)
δei

∣∣∣
e=e∗

= 0 is a necessary condition for e∗ to be a pure strategy

equilibrium: since the action space is an open set there can be no boundary solutions and the

first order conditions must equal 0. Therefore the pure strategy equilibria of the games above

can be found by setting the first order conditions to 0 and considering the resulting system

of equations (one for each player). We call a solution to these equations a candidate pure

strategy equilibrium, and each candidate must be checked against all possible deviations.

This either could be done mechanically or assumptions could be made ensuring candidate

pure strategy equilibria are indeed equilibria.

While solving the relevant system of equations and checking the resulting solutions is not

always straightforward, it is normally far easier than tackling the more general problem

without scalability assumptions directly. For instance the analysis in Maskin & Riley (2000)

demonstrates the complexity of solving a simple two-bidder first price auction where bidders

have private values: in general such a problem requires solving a system of differential

equations (one for each player) and then checking additional conditions hold.11 On the other

hand finding solutions to the complete information games outlined here involves solving a

11Moreover Maskin & Riley (2000) assume valuations are drawn independently which is arguably as
restrictive as the scalability assumption made here.
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system of simple equations (one for each player) and then checking additional conditions

hold. Using scalability assumptions drastically reduces the potential set of strategies that

must be considered - it effectively reduces the set of strategies to ΣG - and enables modeling

of complex situations in a tractable way.

6 Application - Contest success functions

In this section we explore the relationship between all pay auctions and stochastic contest

success functions. We assume a contest success function to be a mapping Ψ : Rn
++ 7→ [0, 1]n

which maps a vector of positive efforts denoted E = (E1, ...., En) to a vector of probabilities.

The term Ψi(Ei, E−i) is used to denote the i′th argument of Ψ and captures the probability

with which player i wins the prize. Contest success functions were first modelled in this way

by Tullock (1980) and since then they have been extensively investigated.

Our contribution is to provide robust foundations for a number of complete information

contests, by showing that they are the corresponding complete information game of some

all-pay auction. This provides a bridge between the literature on contests and the literature

on all-pay auctions, allowing results proved in one framework to be translated to the other.

We assume that Vi captures player i’s valuation of the prize and V = (V1, ...., Vn) denotes

the vector of valuations. This payoff is denoted by Φi(Ei, E−i,V) and given as follows:

Φi(Ei, E−i,V) = Ψi(Ei, E−i)Vi − Ei (11)

This represents that player i wins the prize valued Vi with probability Ψi(Ei, E−i) and must

pay a cost of Ei. It is convenient to consider strategically equivalent contests written in

terms of relative efforts - that is measuring a player’s effort relative to his valuation for the

prize. Let ei = Ei
Vi

denote a player’s relative effort and define:
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ψi(ei, e−i) = Ψi(eiVi, e−i.V−i) = Ψi(Ei, E−i) (12)

φi(ei, e−i) =
1

Vi
Φi(eiVi, e−iVi,V) =

1

Vi
Φi(Ei, E−i,V) (13)

(14)

Therefore φi(ei, e−i) = ψi(ei, e−i) − ei defines a strategically equivalent contest, where the

contest success function ψ maps a vector of (relative) efforts to a vector of probabilities.12

Having written the contest in terms of relative efforts, we now make the following definition:

Definition 6. An all pay auction Γ is associated with a contest {I,Φ} if

1. The contest {I, φ} is the corresponding contest in terms of relative effort

2. The contest {I, φ} is the corresponding complete information game induced by Γ

In this section we show that a number of contests are representations of certain scalable

all-pay auctions. Throughout we assume that Θ = R++ and G(θ) = ln(θ).

6.1 Tullock contest success function

Consider the case where n players I = {1, ..., n} participate in a sealed bid private value

all-pay auction. The players’ utility functions are thus given by equation 6 with γ = 1 and

β = 1. Associated with each player is a constant Vi and uncertainty is distributed on the

interval [0,∞) according to the following distribution:

Fi(ti|θ) = exp
[
−
(Viθ
ti

)α]
on [0,∞) (15)

The corresponding complete information game is given as follows:

φi(ei, e−i) =
(Viei)

α∑
j∈I(Vjej)

α
− ei (16)

12The advantage of this formulation is it avoids repeated writing of V.
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An axiomatization of this contest success function is given by Clark & Riis (1998), who

interpret Ei as a contestant’s absolute level of effort and the parameters V α
i as a measure of

how far the contest is skewed towards player i. Considering the corresponding contest with

absolute efforts leads to the following:

Φi(Ei, E−i) =
[ (Eα

i )∑
j∈I(Ej)

α

]
Vi − Ei (17)

This shows that an all-pay auction with this structure of uncertainty is closely related to an

unbiased Tullock contest (Tullock (1980)) where players have different valuations.13

6.1.1 Tullock contest success function with draws

As a second application we examine a case with n symmetric players I = {1, ..., n} who

participate in a common value all-pay auction. In this case the players’ utility functions are

given by equation 6 where γ = 1 and β = 0. Uncertainty is distributed on the interval [0,∞)

according to the following distribution:

Fi(ti|θ) = exp
[
−
( θ
ti

)]
on [0,∞) (18)

Calculating the corresponding complete information game of this scalable game leads to the

following:

φi(ei, e−i) =
e2
i(∑n

j=1 ej

)2 − ei (19)

This complete information game is the contest success function studied by Yildizparlak

(2013). The contest success function is used to model contests where ties occur with positive

probabilities, such as in soccer games. The analysis provided here demonstrates that there

exists a strong link between common value all pay auctions and contests with ties. This link

may not seem obvious in the first place and it provides additional reasons for the importance

13Note that mixed strategy equilibria of the complete information Tullock contest that arise when β > 2,
lead to mixed strategy equilibria in scalable strategies in the corresponding auction game. For results on
mixed strategy equilibria in Tullock contests, see Baye et al. (1994) and Ewerhart (2014). These can be
immediately accommodated by a slight change of notation in Theorem 3.2.
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of studying contests with ties that goes beyond straightforward applications.

6.2 Contest success functions - 2 player case

Having proved these two specific results for N player contests to end with we prove a general

result for two-player contests. We first define what it means for a two-player contest to be

regular:

Definition 7. A two-player contest success function is regular if for all ei, ej, k ∈ R++

1. ψi(ei, ej) = ψi(k.ei, k.ej)

2. ψi(ei, ej) + ψj(ei, ej) = 1

3. If eHi > eLi , then ψi(e
H
i , ej) ≥ ψi(e

L
i , ej)

4. limêi→0 ψi(êi, ej) = 0

5. limêi→∞ ψi(êi, ej) = 1

The first two conditions are the most restrictive: the first requires the contest to be ho-

mogenous of degree 0, while the second requires that the prize is always distributed. The

remaining conditions are weaker: the third condition states that if a player exerts more effort

then his chance of winning the prize does not decrease; finally conditions four and five ensure

that if a player exerts a sufficiently small or sufficiently large amount of effort, then he will

win the contest with probability close to 0 or close to 1 respectively. Many contests studied

in the literature satisfy these conditions.

Before stating our result we slightly weaken one assumption made previously. Rather than

being drawn from a differentiable function F1(t1|θ) we assume that t1 = θ. We now state

the main result of this section:14

14It is clear that the proof of the main result is not affected by this change of assumption - it is only for
notational convenience that Fi(ti|θ) is assumed to be differentiable
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Proposition 6.1. Consider a contest success function ψ. The contest associated with ψ is

the corresponding game of some scalable all-pay auction with private values if and only if ψ

is regular.

This result shows that in the two player case the class of regular contest success functions

exactly coincides with the class of scalable private value all-pay auctions. This gives addi-

tional motivation for studying all-pay auctions and contests together, since results proved in

one framework directly correspond to results proved in the other.

7 Maximal rank uncertainty

In this section we consider the property of maximal rank uncertainty, which is a key ingredient

for the results. This property follows from assumption 2 which ensures that the information

structure is scalable and sheds some more light on the importance of this assumption. The

concept of maximal rank uncertainty generalises a similar property introduced by Morris &

Shin (2007) who consider games with symmetric players in the context of global games.

When I = {1, ..., n}, let the rank of player i be defined by ri = #{j ∈ I|tj ≤ ti}. Hence

ri ∈ {1, 2, ..., n} denotes the number of players with a type tj ≤ ti: if player i has the lowest

type then ri = 1 while if he has the highest type then ri = n. Moreover let the probability

that player i with type ti has a rank ri be given by Ωi(ri|ti). We can now define maximal

rank uncertainty.

Definition 8. A game Γ = {I,Θ, g, (Fi)i∈I , (ui)i∈I} is a game with maximal rank uncertainty

if for all ri ∈ {1, 2, ..., n}

Ωi(ri|ti) = Ωi(ri|t′i) for all ti, t
′
i ∈ Θ

Hence in a game with maximal rank uncertainty, a player’s type does not provide him with

any information about his rank. The probabilty a player assigns to being in any particular

rank is the same for all types. Formally the probability ri ≤ r∗ - namely the probability that

the rank of player i is less than or equal to r∗ - does not depend on ti. The fact that players
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do not gain information about their rank from observing their type is crucial for ensuring

that players do not want to condition their mark-up (or mark-down) ei on their type ti

and hence the existence of an equilibrium in G-scalable strategies. For instance in standard

models of private value first price auctions, players determine their mark-down depending on

their likely rank in the distribution; meanwhile in scalable games the property of maximal

rank uncertainty ensures that all players choose the same percentage mark-down.

Note that in the special case where players are symmetric all possible ranks ri are equally

likely and Ωi(ri|ti) = ri/n for all ri. The following proposition states that all scalable games

are games with maximal rank uncertainty:

Proposition 7.1. If Γ satisfies assumption 2 (and hence has a scalable information struc-

ture), then Γ is a game with maximal rank uncertainty.

8 Conclusion

In this paper we have shown that games of incomplete information with a scalable information

structure and a scalable payoff structure on the other hand are closely linked to corresponding

games of complete information. In particular the equilibria of the corresponding complete

information game coincide with equilibria in scalable strategies of the game of incomplete

information. Understanding this link is useful for two reasons: first one can use it as a tool

to model complicated situations of uncertainty, assuming that both the payoff structure and

the information structure are scalable, which means that finding an equilibrium is relatively

simple; secondly the link between complete information games and incomplete information

games may lead to results proved in one framework to be transferred to results proved in

the other. In particular this is the case for complete information games widely studied in

the literature, such as the Tullock contest success function.

While the applications presented in this paper were focusing on auctions and corresponding

contests, one can think of other games that may have interesting links to games in complete

information. Examples include Cournot competition and certain settings of public good
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provision. A further complex situation with uncertainty that could be studied using the

scalable game structure is the formation of asset price bubbles when players are asymmetric

or risk averse.

Scalable games also shed light on games where strategy restrictions are imposed. In particular

it is shown that games with certain strategy restrictions correspond to other scalable games

without strategy restrictions. This helps motivate a particular choice of strategy restriction

for a given problem, and potentially provides justifications for the use of certain strategy

restrictions, making them less ad-hoc.

Note that mixed strategy equilibria in the complete information game, resulting in a corre-

sponding mixed strategy equilibrium in scalable strategies in the scalable game, can imme-

diately be accommodated by slightly modifying the notation in Theorem 3.2. Since in each

complete information game, there exists an equilibrium in mixed strategies, this also ensures

the existence of an equilibrium in a scalable game.

This paper has however not addressed the question of whether the equilibrium in scalable

strategies is also the unique equilibrium of a scalable game. Preliminary results have shown

that when actions are strategic complements or strategic complements and the complete

information game is dominance solvable, then the game in incomplete information is dom-

inance solvable and hence the equilibrium in scalable strategies is unique. The conditions

are however very strong and it would be interesting to see whether one can find weaker

conditions leading to a unique equilibrium.

9 Appendix A: Analysis

9.1 Additional lemma

Lemma. If a game is scalable, then:

Fi(ti|θ) = Fi(ti 	G θ|0G)
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Proof. Recall that G−1(0) = 0G. Let θ−1 = G−1
(
−G(θ)

)
and note that:

θ ⊕G θ−1 = G−1
(
G(θ)−G(θ)

)
= 0G

Note also that:

ti ⊕G θ−1 = G−1
(
G(θ)−G(θ)

)
= ti 	G θ

Using these two facts together with Assumption 2 we can now show the result:

Fi(ti|θ) = Fi(ti ⊕G θ−1|θ ⊕G θ−1)

= Fi(ti 	G θ|0G)

9.2 Additional lemmas

Define zi = ti 	G θ and ei = ai 	G ti.

Lemma 9.1.

If Γ has a scalable payoff structure, then for each player i there exist functions Ci : Θ 7→ R+

and Di : Θ 7→ R+ such that:

ui

(
a; θ; ti

)
=
Ci(ti)

Ci(0)

[
ui

(
ei, e−i ⊕G z−i 	G zi; 0G 	G zi; 0G

)
−Di(0G)

]
+Di(ti)

Proof. This lemma follows almost immediately from the fact that Γ has a scalable payoff

structure. Note that by Assumption 1 there exist suitable functions such that:

ui(a; θ; ti)−Di(ti)

Ci(ti)
=
ui(a	G ti; θ 	G ti; 0G)−Di(0G)

Ci(0G)

Noting that aj	G ti = ej⊕G zj	G zi and θ	G ti = 0G	G zi leads to the following expression:

ui(a; θ; ti)−Di(ti)

Ci(ti)
=
ui

(
ei, e−i ⊕G z−i 	G zi; 0G 	G zi; 0G

)
−Di(0G)

Ci(0G)
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Finally rearranging gives the result:

ui

(
a; θ; ti

)
=
Ci(ti)

Ci(0)

[
ui

(
ei, e−i ⊕G z−i 	G zi; 0G 	G zi; 0G

)
−Di(0G)

]
+Di(ti)

Lemma 9.2.

If Γ has a scalable belief structure, then:

gi(θ|ti)
∏
j 6=i

fj(tj|θ) = −dzi
dθ

∏
j 6=i

dzj
dtj

n∏
j=1

fj(tj 	G θ|0G)

Proof. Note that the definition of a⊕Gb immediately implies the following : g(θ) d
dti

[
ti	Gθ

]
=

−g(ti)
d
dθ

[
ti 	G θ

]
Hence:

gi(θ|ti) = − d

dθ

[
ti 	G θ

]
fi(ti 	G θ|0G)

= −dzi
dθ
fi(zi|0G)

Moreover, using 9.1, we get the following:

Fj(tj|θ) = Fj(tj 	G θ|0G)

fj(tj|θ) =
d

dtj

[
tj 	G θ

]
fj(tj 	G θ|0G)

=
dzj
dtj

fj(zj|0G)

Using these two facts we obtain:

gi(θ|ti)
∏
j 6=i

fj(tj|θ) = −dzi
dθ

∏
j 6=i

dzj
dtj

n∏
j=1

fj(tj 	G θ|0G)
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9.3 Proof of Proposition 3.1

In this subsection we provide a general proof of proposition 3.1, using the lemmas above.

Proof.

Vi(ei, e−i|ti) =

∫
Θn
gi(θ|ti)

∏
j 6=i

fj(tj|θ)ui
(
ei ⊕ ti, e∗−i ⊕ t−i; θ; ti

)
dθ
∏
j 6=i

dtj

In order to do the substitution from {θ, tj1 , ...tjn−1} to {zi, zj1 , ...zjn−1} it is necessary to

consider the following Jacobian matrix:

M =



dzi
dθ

dzj1
dθ

...
dzjn−1

dθ

dzi
dtj1

dzj1
dtj1

...
dzjn−1

dtj1

... ... ... ...

dzi
dtjn−1

dzj1
dtjn−1

...
dzjn−1

dtjn−1


Since zj = tj − θ, it follows that the Jacobian matrix M has only zero entries apart from in

the first row and along the main diagonal. This means that the determinant is equal to the

product of the main diagonal:

detM =
dzi
dθ

∏
j 6=i

dzj
dtj

Note that using Lemma 9.2 above we can see that:

∏
j 6=i

fj(tj|θ) = −det(M)
n∏
j=1

fj(zj|0G)

When changing variables we must divide by the determinant when changing variables of

integration from {θ, tj1 , ...tjn−1} to {z1, z2, ...., zn}. Using also Lemma 9.1 and Lemma 9.2,

we now perform the substitution:
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Vi(ei, e−i|ti) =

∫
Θn
gi(θ|ti)

∏
j 6=i

fj(tj|θ)ui
(
ei ⊕ ti, e−i ⊕ t−i; θ; ti

)
dθ
∏
j 6=i

dtj

=

∫
Θn−1

∫ −D
D

−detM
detM

n∏
j=1

fj(zj|0G)(
Ci(ti)

Ci(0)

[
ui

(
ei, e−i ⊕G z−i 	G zi; 0G 	G zi; 0G

)
−Di(0G)

]
+Di(ti)

)
n∏
j=1

dzj

Reversing the domain of integration, removing the minus sign and rearranging yields:

Vi(ei|e∗, ti) =
Ci(ti)

Ci(0G)

[ ∫
Θn

n∏
j=1

fj(zj|0G)ui

(
ei, e−i⊕Gz−i	Gzi; 0G	Gzi; 0G

) n∏
j=1

dzj−Di(0G)
]
+Di(ti)

By definition φ(ei, e−i) =
∫

Θn

∏n
j=1 fj(zj|0G)ui

(
ei, e−i ⊕G z−i 	G zi; 0G 	G zi; 0G

)∏n
j=1 dzj.

Applying this identity gives

Vi(ei|e∗, ti) =
Ci(ti)

Ci(0G)

[
φi(ei, e−i)−Di(0G)

]
+Di(ti)

Finally rearranging terms gives the result:

φ(ei, e−i) =
Ci(0G)

Ci(ti)

[
Vi(ei|e, ti)−Di(ti)

]
+Di(0G)

9.4 Proof of 3.2

Proof. Using Proposition 3.1, the proof is now straightforward. Suppose σ(t) = t⊕ e∗.

First suppose e∗ is a Nash equilibrium of ΓN . It follows that φi(e
∗
i , e
∗
−i) ≥ φi(êi, e

∗
−i) for all

êi ∈ Θ. Using the proposition above, we can deduce that for all êi ∈ Θ and ti ∈ Θ:

1

Ci(ti)

[
Vi(e

∗
i |e∗−i, ti)−Di(ti)

]
≥ 1

Ci(ti)

[
Vi(êi|e∗−i, ti)−Di(ti)

]
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Multiplying by Ci(ti) and adding Di(ti) shows that for all êi ∈ Θ and ti ∈ Θ:

Vi(e
∗
i |e∗−i, ti) ≥ Vi(êi|e∗−i, ti)

Hence σ∗ is a Nash equilibrium of Γ.

Secondly suppose σ∗ is a Nash equilibrium of Γ. Then for all êi ∈ Θ and ti ∈ Θ we can

deduce that Vi(e
∗
i |e∗−i, ti) ≥ Vi(êi|e∗−i, ti). By reversing the steps above we can show that

φi(e
∗
i , e
∗
−i) ≥ φi(êi, e

∗
−i) for all êi ∈ Θ. Hence e∗ is a Nash equilibrium of ΓN .

σ is a NE of Γ iff Vi(e
∗
i |e∗−i, ti) ≥ Vi(êi|e∗−i, ti)

iff 1
Ci(ti)

[
Vi(e

∗
i |e∗−i, ti)−Di(ti)

]
≥ 1

Ci(ti)

[
Vi(êi|e∗−i, ti)−Di(ti)

]
iff φi(e

∗
i , e
∗
−i) ≥ φi(êi, e

∗
−i)

iff e∗ is a NE of ΓN

10 Appendix B: Strategy restrictions

10.1 Proof of Theorem 4.1

Proof. For each player i ∈ I consider an arbitrary σi ∈ ΣG such that σi(ti) = ti ⊕G ei.

Consider also the complete information game {I, φ} induced by Γ. By the definition of

φi(ei, e−i):

φi(ei, e−i) =

∫
Θn

n∏
j=1

fj(zj|0G)ui

(
ei, e−i ⊕G z−i 	G zi; 0G 	G zi; 0G

) n∏
j=1

dzj

Since ui(a; ti; θ) = πi(a	G θ; ti 	G θ), it follows that:

ui

(
ei, e−i ⊕G z−i 	G zi; 0G 	G zi; 0G

)
= ui

(
ei ⊕G zi, e−i ⊕G z−i; 0G; zi

)
Using this identity and writing ti = zi leads to:
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φi(ei, e−i) =

∫
Θn

n∏
j=1

fj(tj|0G)ui

(
ei ⊕G ti, e−i ⊕G t−i; 0G; ti

) n∏
j=1

dtj

Using the fact that σ∗i (ti) = ti ⊕G ei and ui(a; ti; 0) = πi(a; ti), it follows that:

φi(ei, e−i) =

∫
Θn

n∏
j=1

fj(tj|0G)πi(σi(ti), σ−i(ti); ti)
n∏
j=1

dtj

Let σ∗i (ti) = ti ⊕G e∗i . It follows that σ∗ is an equilibrium of ΓR if and only if e∗ is an

equilibrium of the complete information game {I, φ}. Moreover by theorem 3.2 e∗ is an

equilibrium of the complete information game {I, φ} if and only if σ∗ is an equilibrium of Γ.

Hence σ∗ is an equilibrium of ΓR if and only if it is an equilibrium of Γ.

11 Appendix C: Applications to Contests

11.1 Asymmetric Tullock contest

First recall that Fi(ti|θ) = exp
[(

Vjθ

tj

)α]
and note that the utility function can be rewritten

as follows:

ui

(
ai, a−i; θ; ti

)
= ti1{

ai>aj for all j 6=i
} − ai

This leads to the following expression for the complete information game φi(ei, e−i):

φi(ei, e−i) =

∫
Rn+
fi(zi|1)

∏
j 6=i

fj(zj|1)1{
eizi>ejzj

}dz− ei
Integrating this expression with respect to all j 6= i gives:

φi(ei, e−i) =

∫
R+

fi(zi|1)
∏
j 6=i

Fj

(eizi
ej

∣∣∣1)dzi − ei
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Note that fi(zi|1) =
αV αi
zα+1
i

F (zi|1). Hence:

φi(ei, e−i) =

∫
R+

αV α
i

zα+1
i

∏
j∈I

Fj

(eizi
ej

∣∣∣1)dzi − ei
=

∫
R+

αV α
i

zα+1
i

∏
j∈I

exp
[(vjej
ziei

)α]
dzi − ei

=

∫
R+

αV α
i

zα+1
i

exp
[ 1

zαi

∑
j∈I

(Vjej
ei

)α]
dzi − ei

Integrating this expression gives:

φi(ei, e−i) =
V α
i∑

j∈I

(
Vjej
ei

)α
=

(Viei)
α∑

j∈I(Vjej)
α

11.2 Tullock contest with draws

First note that Fi(ti|θ) = F (ti|θ) = exp
(
−θ
ti

)
and the utility function can be rewritten as

follows:

ui

(
ai, a−i; θ; ti

)
= θ1{

ai>aj for all j 6=i
} − ai

This leads to the following expression for the complete information game φi(ei, e−i):

φi(ei, e−i) =

∫
Rn+
f(z|1)

1

zi
1{

eizi>ejzj for all j 6=i
}dz− ei

Integrating this expression with respect to all j 6= i gives:
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φi(ei, e−i) =

∫
R+

f(zi|1)

zi

[∫
Rn−1
+

f(z−i|1)1{
eizi>ejzj for all j 6=i

}dz−i]dzi − ei
=

∫
R+

f(zi|1)

zi

∏
j 6=i

F
(eizi
ej

∣∣∣1)dzi − ei
Using the fact that F

(
eizi
ej

∣∣∣1) = exp
(
−ej
eizi

)
:

φi(ei, e−i) =

∫
R+

exp
(
−1
zi

)
z3
i

∏
j 6=i

exp
(−ej
eizi

)
dzi − ei

=

∫
R+

1

z3
i

exp
( n∑
j=1

−ej
eizi

)
dzi − ei

=

∫
R+

[
1

zi

][
1

z2
i

exp
( n∑
j=1

−ej
eizi

)]
dzi − ei

Integrating by parts gives:

φi(ei, e−i) =

[
1

zi

ei∑n
j=1 ej

exp
( n∑
j=1

−ej
eizi

)]∞
0

+

∫
R+

1

z2
i

ei∑n
j=1 ej

exp
( n∑
j=1

−ej
eizi

)
dzi − ei

Note that the first term is zero, while the second term can now be integrated directly:

φi(ei, e−i) =

[
e2
i(∑n

j=1 ej

)2 exp
( n∑
j=1

−ej
eizi

)]∞
0

− ei

=
e2
i(∑n

j=1 ej

)2 − ei
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11.3 2-players

Proof of Proposition 6.1

Proof. In order to prove this result, take some regular contest success function φ. Suppose

ti is drawn from the distribution Fi(ti|θ) = 0 if ti < θ and Fi(ti|θ) = 1 if ti ≥ θ. Hence ti = θ

and the complete information game is now given as follows:

φi(ei, ej) =

∫
R++

1{ei≥ejzj}dFj(zj|1)− ei

φj(ei, ej) =

∫
R++

1{ejzj≥ei}dFj(zj|1)− ej

Integrating these expressions gives:

φi(ei, ej) = Fj(
ei
ej
|1)− ei

φj(ei, ej) = 1− Fj(
ei
ej
|1)− ei

Now define Fj(tj|θ) := ψi(tj/θ, 1). Note that since ψ is regular (i) ψi(tj/θ, 1) is weakly

increasing in ti, (ii) limtj→0 ψi(tj/θ, 1) = 0 and (iii) limtj→∞ ψi(tj/θ, 1) = 1. It follows that

Fj(tj|θ) inherits these properties and so Fj(tj|θ) is a cumulative probability distribution.

Moreover it follows directly from the definition that Fj(tj|θ) is homogenous of degree 0.

Hence Fj(tj|θ) is an admissible cumulative probability distribution to be used in a scalable

private value auction. Now using the fact that Fj(tj|θ) := ψi(tj/θ, 1) we can re-write the

complete information game as follows:
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φi(ei, ej) = ψi(
ei
ej
|1)− ei

φj(ei, ej) = 1− ψi(
ei
ej
|1)− ei

Finally using the fact that (i) ψi(ei, ej) is homogenous of degree 0 and (ii) ψi(ei, ej) +

ψj(ei, ej) = 1 we obtain:

φi(ei, ej) = ψi(ei|ej)− ei

φj(ei, ej) = ψj(ei|ej)− ei

This shows that the contest function ψ is the representation of some scalable private value

all-pay auction and completes the proof.

12 Appendix D: Maximal rank uncertainty

12.1 Proof of Proposition 7.1

Proof. Define JKi ⊆ P(I) such that J ∈ JKi whenever i ∈ J and |J | ≤ k. Using this notation

we can write the probability Ωi(k|ti) as follows:

Ωi(k|ti) =
∑
J∈JKi

∫
Θ

gi(θ|ti)
∏
j∈J

Fj(ti|θ)
∏
j /∈J

(
1− Fj(ti|θ)

)
dθ

Each integral captures the probability that exactly the players j ∈ J have a type tj ≤ ti.

To calculate Ωi(k|ti) it is then necessary to sum over all J ∈ JKi . Using Proposition 9.2

it follows that gi(θ|ti) = −d[ti	Gθ]
dθ

f(ti 	G θ|0). Moreover by Assumption 2 it follows that

Fj(ti|θ) = Fj(ti 	G θ|0). Applying these transformations we reach:
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Ωi(k|ti) =
∑
J∈IK

∫
Θ

−d[ti 	G θ]
dθ

fi(ti 	G θ|0G)
∏
j∈J

Fj(ti 	G θ|0G)
∏
j /∈J

(
1− Fj(ti 	G θ|0G)

)
dθ

Now substituting θ′ = ti 	G θ:

Ωi(k|ti) =
∑
J∈IK

∫
Θ

fi(θ
′|0G)

∏
j∈J

Fj(θ
′|0G)

∏
j /∈J

(
1− Fj(θ′|0G)

)
dθ′

This expression does not depend on ti and hence Ωi(k|ti) = Ωi(k|t′i)
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