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Abstract. Restricted kernel regression methods have recently received much well-deserved atten-
tion. Powerful methods have been proposed for imposing monotonicity on the resulting estimate,
a condition often dictated by theoretical concerns; see Hall, Huang, Gifford & Gijbels (2001) and
Hall & Huang (2001), among others. However, to the best of our knowledge, there does not exist a
simple yet general approach towards constrained nonparametric kernel regression that allows prac-
titioners to impose any manner and mix of constraints on the resulting estimate. In this paper we
generalize Hall & Huang’s (2001) approach in order to allow for equality or inequality constraints on
a nonparametric kernel regression model and its derivatives of any order. The proposed approach
is straightforward, both conceptually and in practice. A testing framework is provided allowing
researchers to thereby impose and test the validity of the restrictions. Theoretical underpinnings
are provided, illustrative Monte Carlo results are presented, and an application is considered.

JEL Classification: C12 (Hypothesis testing), C13 (Estimation), C14 (Semiparametric and non-
parametric methods)

1. Introduction and Overview

Kernel regression methods can be found in a range of application domains, and continue to grow

in popularity. Their appeal stems from the fact that they are robust to functional misspecification

that can otherwise undermine popular parametric regression methods. However, one complaint fre-

quently levied against kernel regression methods is that, unlike their parametric counterparts, there

does not exist a simple and general method for imposing a broad set of conventional constraints on

the resulting estimate. One consequence of this is that when people wish to impose conventional

constraints on a nonparametric regression model they must often leave the kernel smoothing frame-

work and migrate towards, say, a series regression framework in which it is relatively straightforward

to impose such constraints, or they resort to non-smooth convex programming methods.
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One particular constraint that has received substantial attention in kernel regression settings is

that of monotonicity. In the statistics literature, the development of monotonic estimators dates

back to the likelihood framework of Brunk (1955). This technique later came to be known as

‘isotonic regression’ and, while nonparametric in nature (min/max), produced curves that were

not smooth. Notable contributions to the development of this method include Hanson, Pledger &

Wright (1973) who demonstrated consistency in two dimensions (Brunk (1955) focused solely on the

univariate setting) and Dykstra (1983), Goldman & Ruud (1992) and Ruud (1995) who developed

efficient computational algorithms for the general class of restricted estimators to which isotonic

regression belongs.1 Mukerjee (1988) and Mammen (1991) developed methods for kernel-based

isotonic regression and both techniques consist of a smoothing step using kernels (as opposed to

interpolation) and an isonotonization step which imposes monotonicity.2 A more recent alternative

to these kernel-based isotonic methods employs constrained smoothing splines. The literature on

constrained smoothing splines is vast and includes the work of Ramsay (1988), Kelly & Rice (1990),

Li, Naik & Swetits (1996), Turlach (1997) and Mammen & Thomas-Agnan (1999), to name but a

few.

Recent work on imposing monotonicity on a nonparametric regression function includes Pelck-

mans, Espinoza, Brabanter, Suykens & Moor (2005), Dette, Neumeyer & Pilz (2006) and Cher-

nozhukov, Fernandez-Val & Galichon (2007). Each of these approaches is nonparametric in nature

with the last two being kernel-based. Dette et al. (2006) and Chernozhukov et al. (2007) use a

method known as ‘rearrangement’ which produces a monotonically constrained estimator derived

from the probability integral transformation lemma. Essentially one calculates the cumulative dis-

tribution of the fitted values from a regression estimate to construct an estimate of the inverse of

the monotonic function which is inverted to provide the final estimate. Pelckmans et al. (2005)

construct a monotone function based on least squares using the Chebychev norm with a Tikhonov

regularization scheme. This method involves solving a standard quadratic program and is com-

parable to the spline-based methods mentioned above. Braun & Hall (2001) propose a method

closely related to rearrangement which they call ‘data sharpening’ that also involves rearranging

the positions of data values, controlled by minimizing a measure of the total distance that the data

1An excellent overview of isotonic regression can be found in Robertson, Wright & Dykstra (1988).
2The order of these two steps is irrelevant asymptotically.
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are moved, subject to a constraint. Braun & Hall (2001) apply the method to render a density

estimator unimodal and to monotonize a nonparametric regression; see also Hall & Kang (2005).

One of the most promising (and extensible) approaches for imposing monotonicity on a nonpara-

metric regression model is that of Hall & Huang (2001) who proposed a novel approach towards

imposing monotonicity constraints on a quite general class of kernel smoothers. Their monotoni-

cally constrained estimator is constructed by introducing probability weights for each response data

point which can dampen or magnify the impact of any observation thereby imposing monotonic-

ity.3 The weights are global with respect to the sample and are chosen by minimizing a preselected

version of the power divergence metric of Cressie & Read (1984). The introduction of the weights

in effect transforms the response variable in order to achieve monotonicity of the underlying re-

gression function. Additionally, Hall & Huang (2001, Theorem 4.3) show that when underlying

relationship is strictly monotonic everywhere the constrained estimator is consistent and equivalent

to the unrestricted estimator.

Though Hall & Huang’s (2001) method delivers a smooth monotonically constrained nonpara-

metric kernel estimator, unfortunately, probability weights and power divergence metrics are of

limited utility when imposing the range of conventional constraints of the type we consider herein.

But a straightforward generalization of Hall & Huang’s (2001) method will allow one to impose a

broad class of conventional constraints, which we outline in the proceeding section.

Imposing a broad class of conventional constraints on nonparametric surfaces has not received

anywhere near the attention as has imposing monotonicity, at least not in the kernel regression

framework. Indeed, the existing literature dealing with constraints in a nonparametric framework

appears to fall into three broad categories:

(i) Those that develop nonparametric estimators which satisfy a particular constraint (e.g.,

monotonically constrained estimators).

(ii) Those that develop nonparametric estimators which can satisfy general conventional con-

straints (e.g., constrained smoothing splines).

(iii) Those that develop tests of the validity of constraints (e.g., concavity).

3See Dette & Pilz (2006) for a Monte Carlo comparison of smooth isotonic regression, rearrangement, and the method
of Hall & Huang (2001).
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Tests developed in (iii) can be further subdivided into statistical and nonstatistical tests. The

nonstatistical tests ‘check’ for violations of economic theory, such as indifference curves crossing

or isoquants having the wrong slope; see Hanoch & Rothschild (1972) and Varian (1985). The

statistical tests propose a metric used to determine if the constraints are satisfied and then develop

the asymptotic properties of the proposed metric. These metrics are typically constructed from

measures of fit for the unrestricted and restricted models and do not focus on pure ‘economic’

violations.

Early nonparametric methods designed to impose general economic constraints include Gallant

(1981), Gallant (1982), and Gallant & Golub (1984) who introduced the Fourier Flexible Form

estimator (FFF) which is a series-based estimator whose coefficients can be easily restricted thereby

imposing concavity, homotheticity and homogeneity in a nonparametric setting.4

The seminal work of Matzkin (1991, 1992, 1993, 1994), considers identification and estimation of

general nonparametric problems with conventional economic constraints and is perhaps most closely

related to the methods proposed herein. One of Matzkin’s key insights is that when nonparametric

identification is not possible in general, imposing shape constraints tied to economic theory can

deliver nonparametric identification where it otherwise would fail. This work lays the foundation for

a general operating theory of constrained nonparametric estimation. Her methods focus on standard

economic constraints (monotonicity, concavity, homogeneity, etc.) but can be generalized to allow

for a wide range of conventional constraints on the function of interest. While the methods are

completely general, she focuses mainly on the development of economically constrained estimators

for the binary and polychotomous choice models.

Implementation of Matzkin’s constrained methods is of the two-step variety; see Matzkin (1999)

for details. First, for the specified constraints, a feasible solution consisting of a finite number of

points is determined through optimization of some criterion function (in the choice framework this is

a pseudo-likelihood function). Second, the feasible points are interpolated or smoothed to construct

the nonparametric surface that satisfies the constraints. The nonparametric least squares approach

4We note that monotonicity is not easily imposed in this setting.
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of Ruud (1995) is similar in spirit to the work of Matzkin, but focuses primarily on monotonicity

and concavity.5

Yatchew & Bos (1997) develop a series-based estimator that can handle general constraints.

This estimator is constructed by minimizing the sum of squared errors of a nonparametric function

relative to an appropriate Sobolev norm. The basis functions that make up the series estimator

are determined from a set of differential equations that provide ‘representors’. Yatchew & Bos

(1997) begin by describing general nonparametric estimation and then show how to constrain the

function space in order to satisfy given constraints. They also develop a conditional moment test to

study the statistical validity of the constraints. Given that Matzkin’s early work did not focus on

developing tests of economic constraints, Yatchew & Bos (1997) represents one of the first studies to

simultaneously consider estimation and testing of economic constraints in a nonparametric (series)

setting.

Contemporary work involving the estimation of smooth, nonparametric regression surfaces sub-

ject to derivative constraints includes Beresteanu (2004) and Yatchew & Härdle (2006). Beresteanu

(2004) introduced a spline-based procedure that can handle multivariate data while imposing mul-

tiple, general, derivative constraints. His estimator is solved via quadratic programming over an

equidistant grid created on the covariate space. These points are then interpolated to create a

globally constrained estimator. Beresteanu (2004) also suggests testing the constraints using an

L2 distance measure between the unrestricted and restricted function estimates. Thus, his work

presents a general framework for constraining and testing a nonparametric regression function in

a series framework, similar to the earlier work of Yatchew & Bos (1997). He employed his method

to impose monotonicity and supermodularity of a cost function for the telephone industry.

The work of Yatchew & Härdle (2006) focuses on nonparametric estimation of an option pricing

model where the unknown function must satisfy monotonicity and convexity along with the density

5While Matzkin’s methods are novel and have contributed greatly to issues related to econometric identification, their
use for constrained estimation in applied settings appears to be scarce and is likely due to the perceived complexity
of the approach. For instance, statements such as those found in Chen & Randall (1997, p. 324) who note that
“However, for those who desire the properties of a the distribution-free model, the empirical implementation can be
difficult. [. . . ] To estimate the model using Matzkin’s method, a large constrained optimization needs to be solved.”
underscore the perceived complexity of Matzkin’s approach. It should be noted that Matzkin has employed her
methodology in an applied setting (see Briesch, Chintagunta & Matzkin (2002)) and her web page presents a detailed
outline of both the methods and a working procedure for their use in economic applications (Matzkin (1999)).
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of state prices being a true density.6 Their approach uses the techniques developed by Yatchew &

Bos (1997). They too develop a test of their restrictions, but, unlike Beresteanu (2004), their test

uses the residuals from the constrained estimate to determine if the covariates ‘explain’ anything

else, and if they do the constraints are rejected.

Contemporary work involving the estimation of nonsmooth, constrained nonparametric regres-

sion surfaces includes Allon, Beenstock, Hackman, Passy & Shapiro (2007) who focused on imposing

economic constraints for cost and production functions. Allon et al. (2007) show how to construct

an estimator consistent with the nonparametric, nonstatistical testing device developed by Hanoch

& Rothschild (1972). Their estimator employs a convex programming framework that can handle

general constraints, albeit in a non-smooth setting. A nonstatistical testing device similar to Varian

(1985) is discussed as well.

Notwithstanding these recent developments, there does not yet exist a methodology grounded

in kernel methods that can impose general constraints and statistically test the validity of these

constraints. We bridge this gap by providing a method for imposing general constraints in nonpara-

metric kernel settings delivering a smooth constrained nonparametric estimator and we provide a

simple bootstrapping procedure to test the validity of the constraints of interest. Our approach is

achieved by modifying and extending the approach of Hall & Huang (2001) resulting in a simple

yet general multivariate, multi-constraint procedure. As noted by Hall & Huang (2001, p. 625),

the use of splines does not hold the same attraction for users of kernel methods, and the fact

that Hall & Huang’s (2001) method is rooted in a conventional kernel framework naturally appeals

to the community of kernel-based researchers. Furthermore, recent developments that permit the

kernel smoothing of categorical and continuous covariates can dominate spline methods; see Li &

Racine (2007) for some examples. Nonsmooth methods,7 either the fully nonsmooth methods of

Allon et al. (2007) or the interpolated methods of Matzkin (1991, 1992), may fail to appeal to

kernel users for the same reasons. As such, to the best of our knowledge, there does not yet exist

a simple and easily implementable procedure for imposing and testing the validity of conventional

6This paper is closely related to our idea of imposing general derivative constraints as their approach focuses on the
first three derivatives of the regression function.
7When we use the term nonsmooth we are referring to methods that either do not smooth the nonparametric function
or smooth the constrained function after the constraints have been imposed.
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constraints on a regression function estimated using kernel methods that is capable of producing

smooth constrained estimates.

The rest of this paper proceeds as follows. Section 2 outlines the basic approach then lays out

a general theory for our constrained estimator in the presence of linear constraints and presents a

simple test of the validity of the constraints. Section 3 considers a number of simulated applications,

examines the finite-sample performance of the proposed test, and presents an empirical application

involving technical efficiency on Indonesian rice farms. Section 4 presents some concluding remarks.

Appendix A presents proofs of lemmas and theorems presented in Section 2, Appendix B presents

details on the implementation for the specific case of monotonicity and concavity which may be of

interest to some readers, while Appendix C presents R code (R Development Core Team (2008))

to replicate the simulated illustration presented in Section 3.1.

2. The Constrained Estimator and its Theoretical Properties

2.1. The Estimator. In what follows we let {Yi,Xi}n
i=1 denote sample pairs of response and

explanatory variables where Yi is a scalar, Xi is of dimension r, and n denotes the sample size. The

goal is to estimate the unknown average response g(x) ≡ E(Y |X = x) subject to constraints on

g(s)(x) where s is an r-vector corresponding to the dimension of x. In what follows, the elements

of s represent the order of the partial derivative corresponding to each element of x. Thus s =

(0, 0, . . . , 0) represents the function itself, while s = (1, 0, . . . , 0) represents ∂g(x)/∂x1. In general,

for s = (s1, s2, . . . , sr) we have

(1) g(s)(x) =
∂s1g(x)

∂xs1
1

, . . . ,
∂srg(x)

∂xsr
r

.

We consider the class of kernel regression smoothers that can be written as linear combinations of

the response Yi, i.e.,

(2) ĝ(x) =
n

∑

i=1

Ai(x)Yi,

where Ai(x) is a local weighting matrix. This class of kernel smoothers includes the Nadaraya-

Watson estimator (Nadaraya (1965),Watson (1964)), the Priestley-Chao estimator (Priestley &
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Chao (1972)), the Gasser-Müller estimator (Gasser & Müller (1979)) and the local polynomial

estimator (Fan (1992)), among others.

We presume that the reader wishes to impose constraints on the estimate ĝ(x) of the form

(3) l(x) ≤ ĝ(s)(x) ≤ u(x)

for arbitrary l(·), u(·), and s, where l(·) and u(·) represent (local) lower and upper bounds, re-

spectively. For some applications, s = (0, . . . , 0, 1, 0, . . . , 0) would be of particular interest, say for

example when the partial derivative represents a budget share and therefore must lie in [0, 1]. Or,

s = (0, 0, . . . , 0) might be of interest when an outcome must be bounded (i.e., ĝ(x) could represent

a probability hence must lie in [0, 1] but this could be violated when using, say, a local linear

smoother). Or, l(·) = u(·) might be required (i.e., equality rather than inequality constraints) such

as when imposing adding up constraints, say, when the sum of the budget shares must equal one, or

when imposing homogeneity of a particular degree, by way of example. The approach we describe

is quite general. It is firmly embedded in a conventional multivariate kernel framework, and admits

arbitrary combinations of constraints (i.e., for any s or combination thereof) subject to the obvious

caveat that the constraints must be internally consistent.

Following Hall & Huang (2001), we consider a generalization of ĝ(x) defined in (2) given by

(4) ĝ(x|p) =

n
∑

i=1

piAi(x)Yi,

and for what follows ĝ(s)(x|p) =
∑n

i=1 piA
(s)
i (x)Yi where A

(s)
i (x) = ∂s1Ai(x)

∂x
s1
1

, . . . , ∂sr Ai(x)
∂xsr

r
for real-

valued x. Again, in our notation s represents a r × 1 vector of nonnegative integers that indicate

the order of the partial derivative of the weighting function of the kernel smoother.

We first consider the mechanics of the proposed approach, and by way of example use (4)

to generate an unrestricted Nadaraya-Watson estimator. In this case we would set pi = 1/n,

i = 1, . . . , n, and set

(5) Ai(x) =
nKγ(Xi, x)

∑n
j=1Kγ(Xj , x)

,
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where Kγ(·) is a generalized product kernel that admits both continuous and categorical data,

and γ is a vector of bandwidths; see Racine & Li (2004) for details. When pi 6= 1/n for some i,

then we would have a restricted Nadaraya-Watson estimator (the selection of p satisfying particular

restrictions is discussed below). Note that one uses the same bandwidths for the constrained and

unconstrained estimator hence bandwidth selection proceeds using standard methods, i.e., cross-

validation on the sample data.

We now consider how one can impose particular restrictions on the estimator ĝ(x|p). Let pu

be an n-vector with elements 1/n and let p be the vector of weights to be selected. In order to

impose our constraints, we choose p to minimize some distance measure from p to the uniform

weights pi = 1/n ∀i as proposed by Hall & Huang (2001). This is appealing intuitively since the

unconstrained estimator is that for which pi = 1/n ∀i, as noted above. Whereas Hall & Huang

(2001) consider probability weights (i.e., 0 ≤ pi ≤ 1,
∑

i pi = 1) and distance measures suitable for

probability weights (i.e., Hellinger), we need to relax the constraint that 0 ≤ pi ≤ 1 and will instead

allow for both positive and negative weights (while retaining
∑

i pi = 1), and shall also therefore

require alternative distance measures. To appreciate why this is necessary, suppose one simply

wished to constrain a surface that is uniformly positive to have negative regions. This could be

accomplished by allowing some of the weights to be negative. However, probability weights would

fail to produce a feasible solution as they are non-negative, hence our need to relax this condition.

We also have to forgo the power divergence metric of Cressie & Read (1984) which was used by

Hall & Huang (2001) since it is only valid for probability weights. For what follows we select the well-

worn L2 metric D(p) = (pu − p)′(pu − p) which has a number of appealing features in this context,

as will be seen. Our problem therefore boils down to selecting those weights p that minimize D(p)

subject to l(x) ≤ ĝ(s)(x|p) ≤ u(x) (and perhaps additional constraints of a similar form), which can

be cast as a general nonlinear programming problem. For the illustrative constraints we consider

below we have (in)equalities that are linear in p,8 which can be solved using standard quadratic

programming methods and off-the-shelf software. For example, in the R language (R Development

Core Team (2008)) it is solved using the quadprog package, in GAUSS it is solved using the qprog

8Common economic constraints that satisfy (in)equalities that are linear in p include monotonicity, supermodularity,
additive separability, homogeneity, diminishing marginal returns/products, bounding of derivatives of any order,
necessary conditions for concavity, etc.
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command, and in MATLAB the quadprog command. Even when n is quite large the solution is

computationally fast using any of these packages. Code in the R language is available from the

authors upon request; see Appendix C for an example. For (in)equalities that are nonlinear in p

we can convert the nonlinear programming problem into a quadratic programming problem that

can again be solved using off-the-shelf software albeit with modification (iteration); see Appendix

B for an example.

The next two subsections outline the theoretical underpinnings of the constrained estimator and

present a framework for inference.

2.2. Theoretical Properties. Theorem 2.1 below provides conditions under which a unique

set of weights exist that satisfy the constraints defined in (3). Theorem 2.2 below states that for

nonbinding constraints the constrained estimator converges to the unconstrained estimator with

probability one in the limit, for constraints that bind with equality on an interior hyperplane subset

(defined below) the order in probability of the difference between the constrained and unconstrained

estimates is obtained, while in a shrinking neighborhood where the constraints bind the ratio of

the restricted and unrestricted estimators is approximately constant.

Hall & Huang (2001) demonstrate that a vector of weights always exists that satisfy the mono-

tonicity constraint when the response is assumed to be positive for all observations.9 Moreover, they

show that when the function is weakly monotonic at a point on the interior of the support of the

data the difference between the restricted and unrestricted kernel regression estimates is Op(h
5/4)

on an interval of length h around this point; h here is the bandwidth employed for univariate kernel

regression. For what follows we focus on linear (in p) restrictions which are quite general and allow

for the equivalent types of constraint violations albeit in a multidimensional setting.10

To allow for multiple simultaneous constraints we express our restrictions as follows:

(6)
n

∑

i=1

pi

[

∑

s∈S

αsA
(s)
i (x)

]

Yi − c(x) ≥ 0,

9This assumption, however, is too restrictive for the framework we envision.
10See Appendix B for an example of how to implement our method with constraints that are nonlinear in p and
Henderson & Parmeter (2009) for a more general discussion of imposing arbitrary nonlinear constraints on a non-
parametric regression surface, albeit with probability weights and the power divergence metric of Cressie & Read
(1984).
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where the inner sum is taken over all vectors S that correspond to our constraints and αs is a

set of constants used to generate various constraints. In what follows we presume, without loss of

generality, that for all s, αs ≥ 0 and c(x) ≡ 0, since c(x) is a known function. For what follows

c(x) equals either l(x) or −u(x) and since we admit multiple constraints our proofs cover both

lower bound, upper bound, and equality constraint settings. To simplify the notation, we define a

differential operator m 7→ m[d] such that m[d](x) =
∑

s∈S

αsm
(s)(x) and let ψi(x) = A

[d]
i (x)Yi.

Before considering the theoretical properties of the proposed constrained estimator we first pro-

vide an existence theorem.

Theorem 2.1. If one assumes that

(i) A sequence {i1, . . . , ik} ⊆ {1, . . . , n} exists such that for each k, ψik(x) is strictly positive

and continuous on (Lik ,Uik) ≡ ∏r
i=1(Lik , Uik) ⊂ R

r, and vanishes on (∞,Lik ] (where

Lik < Uik),

(ii) Every x ∈ I ≡ [c,d] =
∏r

i=1[ci, di] is contained in at least one interval (Lik ,Uik),

(iii) For 1 ≤ i ≤ n, ψik(x) is continuous on (−∞,∞),

then there exists a vector p = (p1, . . . , pn) such that the constraints are satisfied for all x ∈ I.

Proof of Theorem 2.1. This result is a straightforward extension of the induction argument pro-

vided in Theorem 4.1 of Hall & Huang (2001) which we therefore omit. �

We note that the above conditions are sufficient but not necessary for the existence of a set of

weights that satisfy the constraints for all x ∈ I. For example, if for some sequence jn in {1, . . . , n}
sgnψjn(x) = 1 ∀x ∈ I and for another sequence ln in {1, . . . , n} sgnψln(x) = −1 ∀x ∈ I, then

for those observations that switch signs pi may be set equal to zero, while pjn > 0 and pln < 0 is

sufficient to ensure existence of a set of ps satisfying the constraints. Moreover, since the forcing

matrix (In) in the quadratic portion of our L2 norm, p′Inp, is positive semidefinite, if our solution

satisfies the set of linear equality/inequality constraints then it is the unique, global solution to the

problem (Nocedal & Wright (2000, Theorem 16.4)). Positive semi-definiteness guarantees that our

objective function is convex which is what yields a global solution.11

For the theorems and proofs that follow we invoke the following assumptions:

11When the forcing matrix is not convex, multiple solutions may exist and these types of problems are referred to as
‘indefinite quadratic programs’.
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Assumption 2.1.

(i) The sample Xi either form a regularly spaced grid on a compact set I or constitute inde-

pendent random draws from a distribution whose density f is continuous and nonvanishing

on I; the εi are independent and identically distributed with zero mean and are indepen-

dent of the Xi; the kernel function K(·) is a symmetric, compactly supported density with

a Hölder-continuous derivative on J ≡ [a,b] =
∏r

i=1[ai, bi] ⊂ I.

(ii) E
(

|εi|t
)

is bounded for sufficiently large t > 0.

(iii) ∂f [d]/∂x and ∂g[d]/∂x are continuous on J .

(iv) The bandwidth associated with each explanatory variable, hj , satisfies hj ∝ n−1/(r+4), 1 ≤
j ≤ r.

Assumption 2.1 (i) is standard in the kernel regression literature. Assumption 2.1 (ii) is a

sufficient condition required for the application of a strong approximation result which we invoke

in Lemma A.3, while Assumption 2.1 (iii) assures requisite smoothness of f [d] and g[d] (f is the

design density). The bandwidth rate in Assumption 2.1 (iv) is the standard optimal rate. Note

that when the bandwidths all share the same optimal rate, one can rescale each component of x

to ensure a uniform bandwidth h ∝ n−1/(r+4) for all components which simplifies the notation in

the proofs somewhat without loss of generality. In the proofs that follow we will therefore use hr

rather than
∏r

j=1 hj purely for notational simplicity.

Define a hyperplane subset of J =
∏r

i=1[ai, bi] to be subset of the form S =
{

x0k × ∏

i6=k[ai, bi]
}

for some 1 ≤ k ≤ r and some x0k ∈ [ak, bk]. We call S an interior hyperplane subset if x0k ∈ (ak, bk).

For what follows, g[d] (g) is the true data generating process (DGP), p̂ is the optimal weight vector

satisfying the constraints, ĝ[d](·|p̂) (ĝ(·|p̂)) is the constrained estimator defined in (4), and g̃[d] (g̃)

is the unconstrained estimator defined in (2). Additionally, we define |s| =
∑r

i=1 si as the order for

a derivative vector s = (s1, . . . , sr). We say a derivative s1 has a higher order than s2 if |s1| > |s2|.
For technical reasons outlined in the proof of Lemma A.2, in the case of tied orders we also treat

derivative vectors with all even components as having a higher order than those with at least one

odd component. For example, (2, 2) is considered to be of higher order than (1, 3). With a slight

abuse of notation, let d be a derivative with the “maximum order” among all the derivatives in

the constraint (6). In the case of ties, such as {(2, 2), (0, 4), (1, 3), (3, 1)}, d can be either (2, 2) or
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(0, 4). For notational ease in what follows we define a constant δd = 1 if d has at least one odd

component and 0 otherwise.

Theorem 2.2. Assume 2.1(i)-(iv) hold.

(i) If g[d] > 0 on J then, with probability 1, p̂ = 1/n for all sufficiently large n and ĝ[d](·|p̂) =

g̃[d] on J for all sufficiently large n. Hence, ĝ(·|p̂) = g̃ on J for all sufficiently large n.

(ii) Suppose that g[d] > 0 except on an interior hyperplane subset X0 ⊂ J such that g[d](x) =

0,∀x ∈ X0 and for any x0 ∈ X0, and suppose that g[d] has two continuous derivatives in the

neighborhood of x0 with ∂g[d]

∂x
(x0) = 0 and with ∂2g[d]

∂x∂xT (x0) nonsingular; then |ĝ(·|p̂) − g̃| =

Op

(

h|d|−δd/2+3/4
)

uniformly on J .

(iii) Under the same conditions given in (ii) above, there exist random variables Θ = Θ(n) and

Z1 = Z1(n) ≥ 0 satisfying Θ = Op

(

h|d|+r−δd/2+1/2
)

and Z1 = Op(1) such that ĝ(x|p̂) =

(1+Θ)g̃(x) uniformly for x ∈ J with infx0∈X0 |x−x0| > Z1 h
3/8−δd/4. The latter property

reflects the fact that, for a random variable Z2 = Z2(n) ≥ 0 satisfying Z2 = Op(1), we

have p̂i = n−1(1 + Θ) for all indices i such that both infx0∈X0 |Xi − x0| > Z2 h
3/8−δd/4 and

Ai(x) 6= 0 for some x ∈ J .

The proof of Theorem 2.2 is rather lengthy and invokes a number of lemmas, therefore it is

relegated to Appendix A. Theorem 2.2 is the multivariate, multiconstraint, hyperplane subset

generalization of the univariate, single constraint, single point violation setting considered in Hall

& Huang (2001) having dispensed with probability weights and power divergence distance measures

of necessity. However, the theory in Hall & Huang (2001) lays the foundation for several of the

results that we obtain, for which we are indebted. We obtain the same rates in parts (ii) and

(iii) of Theorem 2.2 above as Hall & Huang (2001, Theorem 4.3(c)) obtain in their single interior

point setting, and point out that the key to proving part (iii) of Theorem 2.2 is the utilization of a

strong approximation theorem of Komlós, Major & Tusnády (1975, 1976) known as the Hungarian

Embedding (van der Vaart (2000, page 269)) which we use in Lemma A.3. As this powerful theorem

is not commonplace in the econometrics literature (Burridge & Guerre (1996), Wang, Lin & Gulati

(2003)) we highlight its use here.

We briefly discuss the types of constraint violations addressed in Theorem 2.2. First, if the

constraints are not violated then, for a large enough sample, there will be no need to impose the
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constraints. However, if the constraints are only weakly satisfied then parts (ii) and (iii) state

that we have nonconstant weights within a neighborhood of radius O
(

h1/2
)

and the ratio of the

constrained and unconstrained kernel estimates is constant within this neighborhood. Additionally,

the nonempty ϑX0\ϑJ requirement12 eliminates the case where X0 lies completely on the boundary

of J which is of less interest but in this setting can be handled directly.

Were we to instead allow for arbitrary violations of the constraints (as opposed to weak viola-

tions), the ratio of the constrained and unconstrained functions will no longer be constant which

would require us to place a bound on the unknown function as opposed to assuming ∂g[d]

∂x
(x0) = 0

(Lemma A.2 in Appendix A could be modified to handle this case). For these types of arbitrary

constraint violations we cannot say anything about the relative magnitudes of the restricted and

unrestricted estimators on the set where the constraints are erroneously imposed. However, a rate

similar to that in (ii) in Theorem 2.2 for the two estimators on an appropriately defined set where

the constraints are valid could be obtained.13

2.3. Inference. As noted in Section 1, there exists a growing literature on testing restrictions in

nonparametric settings. This literature includes Abrevaya & Jiang (2005), who test for curvature

restrictions and provide an informative survey, Epstein & Yatchew (1985), who develop a nonpara-

metric test of the utility maximization hypothesis and homotheticity, Yatchew & Bos (1997), who

develop a conditional moment test for a broad range of smoothness constraints, Ghosal, Sen &

van der Vaart (2000), who develop a test for monotonicity, Beresteanu (2004), who as mentioned

above outlines a conditional mean type test for general constraints, and Yatchew & Härdle (2006),

who employ a residual-based test to check for monotonicity and convexity. The tests of Yatchew &

Bos (1997) and Beresteanu (2004) are the closest in spirit to the method we adopt below, having

the ability to test general smoothness constraints. One could easily use the same test statistic as

Yatchew & Bos (1997) and Beresteanu (2004) but replace the series estimator with a kernel estima-

tor if desired. Aside from the test of Yatchew & Bos (1997), most existing tests check for specific

12We let ϑ denote the boundary of a set, and we let \ denote complement of a set.
13An additional benefit of the theory provided here is that our generalization of the results of Hall & Huang (2001)
that instead employs a quadratic criterion is amenable to quadratic programming solvers rather than nonlinear
programming solvers hence our approach can be applied using off-the-shelf software.
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constraints. This is limiting in the current setting as our main focus is on a smooth, arbitrarily

restricted estimator.

For what follows we adopt a testing approach similar to that proposed by Hall et al. (2001) which

is predicated on the objective function D(p̂). This approach involves estimating the constrained

regression function ĝ(x|p) based on the sample realizations {Yi,Xi} and then rejecting H0 if the

observed value of D(p̂) is too large. We use a resampling approach for generating the null distri-

bution of D(p̂) which involves generating resamples for y drawn from the constrained model via

iid residual resampling (i.e., conditional on the sample {Xi}), which we denote {Y ∗
i ,Xi}. These

resamples are generated under H0, hence we recompute ĝ(x|p) for the bootstrap sample {Y ∗
i ,Xi}

which we denote ĝ(x|p∗) which then yields D(p∗). We then repeat this process B times. Finally, we

compute the empirical P value, PB , which is simply the proportion of the B bootstrap resamples

D(p∗) that exceed D(p̂), i.e.,

PB = 1 − F̂ (D(p̂)) =
1

B

B
∑

j=1

I(D(p∗) > D(p̂)),

where I(·) is the indicator function and F̂ (D(p̂)) is the empirical distribution function of the

bootstrap statistics. Then one rejects the null hypothesis if PB is less than α, the level of the test.

For an alternative approach involving kernel smoothing of F (·), see Racine & MacKinnon (2007a).

Before proceeding further, we note that there exist three situations that can occur in practice:

(i) Impose non-binding constraints (they are ‘correct’ de facto)

(ii) Impose binding constraints that are correct

(iii) Impose binding constraints that are incorrect

We only consider (ii) and (iii) in the Monte Carlo simulations in Section 3 below since, as noted by

Hall et al. (2001, p 609), “For those datasets with D(p̂) = 0, no further bootstrapping is necessary

[. . . ] and so the conclusion (for that dataset) must be to not reject H0.” The implication in the

current paper is simply that imposing non-binding constraints does not alter the estimator and the

unconstrained weights will be p̂i = 1/n ∀i hence D(p̂) = 0 and the statistic is degenerate. Of course,

in practice this simply means that we presume people are imposing constraints that bind, which is

a reasonable presumption. In order to demonstrate the flexibility of the constrained estimator, in
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Section 3 below we consider testing for two types of restrictions. In the first case we impose the

restriction that the regression function g(x) is equal to a known parametric form g(x, β), while in

the second case we test whether the first partial derivative is constant and equal to the value one

for all x (testing whether the first partial equals zero would of course be a test of significance).

We now demonstrate the flexibility and simplicity of the approach by first imposing a range of

constraints on a simulated dataset using a large number of observations thereby showcasing the

feasibility of this approach in substantive applied settings, and then consider some Monte Carlo

experiments that examine the finite-sample performance of the proposed test.

3. Simulated Illustrations, Finite-Sample Test Performance, and an Application

For what follows we simulate data from a nonlinear multivariate relationship and then consider

imposing a range of restrictions by way of example. We consider a 3D surface defined by

(7) Yi =
sin

(
√

X2
i1 +X2

i2

)

√

X2
i1 +X2

i2

+ εi, i = 1, . . . , n,

where x1 and x2 are independent draws from the uniform [-5,5]. We draw n = 10, 000 observations

from this DGP with ε ∼ N(0, σ2) and σ = 0.1. As we will demonstrate the method by imposing

restrictions on the surface and also on its first and second partial derivatives, we use the local

quadratic estimator for what follows as it delivers consistent estimates of the regression function

and its first and second partial derivatives. Figure 1 presents the unrestricted regression estimate

whose bandwidths were chosen via least squares cross-validation.14

3.1. A Simulated Illustration: Restricting ĝ(0)(x). Next, we arbitrarily impose the constraint

that the regression function lies in the range [0,0.5]. A plot of the restricted surface appears in

Figure 2.

Figures 1 and 2 clearly reveal that the regression surface for the restricted model is both smooth

and satisfies the constraints.

14In all of the restricted illustrations to follow we use the same cross-validated bandwidths.
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Figure 1. Unrestricted nonparametric estimate of (7), n = 10, 000.
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Figure 2. Restricted nonparametric estimate of (7) where the restriction is defined

over ĝ(s)(x|p), s = (0, 0), (0 ≤ ĝ(x|p) ≤ 0.5), n = 10, 000.

3.2. A Simulated Illustration: Restricting ĝ(1)(x). We consider the same DGP given above,

but now we arbitrarily impose the constraint that the first derivatives with respect to both x1 and

x2 lie in the range [-0.1,0.1].15 A plot of the restricted surface appears in Figure 3.

15
s = (1, 0) and t = (0, 1).
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Figure 3. Restricted nonparametric estimate of (7) where the restriction is defined
over g(s)(x), s ∈ {(1, 0), (0, 1)}, (−0.1 ≤ ∂ĝ(x|p)/∂x1 ≤ 0.1, −0.1 ≤ ∂ĝ(x|p)/∂x2 ≤
0.1), n = 10, 000.

Figure 3 clearly reveals that the regression surface for the restricted model possesses derivatives

that satisfy the constraints everywhere and is smooth.

3.3. A Simulated Illustration: Restricting ĝ(2)(x). We consider the same DGP given above,

but now we arbitrarily impose the constraint that the second derivatives with respect to both x1

and x2 are positive (negative), which is a necessary (but not sufficient) condition for concavity and

convexity; see Appendix B for details on imposing concavity or convexity using our approach. As

can be seen from figures 4 and 5 the shape of the restricted function changes drastically depending

on the curvature restrictions placed upon it.

We could as easily impose restrictions defined perhaps jointly on, say, both ĝ(x) and ĝ(1)(x),

or perhaps on cross-partial derivatives if so desired. We hope that these illustrative applications

reassure the reader that the method we propose is powerful, fully general, and can be applied in

large-sample settings.

3.4. Finite-Sample Test Performance: Testing Correct Parametric Specification. By

way of example we consider testing the restriction that the nonparametric model g(x) is equivalent

to a specific parametric functional form (i.e., we impose an equality restriction on ĝ(x), namely
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Figure 4. Restricted nonparametric estimate of (7) where the restriction is defined
over ĝ(s)(x), s ∈ {(2, 0), (0, 2)} (∂ĝ2(x|p)/∂x2

1 ≥ 0, ∂ĝ2(x|p)/∂x2
2 ≥ 0), n = 10, 000.

X
1

−4

−2

0

2

4

X2

−4

−2

0

2

4

C
onditional E

xpectation

0.0

0.5

1.0

Figure 5. Restricted nonparametric estimate of (7) where the restriction is defined

over ĝ(s)(x), s ∈ {(2, 0), (0, 2)} (∂ĝ2(x|p)/∂x2
1 ≤ 0, ∂ĝ2(x|p)/∂x2

2 ≤ 0), n = 10, 000.

that ĝ(x) equals x′β̂ where x′β̂ is the parametric model). Note that we could consider any number

of tests for illustrative purposes and consider another application in the following subsection. We
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consider the following DGP:

Yi = g(Xi1,Xi2) + εi = 1 +X2
i1 +Xi2 + εi,

where Xij , j = 1, 2 are uniform [−2, 2] and ε ∼ N(0, 1/2).

We then impose the restriction that g(x) is of a particular parametric form, and test whether

this restriction is valid. When we generate data from this DGP and impose the correct model as

a restriction (i.e., that given by the DGP, say, β0 + β1x
2
i1 + β2xi2) we can assess the test’s size,

while when we generate data from this DGP and impose an incorrect model that is in fact linear

in variables we can assess the test’s power.

We conduct M = 1, 000 Monte Carlo replications from our DGP, and consider B = 99 bootstrap

replications; see Racine & MacKinnon (2007b) for details on determining the appropriate number

of bootstrap replications. Results are presented in Table 1 in the form of empirical rejection

frequencies for α = (0.10, 0.05, 0.01) for samples of size n = 25, 50, 75, 100, 200.

Table 1. Test for correct parametric functional form. Values represent the empir-
ical rejection frequencies for the M = 1, 000 Monte Carlo replications.

n α = 0.10 α = 0.05 α = 0.01
Size

25 0.100 0.049 0.010
50 0.074 0.043 0.011
75 0.086 0.034 0.008
100 0.069 0.031 0.006
200 0.093 0.044 0.007

Power
25 0.391 0.246 0.112
50 0.820 0.665 0.356
75 0.887 0.802 0.590
100 0.923 0.849 0.669
200 0.987 0.970 0.903

Table 1 indicates that the test appears to be correctly sized while power increases with n.

3.5. Finite-Sample Performance: Testing an Equality Restriction on a Partial Deriva-

tive. For this example we consider a simple linear DGP given by

(8) Yi = g(Xi) + εi = β1Xi + εi,
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where Xi is uniform [−2, 2] and ε ∼ N(0, 1).

We consider testing the equality restriction H0 : g(1)(x) = 1 where we take the first order

derivative (i.e., g(1)(x) = dg(x)/dx1), and let β1 vary from 1 through 2 in increments of 0.1. Note

that the test of significance would be a test of the hypothesis that g(1)(x) = 0 almost everywhere

rather than g(1)(x) = 1 which we consider, so clearly we could also perform a test of significance

in the current framework. The utility of the proposed approach lies in its flexibility as we could

as easily test the hypothesis that g(1)(x) = ξ(x) where ξ(x) is an arbitrary function. Significance

testing in nonparametric settings has been considered by a number of authors; see Racine (1997)

and Racine, Hart & Li (2006) for alternative approaches to testing significance in a nonparametric

setting.

When β1 = 1.0 we can assess size while when β1 6= 1.0 we can assess power. We construct

power curves based on M = 1, 000 Monte Carlo replications, and we compute B = 99 bootstrap

replications. The power curves corresponding to α = 0.05 appear in Figure 6.
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Figure 6. Power curves for α = 0.05 for sample sizes n = (25, 50, 75, 100) based
upon the DGP given in (8). The dashed horizontal line represents the test’s nominal
level (α).

Figure 6 reveals that for small sample sizes (e.g., n = 25) there appears to be a small size

distortion, however, the distortion appears to fall rather quickly as n increases. Furthermore,

power increases with n. Given that the sample sizes considered here would typically be much
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smaller than those used by practitioners adopting nonparametric smoothing methods, we expect

that the proposed test would possess reasonable size in empirical applications.

3.6. Application: Imposing Constant Returns to Scale for Indonesian Rice Farmers.

We consider a production dataset that has been studied by Horrace & Schmidt (2000) who analyzed

technical efficiency for Indonesian rice farms. We examine the issue of returns to scale, focusing on

one growing season’s worth of data for the year 1977, acknowledged to be a particularly wet season.

Farmers were selected from six villages of the production area of the Cimanuk River Basin in West

Java, and there were 171 farms in total. Output is measured as kilograms of rice produced, and

inputs included seed (kg), urea (kg), trisodium phosphate (TSP) (kg), labour (hours), and land

(hectares). Table 2 presents some summary statistics for the data. Of interest here is whether or

not the technology exhibits constant returns to scale (i.e., whether or not the sum of the partial

derivatives equals one). We use log transformations throughout.

Table 2. Summary Statistics for the Data

Variable Mean StdDev
log(rice) 6.9170 0.9144
log(seed) 2.4534 0.9295
log(urea) 4.0144 1.1039
log(TSP) 2.7470 1.4093
log(labor) 5.6835 0.8588
log(land) -1.1490 0.9073

We estimate the production function using a nonparametric local linear estimator with cross-

validated bandwidth selection. Figure 7 presents the unrestricted and restricted partial derivative

sums for each observation (i.e., farm), where the restriction is that the sum of the partial derivatives

equals one. The horizontal line represents the restricted partial derivative sum (1.00) and the

points represent the unrestricted sums for each farm. An examination of Figure 7 reveals that the

estimated returns to scale lie in the interval [0.98, 1.045].

Figures 8 and 9 present the unrestricted and restricted partial mean plots, respectively.16 Notice

the change in the partial mean plot of log(urea) across the restricted and unrestricted models. It is

clear that the bulk of the restricted weights are targeting this input’s influence on returns to scale.

16A ‘partial mean plot’ is simply a 2D plot of the outcome y versus one covariate xj when all other covariates are
held constant at their respective medians/modes.
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Figure 7. The sum of the partial derivatives for observation i (i.e., each farm)
appear on the vertical axis, and each observation (farm) appears on the horizontal
axis.

The remaining partial mean plots are unchanged visually across the unrestricted and restricted

models.

In order to test whether the restriction is valid we apply the test outlined in Section 2.3. We

conducted B = 99 bootstrap replications and test the null that the technology exhibits constant

returns to scale. The empirical P value is PB = 0.131, hence we fail to reject the null at all

conventional levels. We are encouraged by this fully nonparametric application particularly as

it involves a fairly large number of regressors (five) and a fairly small number of observations

(n = 171).

4. Concluding Remarks

We present a framework for imposing and testing the validity of conventional constraints on

the sth partial derivatives of a nonparametric kernel regression function, namely, l(x) ≤ g(s)(x) ≤
u(x), s = 0, 1, . . . . The proposed approach nests special cases such as imposing monotonicity,

concavity (convexity) and so forth while delivering a seamless framework for general restricted

nonparametric kernel estimation and inference. Illustrative simulated examples are presented,

finite-sample performance of the proposed test is examined via Monte Carlo simulations, and an
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Figure 8. Partial mean plots for the unrestricted production function.
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Figure 9. Partial mean plots for the restricted production function.

illustrative application is undertaken. An open implementation in the R language (R Development

Core Team (2008)) is available from the authors.
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One interesting extension of this methodology would be to the cost system setup popular in

production econometrics (Kumbhakar & Lovell (2001)). There, the derivatives of the cost function

are estimated along with the function itself in a system framework. Currently, Hall & Yatchew

(2007) have proposed a method for estimating the cost function based upon integrating the share

equations, resulting in an improvement in the rate of convergence relative to direct nonparametric

estimation of the cost function. It would be interesting to determine the merits of restricting the

first order partial derivatives of the cost function using the approach described here to estimate

the cost function in a single equation framework. We also note that the procedure we outline is

valid for a range of kernel estimators in addition to those discussed herein. Semiparametric models

such as the partially linear, single index, smooth coefficient, and additively separable models could

utilize this approach towards constrained estimation. Nonparametric unconditional and conditional

density and distribution estimators, as well as survival and hazard functions, smooth conditional

quantiles and structural nonparametric estimators including auction methods could also benefit

from the framework developed here. We leave this as a subject for future research.
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Appendix A. Proofs

For the proofs that follow we first establish some technical lemmas. Lemma A.1 partitions the

weights into two sets, one where individual weights are identical and one where they are a set of fixed

constants (that may differ), and is used exclusively in Theorem 2.2 (iii). Lemma A.2 establishes

that there exist a set of weights that guarantee that the constraint is satisfied with probability

approaching one in the limit. These weights do not have to equal the optimal weights, but are used

to bound the distance metric evaluated at the optimal weights. Lemma A.2 is used in Theorem

2.2 (ii) and (iii). Lemma A.3 establishes that with probability approaching one in the limit the

unrestricted estimate g̃ satisfies g̃[d](x) > 1
3g

[d](x) for any point x lying a given distance from X0.

It is used to determine the requisite distance from X0 for a point x to satisfy ĝ[d](x|p̂) > 0, which

is then used to derive the orders of Z1 and Z2 in Theorem 2.2 (iii).

Lemma A.1. If A and B are complementary subsets of the integers 1, . . . , n and if pi, for i ∈ A are

fixed, then the values of pj for j ∈ B that minimize L2(p) are identical, and are uniquely determined

by the constraint that their sum should equal 1 − ∑

i∈A
pi.

Proof of Lemma A.1. We find the optimal pjs by minimizing
∑

j∈B
(pj − 1/n)2 subject to

∑

j∈B
pj =

1 − ∑

i∈A

pi. Without loss of generality, assume n ∈ B. By incorporating the constraint directly into

our distance metric we obtain

min
pj ,j∈B\{n}





∑

j∈B\{n}

(pj − 1/n)2 +



1 −
∑

i∈A

pi −
∑

j∈B\{n}

pj − 1/n





2

 ,

which yields the first order conditions, for j ∈ B \{n}, pj = 1− ∑

i∈A

pi −
∑

k∈B\{n}

pk. Since
∑

k∈B\{n}

pk

is fixed we see that all pj, j ∈ B \ {n}, are identical. Moreover, the excluded pn is also equal to

1 − ∑

j∈A
pj −

∑

k∈B\{n}

pk which proves Lemma A.1. �

Lemma A.2. For each δ > 0 there exists a p̃ = p̃(δ) satisfying

(A1) P
{

ĝ[d](x|p̃) > 0 ∀x ∈ J
}

> 1 − δ

for all sufficiently large n. Moreover, this yields L2(p̂) =Op

(

n−1h2|d|+2r−δd+1/2
)

.
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Proof of Lemma A.2. Choose any x0 ∈ X0. Define

(A2) p̃i = n−1

{

1 + ∆ + hj1g(Xi)
−1L

(

x0 −Xi

h1/2

)}

,

where ∆ is a constant defined by
n
∑

i=1
p̃i = 1, j1 is a constant to be determined later in the proof,

and L(x) =
∑r

j=1 Lj(xj) with each Lj being a fixed, compactly supported and twice differentiable

function. Then

ĝ[d](x|p̃) =

n
∑

i=1

p̃iA
[d]
i (x)Yi

=(1 + ∆)n−1
n

∑

i=1

piA
[d]
i (x)Yi + n−1

n
∑

i=1

[

hj1g(Xi)
−1L

(

x0 −Xi

h1/2

)

A
[d]
i (x)Yi

]

=(1 + ∆)g̃[d](x) + hj1B1(x) + hj1B2(x),(A3)

where,

B1(x) = n−1
n

∑

i=1

L

(

x0 −Xi

h1/2

)

A
[d]
i (x)

B2(x) = n−1
n

∑

i=1

g(Xi)
−1L

(

x0 −Xi

h1/2

)

A
[d]
i (x)εi.

The compactness of L(·) gives us

(A4) n−1
n

∑

i=1

g(Xi)
−1L

(

x0 −Xi

h1/2

)

= Op

(

h1/2
)

and we have
n
∑

i=1
p̃i = 1 + ∆ + hj1Op

(

h1/2
)

, which implies ∆ = Op

(

hj1+1/2
)

.

Since a higher order derivative (j) implies a higher order for A(j)(x), we have B1(x) = Op

(

B̃1(x)
)

and B2(x) = Op

(

B̃2(x)
)

with

B̃1(x) = n−1
n

∑

i=1

L

(

x0 −Xi

h1/2

)

A
(d)
i (x),

B̃2(x) = n−1
n

∑

i=1

g(Xi)
−1L

(

x0 −Xi

h1/2

)

A
(d)
i (x)εi,
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where only the highest order derivative is included for both terms. We can then bound B̃1(x) and

B̃2(x) as follows.

Note that B̃2(x) is the sum of n i.i.d. random variables with mean zero and variance

Var

(

g(Xi)
−1L

(

x0 −Xi

h1/2

)

A
(d)
i (x)εi

)

=E

[

g(Xi)
−2L

(

x0 −Xi

h1/2

)2

A
(d)
i (x)2

]

E[ε2i ]

=Op

(

h−(2|d|+2r−1/2)
)

,

where the independence of εi and Xi is used in the first equality. Hence

sup
x∈J

|B2(x)| = Op

(

(

nh2|d|+2r−1/2
)−1/2

)

= Op

(

h
9
4
−|d|− r

2

)

.

For B̃1(x), without loss of generality, we have the following

B̃1(x) =h−(|d|+r)n−1
n

∑

i=1

K(d)

(

x−Xi

h

)

L

(

x0 − x

h1/2
+

x−Xi

h1/2

)

=h−(|d|+r−1)

∫

K(d)(y)L

(

x0 − x

h1/2
+ h1/2y

)

dy +Op(1),(A5)

where the last equality follows from the definition of the integral.

A Taylor expansion of L gives

(A6) L

(

x0 − x

h1/2
+ h1/2y

)

= L

(

x0 − x

h1/2

)

+ h1/2yTL(1)

(

x0 − x

h1/2

)

+Op (h) ,

where 1 is a vector having all elements equal to one. Due to the component-wise symmetry of K(·),
we have

∫

K(d)(y)dy = 0 if at least one of the di, 1 ≤ i ≤ r, is odd. Given (A6), we treat two

separate cases: (i) at least one of the di, 1 ≤ i ≤ r, is odd and (ii) all the di, 1 ≤ i ≤ r, are even.

Let’s consider case (i) first. Substituting (A6) into (A5), we have

B̃1(x) = h−(|d|+r−3/2)cT
KL

(1)

(

x0 − x

h1/2

)

+Op

(

h2−|d|−r
)

+Op(1),

where cK =
∫

K(d)(y)ydy. This gives us

(A7) ĝ[d](x|p̃) = g̃[d](x) + hj1−|d|−r+3/2cT
KL

(1)

(

x0 − x

h1/2

)

+B3(x),

where B3(x) = op(h
1/2) uniformly in x ∈ J .
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For a subset S ⊂ J , define

B(S, δ) =

{

x ∈ J : inf
y∈S

|x − y| ≤ δ

}

.

Consider any point x ∈ J \ B
(

X0, Ch
1/2

)

. Let y0 ∈ X0 be the point such that |x − y0| =

infy∈X0 |x − y|. The existence of such a y0 is guaranteed by the fact that X0 is a closed subset.

Since ∂g[d]/∂x is continuous, we must have ∂g[d]

∂x
(y0) = 0. Hence, the Taylor expansion at y0

gives g[d](x) = 1
2 (x− y0)

T ∂2g[d]

∂x∂xT (y0)(x− y0) +Op

(

h3/2
)

. Since g̃ is a consistent estimate of g, for

sufficiently large n and C > 0 we have

(A8) P
{

g̃[d](x) > 3h, ∀x ∈ J \B
(

X0, Ch
1/2

)}

> 1 − 1

3
δ.

In (A7), when x is in the neighborhood of x0, g̃
[[d](x) = Op

(

h2
)

=op(h). Hence, for such an x, we

need to have a positive dominating second term in (A7) in order to claim

(A9) P

{

g̃[d](x) + h(j1−|d|−r+3/2)cT
KL

(1)

(

x0 − x

h1/2

)

> 2h ∀x ∈ B(X0, Ch
1/2)

}

> 1 − 1

3
δ.

Given (A8), we must also have

(A10) h(j1−|d|−r+3/2)cT
KL

(1)

(

x0 − x

h1/2

)

> −h ∀x ∈ J \B(X0, Ch
1/2).

To ensure the right order in (A9) and (A10), we need to have j1 − |d| − r + 3/2 = 1 which

implies j1 = |d| + r − 1/2. To further guarantee (A9) and (A10), given both C and δ, we may

choose L such that each component is linearly increasing or decreasing, depending on the positivity

of the corresponding component of cK , at a sufficiently fast rate on a sufficiently wide interval

containing the origin and returning sufficiently slowly to 0 on either side of the interval where it is

linearly increasing or decreasing. Note that our restrictions on X0 play a role here. A point in the

neighborhood of X0 will have at least one coordinate (the kth coordinate) falling in the neighborhood

of the corresponding coordinate of the chosen point x0 in (A2). This is critical for guaranteeing

that L(1)
(

x0−x

h1/2

)

in (A9) has at least one non-zero component for any x ∈ B(X0, Ch
1/2).

Lastly, for all C, δ > 0, we have,

(A11) P {B3(x) > −h, ∀x ∈ J } > 1 − 1

3
δ.



CONSTRAINED NONPARAMETRIC REGRESSION 33

The derivation in (A7) with the above set probabilities yields

(A12) P
{

ĝ[d](x|p̃) > 0, ∀x ∈ J
}

> 1 − δ,

which establishes (A1) for the case where at least one of the di is odd, 1 ≤ i ≤ r. When all the di

are even, 1 ≤ i ≤ r, a similar derivation with j1 = |d| + r and a suitably chosen L will also yield

(A1). Combining the two cases, we have j1 = |d| + r − δd/2.

Next, we will show that L2(p̃) = Op

(

n−1h2j1+1/2
)

. This follows from ∆ = Op

(

hj1+1/2
)

and

(A13) n−1
n

∑

i=1

g(Xi)
−2L

(

x0 −Xi

h1/2

)2

= Op

(

h1/2
)

,

which follows from the compactness of L(·). Replacing pi with p̃i yields

n
∑

i=1

(np̃i − 1)2 =

n
∑

i=1

[

∆ + hj1

n
∑

i=1

g(Xi)
−1L

(

x0 −Xi

h1/2

)

]2

≤2
n

∑

i=1

[

∆2 + h2j1g(Xi)
−2L

(

x0 −Xi

h1/2

)2
]

=2n∆2 + 2nh2j1 · n−1
n

∑

i=1

g(Xi)
−2L

(

x0 −Xi

h1/2

)2

=Op

(

nh2j1+1
)

+Op

(

nh2j1+1/2
)

= Op

(

nh2j1+1/2
)

.

Since p̂ minimizes L2(p) subject to nonnegativity of ĝ[d] on J , this implies that for all sufficiently

large n,

P {L2(p̂) ≤ L2(p̃)} > 1 − δ.

Hence L2(p̂) = Op

(

n−1h2j1+1/2
)

= Op

(

n−1h2|d|+2r−δd+1/2
)

. �

Lemma A.3. For each δ > 0, there exists C = C(δ) such that, for all sufficiently large n,

(A14) P

{

g̃[d](x) >
1

3
g[d](x),∀x such that inf

x0∈X0

|x− x0| ≥ Ch1/2

}

> 1 − δ.
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Proof of Lemma A.3. Define X = {X1, . . . ,Xn} and µ = E[g̃|X ]. Let

An = sup

{

M > 0 : µ[d](x) <
2

3
g[d](x),∀x such that inf

x0∈X0

|x − x0| ≤M

}

,(A15)

Bn = sup

{

M > 0 : |g̃[d](x) − µ[d](x)| > 1

3
g[d](x),∀x such that inf

x0∈X0

|x − x0| ≤M

}

,(A16)

and Cn = max(An, Bn). Then, for any x such that infx0∈X0 |x − x0| ≥ Cn, we have µ[d](x) ≥
2
3g

[d](x) and
∣

∣g̃[d](x) − µ[d](x)
∣

∣ ≤ 1
3g

[d](x). Thus,

g̃[d](x) >
1

3
g[d](x),∀x such that inf

x0∈X0

|x− x0| ≥ Cn.

Therefore, we only need to show that

(A17) An = Op

(

h1/2
)

and Bn = Op

(

h1/2
)

.

Define the stochastic processes γ1 = µ[d] − g[d] and γ2 = g̃[d]. For an integer j ≥ 0, let

Jj =

{

x ∈ C(J \ X0) : jh1/2 ≤ inf
x0∈X0

|x − x0| ≤ (j + 1)h1/2

}

,

where C(S) is the closure of a subset S ⊂ J . Let J = max{j : Jj 6= ∅}. Define γkj(x) =

h|d|+
r
2
− 5

2 γk(x) on Jj for each 0 ≤ j ≤ J . We want to show that

(A18) sup
j
P

{

sup
x∈Jj

|λj(x)| > v

}

≤ C1(1 + v)−2

for all v ∈ [0, C2h
−1/2], where λj stands for γ1j or γ2j and the constants C1, C2 > 0 do not depend

on n.

For this purpose, we need to use a strong approximation result found in Komlós, Major &

Tusnády (1975), generally referred to as the Hungarian embedding. Let zi, i = 1, . . . , n be a

sequence of independent and identically distributed random variables with E[zi] = 0 and E[zi] = σ2,

and let Sn =
∑n

i=1 zi. Then the Hungarian embedding result says that there exists a sequence Tn

with the same distribution as Sn and a sequence of a standard Brownian bridge Bn(t) such that

sup
0≤t≤1

∣

∣T⌊nt⌋ − σ
√
nBn(t)

∣

∣ = Op(log n),

where ⌊x⌋ signifies the integer part of x.
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Again, we only need to prove (A18) for the highest order derivative d. To economize on notation,

we now use γ1 = µ(d) −g(d) and γ2 = g̃(d) −µ(d). Due to the independence between εi = Yi−g(Xi)

and Xi, we have µ(d)(x) = 1
n

∑n
i=1A

(d)
i (x)g(Xi). Hence

(A19) γ1(x) =
1

n

n
∑

i=1

{

A
(d)
i (x)g(Xi) − g(d)(x)

}

and γ2(x) =
1

n

n
∑

i=1

A
(d)
i (x)εi.

Note that Var(γk(x)) =
(

nh2|d|+r+1
)−1

Ck,Kg(x) + o
(

(nh2|d|+r+1)−1
)

, where C1,K and C2,K are

both constants depending only on K(·). Also, the fact that K(·) is compactly supported indicates

that both sums in (A19) essentially have only ⌊nCx,h⌋ terms, where Cx,h = P{X ∈ B(x, Ch)} for

some constant C. Now applying the Hungarian embedding result to each
√
nγkj(x) yields

sup
x∈Jj

|λj(x)| ≤ sup
x∈Jj

∣

∣

∣

∣

√

Ck,Kg(x)Bn(Cx,h)

∣

∣

∣

∣

+Op

(

log n√
n

)

.

Then (A18) follows from the modulus of continuity for a Brownian bridge; see e.g., Csörgő & Révész

(1981, Chapter 1).

Therefore, letting wj ≡ (3h)−1 infx∈Jj g
[d](x) and vj ≡ min

(

wj , C2h
−1/2

)

, we have

P

{

|γ(t)| > 1

3
g[d](t) for some t ∈ ∪J

j=j0Jj

}

≤
J

∑

j=j0

P

{

|γ(t)| > 1

3
g[d](t) for some t ∈ Jj

}

≤
J

∑

j=j0

P

{

sup
x∈Jj

|λj(x)| > v

}

≤
J

∑

j=j0

C1(1 + vj)
−2,(A20)

where γ represents either γ1 or γ2. For any x ∈ Jj, let x0 = argminy0∈X0
|x − y0| ∈ ϑX0 \ ϑJ

and e = (x − x0)/|x − x0| be a unit vector. Then there exists a constant 0 ≤ u ≤ 1 such that

x = x0 + (j + u)h1/2e. The conditions imposed on g in the theorem imply that

g[d](x0 + (j + u)h1/2e) =
1

2
(j + u)2heT ∂2g[d]

∂x∂xT
(x0)e +Op

(

h3/2
)

.

Hence, wj ≥ C3j
2 and vj ≥ min(C3j

2, C4h
−1/2), where C3, C4 > 0 do not depend on n. Since

∑J
j=j0

(

1 + C3j
2
)−2 → 0 as j0 → ∞ and

∑J
j=j0

(

1 + C4h
−1/2

)−2
= Op (Jh) = Op

(

h1/2
)

, it now
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follows from (A20) that

lim
C→∞

lim supn→∞P

{

g̃[d](x) >
1

3
g[d](x), for some x such that inf

x0∈X0

|x − x0| ≥ Ch1/2

}

= 0.

Applying the results to the respective versions of γ we obtain (A14). �

Proof of Theorem 2.2. We prove each part of Theorem 2.2 in turn.

(i) For n sufficiently large the uniform weights will automatically satisfy the constraints. In

this case the constrained estimator will be equivalent to the unconstrained estimator.

(ii) By the Cauchy-Schwarz inequality,

∣

∣

∣ĝ(j)(x|p̂) − g̃(j)(x)
∣

∣

∣ ≤
∣

∣

∣

∣

∣

n−1
n

∑

i=1

(np̂i − 1)2

∣

∣

∣

∣

∣

1/2 ∣

∣

∣

∣

∣

n−1
n

∑

i=1

A
(j)
i (x)2Y 2

i

∣

∣

∣

∣

∣

1/2

≤Op

(

n−1h2|d|+2r−δd+1/2
)1/2

Op

(

h−(2r+2|j|−1)
)1/2

= Op

(

hjj
)

,(A21)

where jj = |d|− |j|− δd/2+3/4. The last inequality follows from Lemma A.2 and the fact

that K(·) is compactly supported. Note that (A21) indicates that when j is of lower order

than d,

(A22) sup
x∈J

∣

∣

∣
ĝ(j)(x|p̂) − g̃(j)(x)

∣

∣

∣
≤ sup

x∈J

∣

∣

∣
ĝ(d)(x|p̂) − g̃(d)(x)

∣

∣

∣
= Op

(

hjd
)

.

We used Lemma A.2 to establish the final order of the above difference. In particular,

supx∈J |ĝ(x|p̂) − g̃(x)| = Op

(

h|d|−δd/2+3/4
)

. This proves part (ii) of Theorem 2.2.

(iii) Since K(·) is compactly supported, there exists a constant M such that

(A23) Ai(x) = 0 if |x −Xi| ≥Mh.

Let Z2 be a random variable such that

Z2h
jd/2 = inf

{

z > 0 : p̂i = n−1(1 + Θ),∀i such that inf
x0∈X0

|x0 −Xi| ≥ z

}

,

where jd is the order in (A22) and Θ is a random variable not depending on i. This

infinitum is well defined given Lemma A.1. Given (A23), any x such that infx0∈X0 |x−x0| ≥
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Mh+ Z2h
jd/2 implies p̂i = n−1(1 + Θ), ∀i such that Ai(x) 6= 0, which in turn implies that

ĝ(x|p̂) = (1 + Θ)g̃(x).

Then Lemma A.3 yields

P

{

ĝ[d](x|p̂) > 1

3
(1 + Θ)g[d](x) > 0,∀x such that(A24)

inf
x0∈X0

|x − x0| ≥ max
(

Ch1/2,Mh+ Z2h
jd/2

)

}

> 1 − δ.

Using (A22) along with the convergence rate of g̃[d] gives us ĝ[d](x|p̂) = g[d](x) + Op

(

hjd
)

for any x ∈ J . In particular, let x = x0 +
(

Ch1/2 + Z2h
jd/2

)

e ∈ J \ X0, where x0 =

argminy0∈X0
|x − y0| ∈ ϑX0 \ ϑJ and e = (x − x0)/||x − x0|| is a vector of unit length.

Using Z
(

h1/2
)

= Ch1/2 + Z2h
jd/2 and a Taylor expansion gives

ĝ[d]
(

x0 + Z
(

h1/2
)

e|p̂
)

=
1

2
Z

(

h1/2
)2

eT ∂2g[d]

∂x∂xT
(x0)e +Op

(

hjd
)

+ op

(

Z
(

h1/2
)2

)

=Op

(

h1
)

+Op

(

Z2
2h

jd
)

+Op

(

hjd
)

.

Clearly, we should have Z2 = Op(1) in order to guarantee (A24). Hence, p̂i is identically

equal to n−1(1 + Θ) for some random variable Θ and for all i such that |Xi − x0| ≥ Z2h,

where Z2 = Op(1). Now we can define a random variable Z1 such that

Z1h
jd/2 = inf

{

z ≥ 0 :∀x ∈ J for which inf
x0∈X0

|x− x0| ≥ z,

Ai(x) = 0 whenever p̂i 6= n−1(1 + Θ)

}

.

Clearly Z1 = Op(1) and ĝ(x|p̂) = (1 + Θ)g̃(x) for all values x ∈ J such that infx0∈X0 |x −
x0| ≥ Z1h

jd/2. Recall that jd = 3/4− δd/2. Hence this establishes the second part of (iii)

of Theorem 2.2.

The order of Θ is derived as follows. From Lemma A.1 we have that the weights p̂i are

identical to n−1(1 + Θ) for indices i that lie a distance O
(

h1/2
)

from x0. Let there be

N such indices that p̂i = n−1(1 + Θ), and let A be the set of remaining indices. Then
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N = Op(n), N1 ≡ |A| = Op

(

nh1/2
)

and
∑

i p̂i = 1 deliver

|Θ| ≤ N−1
∑

i∈A

|np̂i − 1|

≤ N−1

{

∑

i∈A

1

}1/2 {

∑

i∈A

(np̂i − 1)2

}1/2

≤ N−1N
1/2
1

{

n
∑

i=1

(np̂i − 1)2

}1/2

= Op

(

h|d|+r−δd/2+1/2
)

.

This establishes the first part of (iii) of Theorem 2.2. �
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Appendix B. The Quadratic Program for Joint Monotonicity and Concavity

The method outlined in this paper requires the solution of a standard quadratic programming

problem when the (in)equality constraints are linear in p. When our set of constraints is nonlinear

in p, we can modify the problem to still allow for the use of standard off-the-shelf quadratic

programming methods, which is computationally appealing. This appendix spells out in greater

detail how to implement an appropriate quadratic program to solve for a vector of weights that

will ensure a regression function is both monotonic (a constraint that is linear in p) and concave (a

constraint that is nonlinear in p). For a more general overview of the procedures used to determine

a set of weights when a user imposes nonlinear (in p) constraints on a regression function we refer

the reader to Henderson & Parmeter (2009), though they restrict attention to probability weights

and the power divergence metric of Cressie & Read (1984) whose limitations in the current setting

are discussed in Section 1.

Suppose one wished to impose monotonicity and concavity in a two variable regression setting

which involves jointly imposing constraints that are linear and nonlinear in p. We wish to minimize

D(p) = (pu − p)′(pu − p) subject to ∂ĝ(x|p)/∂x1 ≥ 0, ∂ĝ(x|p)/∂x2 ≥ 0, H(x) (the Hessian of the

estimated regression function) being negative semi-definite ∀x ∈ R
2 and

n
∑

i=1
pi = 1. The first two

conditions imply monotonicity of the regression function for each covariate, while the third condition

gives us concavity of the function. The set of linear constraints for the quadratic program can be

represented in matrix form as

(A25) BT =
[

1 1 . . . 1
]

,

(A26) CT
1 =



















A
(1,0)
1 (x1)Y1 · · · A

(1,0)
1 (xn)Y1

A
(1,0)
2 (x1)Y2 · · · A

(1,0)
2 (xn)Y2

...
. . .

...

A
(1,0)
n (x1)Yn · · · A

(1,0)
n (xn)Yn



















,
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and

(A27) CT
2 =



















A
(0,1)
1 (x1)Y1 · · · A

(0,1)
1 (xn)Y1

A
(0,1)
2 (x1)Y2 · · · A

(0,1)
2 (xn)Y2

...
. . .

...

A
(0,1)
n (x1)Yn · · · A

(0,1)
n (xn)Yn



















.

Solving the quadratic program subject to BTp = 1 and CT
1 p ≥ 0 and CT

2 p ≥ 0 will impose the

adding up constraint on the weights and monotonicity. However, guaranteeing concavity of the

regression function requires a modified approach.

Recall that for a matrix to be negative semi-definite the signs of the determinants of the principal

minors must alternate in sign, beginning with a negative or zero value. That is, we need |H∗
1 | ≤ 0,

|H∗
2 | ≥ 0,. . .,|H∗

k | = |H| ≥ 0 if k is even (≤ 0 if k is odd), where | · | denotes determinant. Aside from

the principal minors of order one, the determinant of the remaining principal minor is nonlinear in

the ps. In our two variable setting we therefore need to have ∂2g(x|p)/∂x2
1 ≤ 0, ∂2g(x|p)/∂x2

2 ≤ 0,

and (∂2g(x|p)/∂x2
1)×(∂2g(x|p)/∂x2

2)−(∂2g(x|p)/∂x2∂x1)
2 ≥ 0. The first two constraints are linear

in p and can be written in matrix form as

(A28) CT
3 =



















A
(2,0)
1 (x1)Y1 · · · A

(2,0)
1 (xn)Y1

A
(2,0)
2 (x1)Y2 · · · A

(2,0)
2 (xn)Y2

...
. . .

...

A
(2,0)
n (x1)Yn · · · A

(2,0)
n (xn)Yn



















,

and

(A29) CT
4 =



















A
(0,2)
1 (x1)Y1 · · · A

(0,2)
1 (xn)Y1

A
(0,2)
2 (x1)Y2 · · · A

(0,2)
2 (xn)Y2

...
. . .

...

A
(0,2)
n (x1)Yn · · · A

(0,2)
n (xn)Yn



















.

The last constraint can to be linearized with respect to p and one could then iterate this procedure

using sequential quadratic programming (see Nocedal & Wright (2000, Chapter 18)). Letting

grs(x|p) =
n
∑

i=1
A

(r,s)
i (x)Yipi, the linearized version of the determinant of the second order cross
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partial is

(A30) CT
5 =



















c11 · · · c1n

c21 · · · c2n

...
. . .

...

cn1 · · · cnn



















,

where cvw = g11(xw|p)A(0,2)
v (xw)Yv + g22(xw|p)A(2,0)

v (xw)Yv − 2g12(xw|p)A(1,1)
v (xw)Yv. To solve for

the vector of weights consistent with both monotonicity and concavity, the quadratic program

would be solved using B and C1 through C5 to obtain an initial solution. This solution would

then augment the starting value of p to become an updated solution. The process would then be

iterated until convergence of the ps occurs. See Henderson & Parmeter (2009) for a more detailed

explanation of this process.
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Appendix C. R code to replicate the example in Section 3.1

We provide R code (R Development Core Team (2008)) to replicate the example in Section 3.1.

Ignoring the code that generates the data for this example, the approach requires only 12 simple

commands involving straightforward code and a call to a short routine that follows which generates

the weights necessary for solving the quadratic programming problem (the rest of the code is used

to generate the estimation and evaluation data). To allow the user to test the code on a trivial

dataset we have changed the number of observations to n = 250 and evaluate on a grid of size

25x25 (instead of 10,000 and 50x50 used in Section 3.1).

library(np)

library(quadprog)

n <- 250

n.eval <- 25

x.min <- -5

x.max <- 5

lower <- 0.0

upper <- 0.5

## The following loads a simple function that will return the

## weight matrix multiplied by n

source("Aymat_train_eval.R")

## Generate a draw from the DGP

x1 <- runif(n,x.min,x.max)

x2 <- runif(n,x.min,x.max)

y <- sin(sqrt(x1^2+x2^2))/sqrt(x1^2+x2^2) + rnorm(n,sd=.1)

data <- data.frame(y,x1,x2)

rm(y,x1,x2)

## Create the evaluation data matrix

data.eval <- data.frame(y=0,expand.grid(x1=seq(x.min,x.max,length=n.eval),

x2=seq(x.min,x.max,length=n.eval)))

## Now that we have generated the data, here is the body of the code

## (12 commands excluding comments)

## Generate the cross-validated local linear bandwidth object

## using the np package, then compute the unrestricted model
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## and gradients using the np package

bw <- npregbw(y~x1+x2,regtype="ll",tol=.1,ftol=.1,nmulti=1,data=data)

model.unres <- npreg(bws=bw,data=data,newdata=data.eval,gradients=TRUE)

## Start from uniform weights equal to 1/n, generate p, Dmat, and dvec

## which are fed to the quadprog() function

p <- rep(1/n,n)

Dmat <- diag(1,n,n)

dvec <- as.vector(p)

## Generate the weight matrix

Aymat.res <- Aymat(0,data,data.eval,bw)

## Create Amat which is fed to the quadprog() function. The first line

## contains the adding to one constraint, the next blocks contain the

## lower and upper bound weighting matrices.

Amat <- t(rbind(rep(1,n),Aymat.res,-Aymat.res))

rm(Aymat.res)

## Create bvec (the vector of constraints) which is fed to the

## quadprog() function

bvec <- c(0,(rep(lower,n.eval)-fitted(model.unres)),

(fitted(model.unres)-rep(upper,n.eval)))

## Solve the quadratic programming problem

QP.output <- solve.QP(Dmat=Dmat,dvec=dvec,Amat=Amat,bvec=bvec,meq=1)

## That’s it. Now extract the solution and update the uniform weights

p.updated <- p + QP.output$solution

## Now estimate the restricted model using the np package and you are done.

data.trans <- data.frame(y=p.updated*n*data$y,data[,2:ncol(data)])

model.res <-

npreg(bws=bw,data=data.trans,newdata=data.eval,gradients=TRUE)

## You could then, say, plot the restricted estimate if you wished.

plot(model.res,data=data.trans)



44 JEFFREY S. RACINE, CHRISTOPHER F. PARMETER, AND PANG DU

Here is the Aymat code located in source("Aymat_train_eval.R") called by the above example.

It returns the weight matrix for the local linear estimator and its derivatives multiplied by n.

Aymat <- function(j.reg=1,mydata.train,mydata.eval,bw) {

y <- mydata.train[,1]

n.train=nrow(mydata.train)

n.eval=nrow(mydata.eval)

X.train <- as.data.frame(mydata.train[,-1])

names(X.train) <- names(mydata.train)[-1]

X.eval <- as.data.frame(mydata.eval[,-1])

names(X.eval) <- names(mydata.eval)[-1]

k <- ncol(X.train)

Aymat <- matrix(NA,nrow=n.eval,ncol=n.train)

iota <- rep(1,n.train)

for(j in 1:n.eval) {

evalmat <- as.data.frame(t(matrix(as.numeric(X.eval[j,]),k,n.train)))

names(evalmat) <- names(X.eval)

W <- as.matrix(data.frame(iota,X.train-evalmat))

K <- npksum(txdat=evalmat[1,],

exdat=X.train,

bws=bw$bw)$ksum

Wmat.sum.inv <- solve(npksum(exdat=evalmat[1,],

txdat=X.train,

tydat=W,

weights=W,

bws=bw$bw)$ksum[,,1])

Aymat[j,] <- sapply(1:n.train,

function(i){(Wmat.sum.inv %*% W[i,]*K[i]*y[i])[(j.reg+1)]})

}

return(n.train*Aymat)

}


