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1 Introduction

This paper analyzes an ongoing collective decision problem in which i) there are shocks to

the environment that affect individual preferences, and hence call for renegotiation of the

past agreement, ii) the interests of individuals are not perfectly aligned, and iii) the previous

agreement becomes the next status quo and determines the payoffs until a new agreement is

reached.

Negotiations in a changing environment with an endogenous default are at the center of

many economically relevant situations, one prominent example being legislative bargaining.

Legislators’preferences reflect heterogeneous ideologies (or constituencies) and shocks, such

as business cycles, technological improvements, or the vagaries of public opinion. For exam-

ple, during a recession, generous public spending may be favored by all parties to stimulate

short-term economic growth and employment. Conversely, when facing investors’skepticism,

all parties may prefer to curb spending to convince the market that the public debt is under

control. In normal times, however, legislators may genuinely disagree on these issues. Hence,

a changing environment calls for renegotiations. At the same time, many budgetary policies

are continuing in nature: the enacted policy continues in effect unless further legislative

action is taken.1 Recognizing this, fiscal conservatives may be reluctant to increase public

spending during a recession, fearing that their liberal counterparts will oppose a return to

fiscal discipline when the economy improves.

This fundamental trade-off between responding to the current environment and securing

a favorable bargaining position for the future plays a key role in many dynamic bargaining

settings. In the legislative sphere, besides fiscal policy over the business cycle, many ide-

ologically charged issues such as taxation, immigration, minimum wage, pensions, or civil

liberties are also subject to recurring shocks (e.g., demographic transitions, inflation pres-

sures, or terrorist threats) and the policies that address them are typically continuing in

nature.2 Likewise, prior agreements determine the default option in a host of non legisla-

1In the U.S., the budget process distinguishes between two expenditure categories: discretionary spending
and direct spending. The former requires an annual appropriation bill while the latter is continuing in
nature. Direct spending consists mainly of entitlement programs such as Social Security benefits, Medicare
and Medicaid. It has been the larger of the two categories since the 1990s. See Weaver (1985, 1988), Hird
(1991) and Lowi (1969) on the ongoing nature of public policies in the U.S.

2Sunset provisions are rather the exception than the norm, as laws and regulations are meant to be
permanent. They are somewhat more frequently used in taxation. For instance, the U.S. Earned Income
Tax Credit and its subsequent expansions in 1986, 1990, 1993, and 2001 did not have a sunset provision, but
the “Vietnam tax surcharge”of The Revenue and Expenditure Control Act of 1968 had a two-year sunset
clause. More recently, the “Bush tax cuts”of the Economic Growth and Tax Relief Reconciliation Act of
2001 and the Jobs and Growth Tax Relief Reconciliation Act of 2003 had a ten-year sunset clause. Another
prominent exception is the U.K. income tax which is repealed and voted on again every year.
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tive bargaining contexts such as monetary policy,3 labor contracts, financial contracts, and

international treaties (such as those of the WTO, or the GATT).

Despite its pervasiveness, the institution of the endogenous status quo in a changing

environment has received little attention in the literature. This is likely due to the complexity

of the dynamics of these games. This paper builds an analytically tractable model which

isolates the incentives generated by the endogeneity of the status quo in a transparent way.

Despite its simplicity, the model generates rich dynamics but delivers clear results on the

responsiveness of the bargaining outcome to the environment. It also provides a tractable

framework to study the effi ciency of alternative legislative rules such as sunset provisions.

In the basic model, two players engage in a finite sequence of collective choices over two

alternatives. In each period, the environment changes and affects players’preferences. At

the beginning of each period one alternative– called the current status quo– is in place. If

both players agree to move away from the status quo, the new alternative is implemented.

Otherwise, the status quo remains in place. In both cases, the implemented alternative

determines the players’payoffs in this period and becomes the status quo in the next period.

The preferences are independently and identically distributed over time, but can be correlated

across players. Players are forward-looking and discount the future.

The endogeneity of the status quo introduces a dynamic linkage between otherwise in-

dependent bargaining periods, and this distorts players’ voting behavior. In the unique

equilibrium, in each period a player votes for a given alternative if and only if her current

payoffdifference between this alternative and the other one exceeds a certain, time-dependent

threshold. Since each player is willing to sacrifice her current payoff to secure a favorable

status quo, the voting thresholds are typically different from zero. This means that each

player’s vote is biased in favor of one alternative.

We show that this bias is given by the expected preferences conditional on disagreement.

This means that the bias of a given player does not depend solely on her preferences, but on

how her preferences conflict with those of her opponent. The players’willingness to ignore

their actual preference realizations and follow instead interests defined in opposition to the

rival reminds us of what is commonly referred to as partisanship, and we use this term to

denote the voting threshold of each player.

The central finding of this paper is that by inducing partisanship, the endogenous status

quo exacerbates the players’conflict of interest and decreases the responsiveness of the bar-

gaining outcome to the environment. We show that players with arbitrarily similar preference

3In the U.S., the interest rates are negotiated within the Federal Open Market Committee and remain
in place until the committee agrees to change them according to its internal voting rule. See Riboni and
Ruge-Murcia (2008) for more on the role of the status quo in monetary policy institutions.
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distributions can behave as if their interests were highly discordant. Moreover, if players are

patient enough, the endogeneity of the status quo can bring the negotiations to a complete

gridlock in which the enacted policy is completely unresponsive to the environment.

Our results extend to an N−player game in which i) individual preferences are parame-
terized by a constant, heterogeneous ideological type, ii) preferences are subject to a common

shock, and iii) the status quo stays in place unless at least M players vote for the other al-

ternative. As in the two-player case, the endogeneity of the status quo makes all players

partisan. In addition, in this setting partisanship unambiguously decreases the probability

that M players agree, increasing thereby status quo inertia. Partisanship and status quo

inertia increase with patience, the bargaining horizon, and ideological polarization. Parti-

sanship also increases with the supermajority requirement M. This last finding means that

a higher supermajority increases status quo inertia not only because more players need to

agree, but also because it exacerbates the players’conflict of interests.

Partisanship results in the Pareto worse alternative being implemented with positive

probability in every period, which certainly has a detrimental impact on welfare. However,

by bundling the players’vote on today’s policy and tomorrow’s status quo, the endogenous

status quo prompts the players to express the intensity of their preference realizations, which

could be socially beneficial. To assess the welfare effect of partisanship, we compare our game

to the repetition of a static bargaining protocol in which one alternative is exogenously

designated as the status quo. Under this protocol, players vote only on the basis of their

current preferences in each period. Our model delivers a somewhat negative result: under

mild regularity conditions, an exogenous status quo achieves a higher level of social welfare

than an endogenous one.

In legislative decision making, designating one policy as a fixed default can be interpreted

as an automatic sunset provision. Sunset provisions have usually been advocated to improve

parliamentary control of executive agencies, to evaluate the effi ciency of new laws, or to

impose a time limit on temporary measures. The rationale advanced by this paper has

a more strategic flavor: sunset provisions sever the link between today’s agreement and

tomorrow’s status quo, which mitigates polarization and makes policies more responsive to

the environment.

Partisanship can also be mitigated by concentrating decision rights, because if fewer

players have to agree, the status quo is less likely to be a binding constraint. In the two-

player case, this can be done by vesting one player with dictatorial power. We show that

in some cases, partisanship is so detrimental that both players are willing to give up their

veto power and let their opponent be the dictator. In the N−player extension of the model,
if preferences are symmetrically distributed along the ideological spectrum, decreasing the
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supermajority requirement is socially beneficial.

The paper is organized as follows. Section 2 describes the model. Section 3 derives

the equilibrium. In section 4, we characterize the dynamics of partisanship. Section 5

extends the model to N players. Section 6 contains the welfare analysis and discusses the

implication of our model for sunset provisions and concentrating decision power. Section

7 introduces intertemporal correlation of preferences and allows shocks to differ in their

persistency. Section 8 concludes. All proofs not provided in the main text can be found in

the appendix.

1.1 Related Literature

The formal literature on ongoing legislation with endogenous status quo started with the

seminal paper of Baron (1996).4 His model has been extended to various multidimensional

settings by Baron and Herron (2003), Kalandrakis (2004, 2007), Cho (2005), Fong (2006),

Bernheim et al. (2006), Diermeier and Fong (2007a), Baron, Diermeier, and Fong (2007),

and Battaglini and Palfrey (2007).5 These models, however, consider static environments:

policies evolve over time not because preferences change, but because the set of actions

available to each player varies across voting stages. They focus on the dynamics of the

proposal power under different institutional rules. We abstract away from the distributional

issue of the proposal power and focus instead on the effi ciency of the policy-making process

and its responsiveness to economic and political shocks.6

Battaglini and Coate (2007, 2008) study the ineffi ciency of a dynamic legislative bar-

gaining model of public finance. In their papers, the status quo is fixed and the dynamic

linkage is the accumulation of the public good or debt, which affects the relative returns

of pork-barrel programs. In their model, the availability of targeted public spending leads

legislatures to pass ineffi cient budgets and be present-biased, more so the lower the super-

majority requirement, while in our model, the continuing nature of policies lead voters to be

future-biased, more so the larger the supermajority requirement.

Even though dynamic bargaining with an endogenous status quo and evolving prefer-

ences is at the center of many economically relevant situations, the existing literature on

this topic is scarce. This may be a consequence of the relative intractability of these games.

4Epple and Riordan (1987) study a similar model but consider nonstationary equilibria. The principle
of an evolving status quo was first introduced in a cooperative bargaining literature by Kalai (1977).

5The models of Bernheim et al. (2006) and Diermeier and Fong (2007a) are originally cast in a single
policy period, but they can be extended or interpreted as dynamic legislative bargaining games.

6Because most of these models consider the division of a pie of exogenous size or single-peaked preferences,
equilibrium outcomes are always effi cient in a static sense and can be ineffi cient in a dynamic sense only
when citizens are suffi ciently risk-averse. In contrast, when preferences vary as in our model, equilibrium
outcomes are typically Pareto ineffi cient independently of risk aversion.
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As Romer and Rosenthal (1978) showed in a static setup with single-peaked preferences,

the induced preferences over the status quo are typically not convex, which makes the mul-

tiperiod extension technically hard to analyze. With a continuum of alternatives and an

infinite horizon, Markov equilibrium existence is not guaranteed even under standard prefer-

ence specifications.7 To the best of our knowledge, only Diermeier and Fong (2007b), Riboni

and Ruge-Murcia (2008) and Duggan and Kalandrakis (2009) make progress on this front.

Adding noise to the status quo, Duggan and Kalandrakis (2009) establish the existence of

an equilibrium. The generality of their model does not allow an analytical equilibrium char-

acterization, so they resort instead to numerical methods. Riboni and Ruge-Murcia (2008)

analyze a game with quadratic utility functions and a finite state space. They analytically

solve a two-period two-state example, but use numerical solutions for the general model.

Diermeier and Fong (2007b) analyze a two-period three-state model with a richer institu-

tional framework. Our paper differs from these contributions in that we simplify the space

of alternatives, but fully characterize the policy dynamics for any preference distributions

and any bargaining horizon. Our institutionally sparse model allows us to isolate the effect

of the endogeneity of the status quo in a transparent way.

Montagnes (2010) looks at a two-period financial contracting environment in which the

current contract serves as the default option in future negotiations. He shows that both

contracting parties may prefer to commit ex ante to ceding a future decision power to one of

them. Such a commitment breaks the dynamic linkage and avoids ineffi ciencies in the initial

contract.

Fernandez and Rodrik (1991) and Alesina and Drazen (1991) have emphasized that the

distributional uncertainty of policy reforms can lead to status quo inertia. In our model,

status quo inertia would also arise in an environment without uncertainty but with evolving

preferences.

Our results on policy responsiveness are related to the political economy literature on

growth and on the dynamics of welfare policies (Glomm and Ravikumar 1995; Krussell and

Rios-Rull 1996,1999, Coate and Morris 1999; Saint Paul and Verdier 1997; Benabou 2000;

Saint Paul 2001; Hassler et al. 2003, 2005). These models emphasize the effect of the current

policy on private investment decisions, which in turn affect the policy preferences of voters

in future periods and thus generate policy persistence. In contrast, in our paper, the current

policy does not affect future preferences, but inertia emerges because today’s policy affect

future bargaining positions.

Finally, Casella (2005) shows that linking voting decisions across time allows voters to

express their preference intensity, which can be socially beneficial. Our results suggests

7See, e.g., Kalandrakis (2004b, 2007) or Duggan and Kalandrakis (2009) for more on this issue.
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that the intertemporal trade-off induced by the endogeneity of the status quo, despite the

pervasiveness of this institution, is not an effi cient way to elicit preference intensity. Barbera

and Jackson (2010) let ex ante identical voters choose the group decision rule after having

learned their first period preferences. As in our framework, bundling the current and the

future decision rules generate ineffi ciencies. But since the dynamic linkage is only between

the first and the subsequent periods, suffi ciently patient players always select the optimal

voting rule.

2 The Basic Model

Two players, i and j, are in a relationship that lasts for T periods. For notational simplicity,

we adopt the convention that t = 1 denotes the last period. In other words, t measures

the number of periods remaining in the game. In each period t, players adopt one of two

alternatives, yt ∈ {−1, 1} . The utility of player k ∈ {i, j} in period t depends on the

alternative adopted in period t only, and is given by u
(
θtk, y

t
)

= θtky
t. We refer to θtk as

player k’s current preference. Players discount future payoffs with the same factor δ ∈ (0, 1).

Throughout the paper, for any individual parameter pk, the bold symbol p will refer to the

vector (pi, pj).

The game proceeds as follows. Each period starts with one alternative in place. We

call this alternative the status quo in period t and denote it by qt. At the beginning of

each period, the preferences of both players θt are drawn from a joint distribution which is

integrable, i.i.d. over time, but the preferences can be arbitrarily correlated across players.

We shall assume that the distribution of θt has full support and admits a probability density

function f with mean θ̄. After players observe θt, they vote on which alternative to adopt

in period t. If both players vote for the same alternative, this alternative is implemented. If

they disagree, the status quo qt stays in place. The implemented alternative yt, be it the new

agreement or the status quo qt, determines the payoff in period t and becomes the status quo

for the next period qt−1. Hence, each period is an independent social choice problem but the

endogeneity of the status quo introduces a strategic linkage between bargaining periods. We

denote the game that lasts T periods and begins with status quo q by ΓenT,q. The following

diagram summarizes the model.
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To isolate the effect of the endogeneity of the status quo on equilibrium behavior and

welfare, we shall compare ΓenT,q to the game ΓexT,q in which the status quo is exogenously fixed

at q in each of the T bargaining periods.

As usual with voting games, subgame perfection in the strict sense is not enough to elimi-

nate pathological equilibria such as both players always voting for the status quo. Therefore,

we restrict our attention to stage undominated equilibria (henceforth equilibria) as defined in

Baron and Kalai (1993). This solution concept, standard in dynamic voting games, basically

amounts to assuming that in every period, players cast their votes as if they were pivotal.

A few comments on the model are in order. First, we analyze a two-player game with

a unanimity requirement, but we show in section 5 that our results extend to an N−player
game with a (super) majoritarian approval rule. Second, the stationarity of the preference

distribution is a simplifying assumption which is meant to capture the recurring nature of

shocks (e.g., economic cycles, demographic transitions, public opinion swings, or national

security threats) that affect issues such as taxation, public spending, immigration, or civil

liberties. We relax this assumption in section 7. Third, restricting attention to two alterna-

tives allows us to abstract away from the details of the stage game and the issue of proposal

power.8 It thereby allows us to isolate the effect of the endogeneity of the status quo on the

effi ciency and responsiveness of the bargaining outcomes to the environment in a transparent

way. Fourth, what players know about each other’s preferences is immaterial.9

Finally, we look at a T−period game, as opposed to Γen2,q or Γen∞,q (where Γen∞,q denotes

the corresponding infinite-horizon game), for the following reasons. First, as we will see, the

8With two alternatives, many static bargaining protocols are equivalent. In particular, equilibrium
outcomes are the same whether players vote simultaneously or sequentially, if they make take-it-or-leave-it
offers, or if we allow for n rounds of bargaining within each period with either a random or alternating
proposer.

9As we shall see, even if θt is common knowledge at the beginning of each period t, the equilibrium
strategy of each player depends only on her own preference realization.
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equilibrium behavior in some period T > 2 may differ qualitatively from the equilibrium

behavior in a two-stage game. Hence, restricting attention to Γen2,q may not be informative

about players’ behavior when the bargaining horizon is longer. Second, the equilibrium

of ΓenT,q as T approaches infinity may not be a Markov equilibrium of Γen∞,q. So restricting

attention to the Markov equilibria of Γen∞,q could miss interesting equilibrium dynamics.

However, when the equilibrium converges, our results can be generalized to Γen∞,q, and we

shall state the generalizations as we move along.

3 Equilibrium Analysis

3.1 The Equilibrium

Proposition 1 shows that the equilibria of the games
(
ΓenT,q

)
T∈N,q∈{−1,1} are characterized by

a unique sequence of voting thresholds (ct)t≥1.

Proposition 1 ΓenT,q admits a unique (up to a zero-measure subset of preference realizations)

equilibrium which is characterized by a sequence of thresholds (ct)
T
t=1. In period t, player

k ∈ {i, j} votes for 1 if θtk > ctk and for −1 if θtk < ctk. For all t, ct is independent of T and

q, and is defined recursively by c1 = (0, 0) and by ct+1 = H (ct) where

Hk (c) = δ

(∫ cj

−∞

∫ ∞
ci

(ck − θk) f (θ) dθidθj +

∫ ∞
cj

∫ ci

−∞
(ck − θk) f (θ) dθidθj

)
. (1)

The proof of proposition 1 is relatively simple and helps build intuition for the rest of

the analysis. Observe first that the policy implemented in the last period t = 1 determines

only the current payoff in that period. Therefore, in that period each player votes according

to her current preferences, so c1 = (0, 0).10

Suppose now that the proposition holds for all T ≤ T ′. For all t ≤ T ′+1, the continuation

game after period t’s outcome yt is simply Γent−1,yt . From the induction hypothesis, this game

has a unique equilibrium, and we denote its value for player k by V t−1
k (yt). Since player

k ∈ {i, j} votes as if she were pivotal, in every period t ≤ T ′ + 1, she votes for 1 if

θtk + δV t−1
k (1) > −θtk + δV t−1

k (−1)⇔ θtk >
δ

2

(
V t−1
k (−1)− V t−1

k (1)
)
,

10The uniqueness of the thresholds comes from the full support assumption.
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and for −1 if the reverse inequality holds. Therefore, she uses a threshold strategy with the

threshold being

ctk =
δ

2

(
V t−1
k (−1)− V t−1

k (1)
)
. (2)

This shows that ΓenT ′+1,q has a unique equilibrium. Observe from (2) that the sign of ctk
determines whether player k prefers the next period’s status quo to be 1 or −1, and its

absolute value measures the intensity of this preference.

The following observation is the key step to understanding the function H in (1): the

status quo in a given period t matters only when players vote for opposite alternatives. From

what precedes, this happens when players’preferences θti and θ
t
j are on opposite sides of their

respective thresholds cti and c
t
j. Therefore, from (2) we have

cT
′+1

k =
δ

2

 ∫ cT ′j
−∞
∫∞
cT
′

i

(
−θk + δV T ′−1

k (−1)−
(
θk + δV T ′−1

k (1)
))

f (θ) dθidθj

+
∫∞
cT
′

j

∫ cT ′i
−∞

(
−θk + δV T ′−1

k (−1)−
(
θk + δV T ′−1

k (1)
))

f (θ) dθidθj

 .

Substituting (2) inside the integral, we get the recursive relation cT
′+1 = H

(
cT
′)
, which

proves proposition 1. The above expression implies that the voting behavior of each player is

given by her expected intertemporal preferences (i.e., θtk− ctk) in the next period conditional
on disagreement (i.e. θti − cti and θtj − ctj of opposite sign).

3.2 Partisanship

The following is a straightforward but important corollary of proposition 1:

Corollary 1 In equilibrium, players use nonzero thresholds (i.e., cti = ctj = 0 for all t) if

and only if ∫ ∞
0

∫ 0

−∞
θf (θ) dθidθj +

∫ 0

−∞

∫ ∞
0

θf (θ) dθidθj = (0, 0) . (3)

Condition (3) shows that players use nonzero thresholds if, conditional on disagreement,

at least one player is ex-ante not indifferent between the two alternatives. Condition (3)

is satisfied only in special cases. For instance, if the distribution of θ is bivariate normal,

condition (3) holds if and only if θ̄ = (0, 0) (see figure in section 4). The following example

shows that it can be violated even if the preference distribution is symmetric (i.e., for all

(θi, θj), f (θi, θj) = f (θj, θi)) and the marginal distribution of the preference of each player

is symmetric around zero.

Example 1 Each of the four points in the figure below represents the mean of a smooth
and symmetric density function that has full support and a vanishing variance. Agents’
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preferences are drawn from each possible joint distribution with equal probability. Observe

that the marginal distribution for each player is symmetric around zero; hence, ex ante,

each player is indifferent between the two alternatives. However, conditional on the current

preferences disagreeing, that is, conditional on θi and θj being of opposite sign, each player

is equally likely to prefer 1 and −1, but her preferences for 1 are more intense.11

Corollary 1 shows that the voting thresholds are typically different from zero, which

means that players are willing to sacrifice their current payoff to secure a better bargaining

position in the future. It is instructive to compare this situation with the game with an

exogenous status quo ΓexT,q.With the exogenous status quo, each period can be considered in

isolation; so in the unique equilibrium of ΓexT,q the players use constant threshold strategies

(0, 0). Hence, by comparing ΓenT,q with ΓexT,q, we see that the endogeneity of the status quo

introduces a bias in the equilibrium behavior: each player k in ΓenT,q behaves as if the status

quo was exogenous but her payoff θtk was shifted by −ctk.
As proposition 1 shows, these voting biases are determined by the players’ expected

preference conditional on disagreement. This implies that the bias of a given player does

not depend solely on her preferences, but on how her preferences conflict with those of her

opponent. The players’willingness to ignore their actual preference realizations and follow

instead interests defined in opposition to the rival reminds us of what is commonly referred

to as partisanship. This resemblance will be emphasized in section 5, in which we show that

when players are ranked on an ideological spectrum, the direction of the bias of a given

player depends only on her relative ideological position. Therefore, in the sequel we use the

term partisanship to refer to the voting threshold of each player.

Definition The partisanship of player k ∈ {i, j} in period t is ctk.
11To see this, observe that conditional on θi and θj having opposite sign, the players’ type are drawn

from the “top/left”distribution with mean (−1, 2) or the “bottom/right”distribution with mean (2,−1).
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Because of partisanship, Pareto dominated alternatives are implemented with positive

probability. For example, if cti < 0, then with positive probability θtj < 0 and cti < θti < 0,

in which case player i vetoes the Pareto optimal alternative −1 when qt = 1. If additionally

ctj < 0, then with positive probability, ctj < θtj < 0, and the Pareto dominated alternative

yt = 1 garners unanimous approval.

4 The dynamics of partisanship

Proposition 1 implies that partisanship evolves over time. In this section, we analyze the

dynamics of partisanship and its limit limT→∞ cT as the bargaining horizon T increases,

which we denote by c∞ when it exists.

Before we proceed, let us establish some notation. First, let (≤,≥) denote the partial

order on R2 defined by c(≤,≥)c′ if ci ≤ c′i and cj ≥ c′j; (<,>) and (≥,≤) are defined

similarly. Second, it will prove convenient to partition of the set of preference distributions

as follows.

Definition A preference distribution is congruent if Hi (0, 0) and Hj (0, 0) are of the same

sign. It is polarized if they are of opposite sign.

From the definition of H (see (1)), a preference distribution is congruent if, conditional

on disagreement, each player’s expected preference favors the same alternative. Otherwise,

it is polarized. Stated differently, if players had the choice between playing the game ΓexT,q
with an exogenous status quo q = 1 or q = −1, congruent players would have the same

preferences over q, while polarized player would disagree.

The following figure illustrates this partition for normal bivariate distributions for ρ = −1

(the thickest curve), ρ = 0, and ρ = 1 (the thinnest curve).12 Observe that for a given

correlation, the preference distribution is congruent only if the means are suffi ciently close

to each other. In particular, the preference distribution is always polarized when the means

are of opposite sign, or the preferences are perfectly correlated. To see the latter, suppose

for simplicity that σi = σj = 1 and θ̄i > θ̄j. As ρ approaches 1, then θi > θj almost surely.

Therefore, conditional on disagreement, player i prefers alternative 1 while player j prefers

−1. This shows in particular that players with very similar preference distributions can be

12This partition is formally characterized in example 3 in the appendix.
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polarized.

4.1 Polarized preferences

From proposition 1, c2 = H (0, 0), so if the preference distribution is polarized, in the

penultimate period of ΓenT,q players are partisan for different alternatives. The following

proposition shows that in this case, players will remain biased in favor of different alternatives

in all periods. Moreover, their degree of partisanship increases with the bargaining horizon.

Proposition 2 If the preference distribution is polarized with H (0, 0) (≤,≥) (0, 0), then

a) for all t, ct+1
i < cti < 0 < ctj < ct+1

j ;

b) c∞ exists and is the least fixed point of H on R− × R+ for the order (≤,≥).

Proof. From lemma 1 (see the appendix), ∂Hi
∂ci
≥ 0 and ∂Hi

∂cj
≤ 0, so H (c) is monotone

in the order (≤,≥). Since H (0, 0) (≤,≥) (0, 0), it follows that H (R− × R+) ⊂ R− × R+.

From (1), for all k ∈ {i, j},

|Hk (c)| ≤ δ

(∫ ∞
0

∫ 0

−∞
(|θk − ck|) f (θ) d θ+

∫ 0

−∞

∫ ∞
0

(|θk − ck|) f (θ) dθ

)
≤ δ (E (|θk|) + |ck|) .

This implies that
∣∣∣Hk

(
− δE(|θi|)

1−δ ,
δE(|θj |)

1−δ

)∣∣∣ ≤ δE(|θk|)
1−δ . Hence, we have shown that H (L) ⊂

L,where L =
[
−E(|θi|)

1−δ , 0
]
×
[
0,

E(|θj |)
1−δ

]
. Since L is a complete lattice for (≤,≥), Tarski’s

theorem implies that H has a least fixed point cf on L (and so on R− × R+) in the order

(≤,≥).

Since c1 = (0, 0), it follows that cf (≤,≥) c1, and by monotonicity ofH, cf (≤,≥) c2. By

assumption,H (0, 0) (≤,≥) (0, 0), so c2 (≤,≥) c1. Hence, cf (≤,≥) ct+1 (≤,≥) ct (≤,≥) (0, 0)

holds for t = 1. Suppose that it holds for some t ≥ 1; by applyingH and using the fact that
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H (0, 0) (≤,≥) (0, 0), the same inequalities hold for t+ 1. This shows by induction that ct is

increasing in t for the order (≤,≥). Since ct is bounded above by cf in the order (≤,≥), it

has a limit, and the limit must be a fixed point ofH no greater than cf in the order (≤,≥).

Therefore, it must be cf .

Since partisanship measures the willingness of players to ignore their current preferences

in order to secure a favorable status quo, proposition 2 implies that the responsiveness of

the equilibrium behavior to the preference realizations decreases as the bargaining horizon

increases. To understand the intuition for this result, consider the case in which player i

prefers status quo 1 and player j prefers status quo −1 in the last period t = 1. In the

penultimate period t = 2, the players’partisanship increases the probability that player i

votes for 1 and player j votes for −1. Since such disagreement becomes more likely, securing

each player’s most preferred status quo becomes more important for t = 2 than for t = 1.

The higher probability of such disagreement makes securing each player’s most preferred

status quo more important for t = 2 than for t = 1. As a result, players are more partisan

in t = 3. Hence, with polarized preferences, partisanship feeds on itself by increasing the

probability of disagreement, and thus the importance of the status quo.

Technically, the proof of proposition 2 uses the monotonicity of H in the partial order

(≤,≥). This order structure, together with the recursive nature of the equilibrium, allows

us to derive monotone comparative statics in the main primitives of the problem.

Proposition 3 If the distribution of θ is polarized with H (0, 0) (≤,≥) (0, 0), then

a) partisanship increases with patience: for all t, ct is increasing in δ in the order (≤,≥);

b) partisanship increases with the polarization of preferences: For any m ∈ R2, let

(ct (m))t≥1 be the equilibrium voting thresholds for the preference distribution of θ +m.

Then ct (m) is decreasing in m in the order (≤,≥).

Proof. Part (a): If H (0, 0) (≤,≥) (0, 0) for some δo, the same inequality holds for all

δ. Since H is monotonic in the order (≤,≥), then for all c ∈ R− × R+, H (c) (≤,≥) (0, 0)

and from (1), ∂Hi(c)
∂δ

= Hi(c)
δ
≤ 0 and ∂Hj(c)

∂δ
=

Hj(c)

δ
≥ 0. Lemma 2 (see the appendix) with

p = δ, P = ]0, 1[ and C = R− × R+ completes the argument.

Part (b): Lemma 1 implies that for all k 6= k′, ∂Hk(c)
∂mk

≥ 0 and ∂Hk(c)
∂mk′

≤ 0. Lemma 2 for

p = m, P = C = R2, and �= (≤,≥) completes the argument.

The intuition for part (a) is that when players trade off the adequacy of the policy to

the current environment versus securing a favorable status quo for tomorrow, more patient

players put more weight on the latter and thus are more partisan. As for part (b), the

preferences of more polarized players are more likely to disagree, which makes the status quo
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more important and thus increases partisanship. This, in turn, increases the likelihood of

a disagreement. Hence, the endogeneity of the status quo magnifies the conflict of interest

between players.13

The following proposition shows that when players become patient, the magnitude of

their partisanship can lead to complete gridlock: if players are suffi ciently polarized, even if

their preferences agree with positive probability in every period, they almost always disagree

in equilibrium.

Proposition 4 For any m ∈ R2, let (ct (m))t≥1 be the equilibrium voting thresholds for

the preference distribution of θ +m. There exists mo ∈ R2 such that for all m (≥,≤)mo,

limδ→1 c
∞ (m) = (−∞,+∞).

Observe that this result is not a mechanical consequence of increasing patience because

today’s status quo has direct consequences only on tomorrow’s status quo, and today and

tomorrow carry the same weight for patient players. What drives the completely unrespon-

sive behavior of patient players is the vicious cycle in which patience increases partisanship,

which itself increases the life expectancy of the status quo, which in turn increases the impact

of patience on partisanship.14

We conclude this section with an example that illustrates the above propositions. The

following figure represents the phase diagram of the functionH and the equilibrium dynamics

when the preference distribution is bivariate normal with mean θ̄ = (µ,−µ) for two different

values of µ. The dots in each panel represent the equilibrium sequence of thresholds. The

arrows at any point c represent the direction of the vector H (c) − c and the two curves
show the locus of the points c such that if players use voting thresholds c in period t, one

player will use the same threshold in period t + 1. The intersections of these two curves

are the fixed points of H. As shown in proposition 2, if the bargaining horizon is long

enough, partisanship starts near the smallest fixed point of H in the northwest quadrant,

13It turns out, however, that partisanship is not monotone in the degree of correlation. On the one hand,
more correlated preferences are less likely to disagree. On the other hand, as correlation increases, the nature
of the disagreement is more predictable: conditionally on disagreement, one player almost always prefers −1,
and the other player almost always prefers 1. Which effect dominates depends on the preference distribution.

14The results of this section extend to the infinite horizon game Γen∞,q as follows: the set of Markov
equilibria of Γen∞,q is the set of constant threshold strategies c where c is a fixed point ofH. The comparative
statics results in proposition 3 can be extended to the greatest and least Markov equilibria of Γen∞,q in the
order (≤,≥). Indeed, as shown in the proof of propositions 2 and 3, H (c) is monotonic in c, δ and m.
Tarski’s fixed point theorem and theorem 4 in Villas-Boas 1997 complete the argument. Moreover, in the
proof of proposition 4, we show that form (≤,≥)mo, all fixed points ofHm diverge to (−∞,+∞) as δ → 1.
This shows that for m (≤,≥)mo, all Markov equilibria of Γen∞,q diverge to (−∞,+∞) as δ → 1.
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and decreases towards the origin as the game progresses.

In the left panel, H has a unique fixed point, while in the right panel, H has three fixed

points. The pictures show that c∞ may not be continuous in the primitives of the problem.

However, consistent with proposition 3, partisanship increases in the preference polarization

µ. Setting δ equal to 1, one can show numerically that for µ ≥ 0.22, H has no fixed point.

This means that, as established in the proof of proposition 4, there is complete gridlock

as players become very patient, even though for µ = 0.22 players preferences agree with

probability 0.64.

4.2 Congruent preferences

Unlike in the polarized case, partisanship for congruent preference distributions may exhibit

complex and even chaotic dynamics. To understand why, note that if a preference distrib-

ution is congruent, since c2 = H (0, 0), in the penultimate period t = 2 of ΓenT,q, players are

partisan for the same alternative. Suppose that this alternative is 1. This means that player

j is more likely to vote for 1 in t = 2; therefore, player i has less incentive to secure the

status quo q = 1 for the period t = 2; in other words, c3
i is decreasing in c

2
j . As a result,

player i may be less partisan for 1 in period t = 3, or may even be partisan for −1. Hence,

partisanship may not vary monotonically over time.

The example below magnifies the negative effect of ct−1
j on cti by considering a preference

distribution with fat tails. It shows that when extreme preferences are suffi ciently likely,

partisanship can cycle over time and arbitrarily similar players can become strongly partisan

for different alternatives. Intuitively, fat tails make cti very negatively sensitive to c
t−1
j because

when extreme preferences for either alternative are very likely, each player wants to secure as
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a status quo the alternative for which the opponent is less likely to vote in the next period.15

Example 2 Preferences θi and θj are independent, and for k ∈ {i, j} , θk is drawn from
N
(
θ̄k, 1

)
with probability 1

2
and from N

(
θ̄k, 1000

)
with the remaining probability. Panel

A in the figure below shows the phase diagram of H and the dynamics of partisanship for

θ̄i = θ̄j = 1. Given that players are ex ante identical, they have the same voting thresholds.

The unique fixed point cf of c → Hi (c, c) is unstable since
∂[Hi(c,c)]

∂c

(
cf
)
< −1. Panel B

graphs Hi (H (c, c)) and shows that c → Hi (H (c, c)) has two additional (and stable) fixed

points around cf . Hence, although ct does not converge, it oscillates between the least and

the greatest fixed point of c → Hi (H (c, c)). Panel C shows the phase diagram of H and

the dynamics of partisanship when we slightly perturb the previous, symmetric example by

setting θ̄i = 1 and θ̄j = 1.1. The voting thresholds do not converge to the almost symmetric

(unstable) fixed point of H, but to the (stable) least fixed point of H for the order (≤,≥).

Panel A Panel B Panel C

Qualitatively, example 2 resonates with our results on polarized preference distribution

in that it shows that the endogeneity of the status quo magnifies the conflict of interest

between players: it induces arbitrarily similar players to behave as if their interests were

highly discordant.

The discussion above suggests that in the congruent case the conditions under which

partisanship increases monotonically over time, oscillates or exhibit discontinuities depend

on the details of the preference distribution. Since we believe that the case of polarized pref-

erence distribution is empirically more relevant, we do not elaborate on the characterization

15It should be noted that the only role of fat tails is to make the discontinuity of c∞ with respect to the
preference distribution more salient. Even with standard distributions such as bivariate normal, c∞ can be
discontinuous (see the example in subsection 4.1) and congruent players may end up partisan for different
alternatives as T →∞.

17



of these conditions in the interest of brevity.16

5 The case of N players

Since one of the motivating examples for our analysis is legislative bargaining, it seems

important to look at the case of more than two players and majoritarian approval rules.

In this section we show that under sensible assumptions on the preference distribution, our

results readily extend to an N−player game– denoted by ΓenT,q,N– which differs from ΓenT,q in

that in every period, an alternative replaces the current status quo if at leastM players vote

for it, where N/2 < M ≤ N . We assume that the preferences of player n in period t are

given by

θn
(
εt
)

= vn + εt, (4)

where v1 < .. < vN parameterize the ideology of each voter, and εt is a common shock

which is i.i.d. over time, has full support, and admits a p.d.f. f . This condition placed on

preferences essentially amounts to ruling out preference reversal among voters.

Proposition 5 When M > N+1
2
, the unique equilibrium of ΓenT,q,N is characterized by a

sequence of voting thresholds (ct1, .., c
t
N)t=1..T given by c

1 = (0, .., 0) and ct+1 = H (ct), where

for all n,

Hn (c) = δ

∫ cN−M+1−vN−M+1

cM−vM
(cn − θn (ε)) f (ε) dε. (5)

In any period t, the voting thresholds are ordered with the players’ ideology: ctn ≥ ctn+1 for

any n = 1, ...N − 1. The thresholds of the M th most right-wing and left-wing players have

opposite sign: ctM < 0 < ctN−M+1. WhenM = N+1
2
, all players are nonpartisan in all periods.

As in the two-player case, the requirement that players vote as if they were pivotal

uniquely determines the equilibrium behavior, and implies that all players are partisan.

The proof of proposition 5 proceeds by showing that since θtn is always increasing in n,

partisanship is also monotonic in n, and hence the M th most right-wing and the M th most

left-wing voters are always pivotal. Hence, the game ΓenT,q,N boils down to the 2−player game
ΓenT,q in which θ

t =
(
θtM , θ

t
N−M+1

)
.

Since θtM is always greater than θ
t
N−M+1, the preference distribution of the decisive players

is polarized, which implies that those players exhibit opposite partisanship. This means that

the direction of the voting bias of a given decisive player is not determined by her ideological

16In the previous version of this paper, we derived suffi cient conditions for partisanship to have a stable
direction over time, to converge and to vary monotonically with the main primitives of the problem. These
results are available from the authors upon request.
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inclination for one or the other alternative but instead by her relative position as compared

to that of the other decisive player. The players’willingness to ignore their actual preference

realizations and base their vote instead on their relative ideological positions is what lead us

to refer to the voting thresholds as partisanship.

To understand the bounds of the integral in (5), observe that from (4) the pivotal voters

disagree when

εt ∈
[
ctM − vM , ctN−M+1 − vN−M+1

]
. (6)

Note that under the exogenous status quo, players would not be partisan, so the set of shock

realizations for which the status quo would remain in place would simply be [−vM ,−vN−M+1],

and since ctM < 0 < ctN−M+1, this set is strictly included in (6). Hence, the endogeneity of

the status quo increases the probability of disagreement.

Moreover, with the endogenous status quo, the disagreement region given in (6) is strictly

increasing (in the inclusion sense) in
(
ctM , c

t
N−M+1

)
in the order (≤,≥). This means that

under the preference specification (4), for a given ideology profile v, the probability of dis-

agreement increases in partisanship. Together with propositions 2 and 3, this shows the

following:

Corollary 2 The probability of disagreement– and thus the probability of status quo inertia–
increases with bargaining horizon T and patience δ.

Proposition 4 further implies that if the ideological difference between the pivotal players

is large enough, then as players become very patient, players disregard the common shock

and vote purely along ideological lines, which results in complete gridlock. With symmetric

shocks, one can further show that gridlock can arise even with a modest degree of ideological

polarization:

Corollary 3 If ε is symmetrically distributed around 0 with standard deviation σε,
(
ctM , c

t
N−M+1

)
tends to (−∞,+∞) whenever (vM , vN−M+1) (≥,≤) (σε,−σε).

Finally, the following proposition states that the supermajority requirement exacerbates

the effect of the endogeneity of the status quo on status quo inertia.

Proposition 6 Let ct (M) be the equilibrium voting thresholds in period t when the super-

majority requirement is M . Then for all M < M ′,

ctM ′ (M
′) ≤ ctM ′ (M) ≤ 0 ≤ ctN−M ′+1 (M) ≤ ctN−M ′+1 (M ′) . (7)
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Propositions 5 and 6 imply that a higher supermajority requirement increases the proba-

bility of disagreement for three distinct reasons, each of which corresponds to an occurrence

ofM in each of the two bounds ctM (M)−vM and ctN−M+1 (M)−vN−M+1 of the disagreement

region (6). First, increasing M to M ′ changes the identity, and hence the ideology vM and

vN−M+1 of the decisive voters, which expands the disagreement region (6). Second, as shown

in proposition 5, for a given supermajority, voters M ′ and N −M ′ + 1 are more partisan

than voters M and N −M + 1, which also increases (6). And finally, proposition 6 implies

that the supermajoritarian requirement has a direct effect on the partisanship of voters M ′

and N −M ′ + 1. The reason is that voters M ′ and N −M ′ + 1 are more likely to disagree

than votersM and N −M + 1. So making the former rater than the latter decisive increases

the importance of the status quo and thus partisanship, increasing (6) even further. The

second and third effect would not occur with an exogenous status quo. This shows that when

the status quo is endogenous, an increase in the supermajority increases status quo inertia

not only because more voters have to agree, but also because it exacerbates the ideological

polarization of decisive voters.

Note that under simple majority rule (i.e.,M = N+1
2
), the median voter is pivotal in every

period and thus always follows her current preferences. Hence, what drives partisanship and

the inertia of collective decision making in ΓenT,q,N is not the endogeneity of the status quo

per se, but its combination with a supermajority requirement, as only then is the status quo

strategically relevant.

6 Welfare effect of partisanship

The welfare effect of the endogenous status quo is ambiguous. On the one hand, the equilib-

rium analysis shows that the endogeneity of the status quo is detrimental to the responsive-

ness of the equilibrium to the environment. On the other hand, by bundling the players’vote

on today’s policy and tomorrow’s status quo, the endogenous status quo prompts the players

to express the intensity of their preference realizations, which could be socially beneficial.

To assess the welfare effect of the endogeneity of the status quo, we compare our game

to bargaining protocols which break the dynamic linkage between periods. In the two-

player game ΓenT,q, the dynamic linkage results from the interplay of two elements. First,

the endogeneity of the status quo constrains players to bundle their vote on today’s policy

and tomorrow’s status quo; second, having more than one player decisive renders the status

quo strategically relevant. Designating one alternative as a fixed status quo throughout

the game (as in ΓexT,q), or concentrating the voting rights in the hands of one of the players

(dictatorship in the two-player game or simple majority rule in the N−player game) severs
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the link between bargaining periods and therefore eliminates partisanship.17

6.1 Fixed status quo and sunset provisions

In this section, we compare the game with an endogenous status quo ΓenT,q to the game with

an exogenous status quo ΓexT,q. We denote by W
(
ΓenT,q

)
and W

(
ΓexT,q

)
the corresponding

expected level of utilitarian welfare in the equilibrium. Since W
(
ΓenT,q

)
depends on T , we

compare W
(
ΓenT,q

)
to W

(
ΓexT,q

)
as T approaches infinity.18 The following definition will be

useful in characterizing the welfare properties of ΓenT,q:

Definition A preference distribution is uniformly ordered if the distribution of θi− θj con-
ditional on θi + θj is such that for all b > 0 and all a ∈ [−b, b],

f (θi − θj = −b|θi + θj) ≤ f (θi − θj = a|θi + θj) . (8)

Condition (8) means that one player is more likely to be to the right of the other player

conditional on any value of the average preferences θi + θj.19

The next proposition shows that fixing the status quo is generally socially beneficial.

Proposition 7 If (ct)t≥1 converges to some c
∞ such that c∞i + c∞i 6= 0,20 and (i) c∞i and c∞j

have the same sign, or (ii) the preference distribution is uniformly ordered, then there exists

q′ ∈ {−1, 1} such that for all q, W
(
ΓenT,q

)
< W

(
ΓexT,q′

)
for T suffi ciently large. Moreover, in

case (i), ΓexT,q′ ex-ante Pareto dominates ΓenT,q for T suffi ciently large.

Roughly speaking, condition (i) corresponds to congruent preference distributions for

which players’behavior remains stable over time, while condition (ii) refers to either po-

larized preferences, or congruent preferences for which players end up being partisan for

different alternatives (as in example 2).

To understand the intuition for proposition 7, note that partisanship affects welfare

in three different ways. First, as argued earlier, partisan players enact Pareto ineffi cient

17Actually, dictatorship and a fixed status quo are the only static games with two alternatives: one can
show that for a one-period interaction, the set of (Pareto optimal) incentive-compatible direct mechanisms
without transfers is the convex hull of a fixed status quo q = 1, a fixed status quo q = −1, the dictatorship
of player i, and the dictatorship of player j. From the revelation principle, the Bayesian Nash equilibrium
of any game form can be replicated by one of these direct mechanisms.

18The results of this section also apply to any Markov perfect equilibria of Γen∞,q.
19In particular, this condition is satisfied if the preference distribution is uniform on [a, b] × [a′, b′] with

a > a′ and b > b′; bivariate normal with σi = σj and θ̄i > θ̄j ; or if θi > θj with probability one, as in ΓenT,q,N .
20If c∞i + c∞i = 0, then one can easily see from the proof of proposition 7 that any exogenous status quo

dominates the endogenous status quo, but in a weak sense: for all q, q′ ∈ {−1, 1}, limT→∞
(
W
(
ΓexT,q′

))
≥

limT→∞
(
W
(
ΓenT,q

))
. The inequality is strict in particular whenever W

(
ΓenT,1

)
6= W

(
ΓenT,−1

)
.
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policies with positive probability, which does not happen under a fixed status quo. Second,

partisanship affects the distribution of the status quo. In the polarized case, players’attempts

at affecting the status quo offset each other but increase the probability of disagreement.

This is socially detrimental and can be avoided with a fixed status quo. In the congruent

case, players sacrifice their current payoff to shift the distribution of the status quo in the

same, mutually favorable direction. However, designating the preferred status quo of both

players as a fixed status quo has the same effect, but does not distort their voting behavior.

Third, a partisan player, while voting for her preferred status quo, may defer to her

opponent’s preferences. This may be socially beneficial if the opponent’s preferences are

relatively more intense. Condition (8) makes this type of preference reversal suffi ciently

unlikely so that the two aforementioned detrimental effects of partisanship dominate. In

the appendix (example 4), we construct a polarized preference distribution which violates

condition (8) and for which an endogenous status quo is socially better than any static

bargaining protocol, and any fixed status quo in particular.

Proposition 7 provides support for automatic sunset provisions. A sunset provision is a

clause that repeals a law, a tax change, or a regulation after a specific date, unless further

legislative action is taken. Hence, it severs the link between the current agreement and the

future status quo by automatically reverting the policies to a pre-specified default. Therefore,

a sunset clause is essentially equivalent to a fixed status quo. In the U.S., sunset provisions

were used extensively at the state level in the 1970s and 1980s (e.g., in Texas, Colorado,

and Alabama), primarily to contain the multiplication of executive agencies and regulations.

They were seldom used at the federal level prior to 2000, but have become increasingly

frequent since then. For example, many of the provisions of the USA Patriot Act of 2001

had a four-year sunset clause, while the tax cuts authorized in the Economic Growth and

Tax Relief Reconciliation Act of 2001 and the Jobs and Growth Tax Relief Reconciliation

Act of 2003 had a ten- and five-year sunset clauses, respectively.

The standard rationale for sunset clauses is threefold: to improve parliamentary control

of executive agencies through periodic reviews, to evaluate the effi ciency of new laws (in

order to avoid ineffi cient laws, unintended consequences, or loopholes), and to impose a time

limit on regulations designed to deal with a temporary issue.21 The argument advanced by

our model does not rest on a delegation problem, policy learning, or one-time events, but

has instead a more strategic underpinning. We show that sunset provisions sever the link

between today’s agreement and tomorrow’s status quo, which eliminates partisanship and

21The idea of sunset clauses as a tool for legislatures to monitor and evaluate regulatory agencies was
pervasive in the state sunset laws introduced in the 1970s and 1980s (see Kearney 1990). A historical example
of a sunset provision on a policy meant to be temporary is the two-year limit on the “Vietnam tax surcharge”
authorized by the Revenue and Expenditure Control Act of 1968.
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makes policies more responsive to the environment.

We conclude this section by raising the question whether, in light of our results, sunset

clauses could emerge endogenously. One can shed light on this issue by considering the

following extension of our model: in every period the players first vote on whether the policy

should be subject to a sunset clause or whether it should become the future status quo, and

only then they vote on the policy. Although a detailed analysis of this game is beyond the

scope of this paper, a quick inspection reveals that both sunsets and endogenous status quo

would occur in equilibrium. To see that, consider a situation in which for the last period

player i prefers the status quo 1 and player j prefers the status quo −1. Suppose that in the

penultimate period the status quo is −1, and both players prefer policy 1. If the dominant

force in player j’s intertemporal trade-off is her preference for status quo −1 for the last

period, player i needs to attach a sunset provision to the penultimate policy to convince

player j to approve the Pareto optimal policy 1. On the other hand, if the dominant force

in player j’s intertemporal trade-off is her preference for policy 1 in the penultimate period,

she will vote for 1 even without the sunset provision. Anticipating this, player i will veto

the sunset provision to assure that 1 will also become the last period’s status quo. Hence,

despite its ineffi ciency, the endogenous status quo can prevail.

6.2 Concentrating decision rights

Concentrating decision rights unambiguously reduces partisanship, but its effect on wel-

fare depends on the details of the preference distribution.22 However, by strengthening the

uniform order requirement of proposition 7, we have the following:

Corollary 4 If θi > θj with probability 1, then for all q, there exists k ∈ {i, j} such that if
ΓdT,k denotes the T period game in which k is a dictator, then for all q, W

(
ΓenT,q

)
< W

(
ΓdT,k

)
for T suffi ciently large.

The intuition for corollary 4 is simple: if θi > θj with probability 1, then preferences are

uniformly ordered. Moreover, in case of disagreement, player i always prefers 1 while player

j always prefers −1; hence, ΓdT,k is equivalent to ΓexT,q where q is the status quo most preferred

by player k. The result then follows from proposition 7.

More surprisingly, one can find examples in which both players prefer to give up their

veto power and let their opponent be the dictator. In the appendix, we show (see example

5) that if preferences are perfectly correlated and normally distributed with opposite means

22For instance, for the preference distribution constructed in example 4 (see the appendix), the endogenous
status quo is socially better than a dictatorship of any player.
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and if players are suffi ciently patient, then the dictatorship of any player is Pareto preferred

to ΓenT,q for some intermediate values of the means. That is, if the means are far apart enough

to lead to complete gridlock (see proposition 4), but close enough so that θi and θj agree

suffi ciently often, then both players prefer to vest the opponent with dictatorial power rather

than face a totally unresponsive policy.

In the N−player game ΓenT,q,N , concentrating decision rights can be achieved by decreasing

the supermajority requirement of the approval rule. In particular, under simple majority

the pivotal player is de facto a dictator, and hence all players become nonpartisan. From

proposition 6, we know that under any other majority rule the players are partisan, but

decreasing M reduces partisanship. The next proposition shows that when the preference

distribution is symmetric, a lower supermajority increases the welfare of all players.

Proposition 8 If v and εt are symmetrically distributed around zero, then for all T and q,
W
(
ΓenT,q,N

)
decreases in the supermajority requirement M .

To see the intuition for proposition 8 it is helpful to consider the extreme case of simple

majority rule. From proposition 7, an exogenous status quo improves the utilitarian welfare

of the pivotal players. Simple majority rule, or equivalently dictatorship of the median player,

further improves social welfare because whenever the pivotal playersM and N−M+1 agree,

they also agree with the median voter. When they disagree, however, the policy preferred by

the median voter is more responsive to the average preferences of the pivotal players than a

fixed status quo. Observe that simple majority rule is also more likely to leave both sides of

the ideological spectrum better off than a fixed status quo because it distributes the benefits

from breaking the dynamic linkage more evenly across the ideological spectrum.

The symmetry assumption in proposition 8 is only needed to guarantee that the utilitarian

welfare of pivotal players is representative of the utilitarian welfare of all players. If the

symmetry assumption is violated, for example, in that the preferences of the median voter are

the same as the preferences of the M th most right-wing voter, moving from a supermajority

M to simple majority rule is equivalent to awarding dictatorship to voter M . This may

not be beneficial to left-wing voters, and may decrease social welfare if the distribution of

ideology is skewed to the left.

Most Western parliamentary democracies require some form of supermajority in their

legislative process. For instance, in the U.S. Senate, senators have the right to limitlessly

debate (filibuster), with debate ending only when sixty senators vote in favor of so doing.

As a result, in order for controversial measures to pass the Senate, a supermajority of sixty

votes, rather than a simple majority, is required. Our results suggest that supermajoritarian

requirements, when used to enact continuing policies, have a negative welfare effect.
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These results contrast with the literature on majoritarian incentives with distributive

policies. As Buchanan and Tullock (1962) and Riker (1962) have argued, majoritarian rules

allows the concentration of benefits and the collectivization of costs and thus lead to the adop-

tion of ineffi cient pork-barrel programs, more so the lower the supermajority requirement.

Ferejohn, Fiorina, and McKelvey (1987) and Baron (1991) first formalized this prediction in

models of legislative bargaining. Our results contrast with these analyses in that we rule out

targeted spending programs– which are a negligible fraction of the U.S. federal budget– and

focus instead on entitlement programs and other continuing policies.

7 Intertemporal Correlation

In many applications, certain shocks to the environment are likely to have a persistent effect

on preferences, while others are transient. Moreover, economic agents often receive signals

about shocks’persistence. For instance, economic indicators inform policy makers about the

duration of booms and recessions. In this section, we relax the assumption of the stationarity

of the environment and analyze how players’behavior depends on the persistence of the

current situation and the volatility of the environment.

In each period t, πt ∈ [0, 1] measures the persistence of the current environment: with

probability πt the preferences and their persistence remain unchanged for the next period;

with probability 1−πt, the preferences and the persistence parameter are redrawn. Formally:

(
θt−1, πt−1

)
=

{ (
θt, πt

)
with probability πt

θt−1 ∼ f (.) and πt−1 ∼ g (.) with probability 1− πt,

where g (π) is a p.d.f. with support on [0, 1] . A realization of (θ, π) is called a phase.

We denote by ΓenL,q the game that lasts L phases and starts with status quo q. As before,

we adopt the convention that l = 1 denotes the last phase. As the next proposition shows,

in equilibrium, the voting behavior is constant within each phase, and thus depends on l but

not on t. For this reason, we index all variables by l instead of t. As in the basic model, the

equilibrium behavior depends neither on L nor on the initial status quo q.

Proposition 9 ΓenL,q has a unique (up to a zero measure subset of preference realizations)

equilibrium, in which players use threshold strategies which are constant within each phase.

In each phase l, the voting thresholds depend on the preference persistence πl and are given

by cl
(
πl
)

=
(
1− πl

)
ĉl, with the sequence

(
ĉl
)
l≥1

defined recursively by ĉ1 = (0, 0) and

ĉl+1 = G
(
ĉl
)
, where

G : ĉ→
∫ 1

0

H ((1− π) ĉ)

1− πδ g (π) dπ. (9)
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Note that although players’partisanship in each phase l is a function of πl, the sequence

of functions
(
cl (.)

)
l≥1

is completely characterized by the sequence of scalars
(
ĉl
)
l≥1

. Since

ĉ→ G (ĉ) is monotonic in the order (≤,≥) and since the sign of Gk (0, 0) is the same as the

sign of Hk (0, 0), using the same definition for polarization and congruence one can easily

check that the results stated in proposition 2, 3 and 4 on the sequence of thresholds (ct)t≥1

hold for the the sequence
(
ĉl
)
l≥1
. That is, for a given persistence, partisanship is increasing

with the bargaining horizon and patience, and can lead to complete gridlock if the preferences

are suffi ciently polarized.23

Proposition 9 implies that for a given distribution of persistence, players are more partisan

in transient states (small π). The next proposition compares partisanship across environ-

ments with different volatility. It shows that for a given realization of persistence, patient

players are more partisan in an environment in which persistent shocks are more likely.

Proposition 10 Let θ be strictly polarized, i.e., H (0, 0) (<,>) (0, 0), and let g and g′ be

such that limπ→1− g
′ (π) > limπ→1− g (π), then there exists δ < 1 such that for all δ > δ and

all l,

cl (π, g′) (<,>) cl (π, g) (<,>) (0, 0) .

Proof. There exists ε > 0 such that infπ∈[1−ε,1] g
′ (π) > supπ∈[1−ε,1] g (π). As shown in

the proof of proposition 2, H is bounded, so there exists A ∈ R such that for all δ ∈ [0, 1]

and all ĉ ∈ R2,
∣∣∣∫ 1−ε

0

Hj((1−π)ĉ)

1−πδ h (π) dπ
∣∣∣ ≤ A, and likewise for h ∈ g′. Since H is monotone

in the order (≤,≥), for all ĉ ∈ R− × R+,∫ 1

1−ε

Hj ((1− π) ĉ)

1− πδ g′ (π) dπ −
∫ 1

1−ε

Hj ((1− π) ĉ)

1− πδ g (π) dπ ≥
∫ 1

1−ε

Hj (0, 0)

1− πδ (g′ (π)− g (π)) dπ.

This shows that for all ĉ ∈ R− × R+,

G (ĉ, g′)−G (ĉ, g) ≥ Hj (0, 0)

(
inf

π∈[1−ε,1]
g′ (π)− sup

π∈[1−ε,1]

g (π)

)∫ 1

1−ε

1

1− πδdπ − A.

Since
∫ 1

1−ε
1

1−πδdπ →∞ as δ → 1 and since Gj (0, 0) > 0 implies Hj (0, 0) > 0, it follows that

there exists δ < 1 such that for all δ > δ and all ĉ ∈ R− × R+, Gg′ (ĉ) > Gg (ĉ). Lemma 2

(see the appendix) for H = G, P = {g, g′} and Cp = R− × R+ completes the argument.

The result of proposition 10 is not straightforward. To see that, note that increasing

the probability of persistent shocks has two effects. On the one hand, a disagreement in

23As in the stationary case, whenever ĉl converge as l approaches∞, the constant cut-off strategy defined
by c∞ (π) = (1− π) ĉ∞ is a Markov perfect equilibrium of the infinite horizon game ΓenL=∞,q.
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the next phase is more likely to be long-lived, which drives today’s partisanship up. On

the other hand, from proposition 9 partisanship is low in persistent states; hence, since

the next phase is more likely to be highly persistent, players are likely to be less partisan

in that phase. This decreases the probability of future disagreement, which drives today’s

partisanship down. The proof of proposition 10 shows that as players become very patient,

the second effect is bounded while the first effect is not, so the latter dominates the former.

8 Conclusion

Negotiations in a changing environment with an endogenous default option are at the center

of many economically relevant situations. They present the negotiating parties with a fun-

damental trade-off between responding to the current environment and securing a favorable

bargaining position for the future. In this paper, we show that this trade-off has a detrimen-

tal impact on the effi ciency of agreements and their responsiveness to political and economic

shocks. Bundling the vote on today’s policy and tomorrow’s status quo exacerbates the

players’conflict of interest and increases the probability of a disagreement, which in turn

increases status quo inertia. Even if some agreements are commonly known to be mutually

beneficial, they may not be adopted.

Our paper sheds light on the effect of some important rules governing legislative in-

stitutions: we provide a new argument in favor of sunset provisions and we show that a

supermajority requirement exacerbates the detrimental impact of an endogenous default on

the responsiveness of the policies to the environment.

This parsimonious model lends itself to many extensions. First, adding transfers–

interpreted as pork-barrel spending– to the N−player model would allow us to analyze

the trade-off between their positive role as a lubricant for passing effi cient policies and the

perverse incentives they generate to concentrate benefits and collectivize cost. Second, by

enriching the policy space one could analyze whether the evolving environment can make

ineffi cient compromises persistent. Third, in many situations, implemented policies affect

the future state of the economy, which introduces an additional dynamic linkage. For exam-

ple, an expansionary fiscal policy increases public debt, leading all players to adopt a more

fiscally conservative stand in the future. Technically, this amounts to introducing a state

variable in the model. And finally, one could introduce elections to see whether strategic

delegation would exacerbate or mitigate the partisanship of the legislature.
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9 Appendix

Throughout the appendix, Φ and φ will denote the c.d.f. and the p.d.f. of the normal

distribution (univariate or bivariate depending on the context) with mean 0 (or (0, 0)) and

standard deviation 1 (or (1, 1)).

Lemma 1 Let H be defined by (1), then

∂Hi

∂ci
= δ

(∫ ∞
cj

∫ ci

−∞
f (θ) dθidθj +

∫ cj

−∞

∫ ∞
ci

f (θ) dθidθj

)
> 0 and

∂Hi

∂cj
= −δ

∫ +∞

−∞
|θi − ci| f (θi, cj) dθi < 0.

Let θ be a preference distribution and for all m ∈ R2, let Hm be map defined in (1) for

the preference distribution θ +m, then ∂Hm
i

∂πi
= −∂Hm

i

∂ci
and ∂Hm

i

∂πj
= −∂Hm

i

∂cj
.If the preference

distribution is bivariate normal with mean
(
θ̄i, θ̄j

)
, standard deviation (1, 1), and correlation

ρ, then
∂Hi

∂ρ
= δ

(
1− 2Φ

(
ci − ρcj −

(
θ̄i − ρθ̄j

)√
1− ρ2

))
φ
(
cj − θ̄j

)
.

Proof. The expressions for ∂Hi
∂ci
, ∂Hi

∂cj
, ∂Hm

i

∂πi
and ∂Hm

i

∂πj
are obtained using the Leibnitz

integral rule on (1). If φρ,θ̄i,θ̄j is the p.d.f. of the bivariate normal with mean
(
θ̄i, θ̄j

)
, variance

(1, 1) , and correlation ρ, simple calculus yields that
∂2φρ,θ̄i,θ̄j
∂θi∂θj

=
∂φρ,θ̄i,θ̄j

∂ρ
. Substituting in ∂Hi(c)

∂ρ

and integrating by parts, we get

1
δ
∂Hi(c)
∂ρ

=
∫∞
cj

∫ ci
−∞ (ci − θi)

∂2φρ,θ̄i,θ̄j
∂θi∂θj

(θi, θj) dθidθj +
∫ cj
−∞
∫∞
ci

(ci − θi)
∂2φρ,θ̄i,θ̄j
∂θi∂θj

(θi, θj) dθidθj

=
∫ ci
−∞ (θi − ci)

∂φρ,θ̄i,θ̄j
∂θi

(θi, cj) dθi −
∫∞
ci

(θi − ci)
∂φρ,θ̄i,θ̄j
∂θi

(θi, cj) dθi

=
[
(θi − ci)φρ,θ̄i,θ̄j (θi, cj)

]ci
−∞
−
∫ ci

−∞
φρ,θ̄i,θ̄j (θi, cj) dθi −

[
(θi − ci)φρ,θ̄i,θ̄j (θi, cj)

]∞
ci

+
∫∞
ci
φρ,θ̄i,θ̄j (θi, cj) dθi =

(
1− 2Φ

(
ci−ρcj−(θ̄i−ρθ̄j)√

1−ρ2

))
φ
(
cj − θ̄j

)
.

Example 3 If the distribution of θ is bivariate normal with means
(
θ̄i, θ̄j

)
, variances

(
σ2
i , σ

2
j

)
,

and correlation ρ, then the preference distribution is congruent iff
∣∣∣ θ̄iσi − θ̄j

σj

∣∣∣ ≤ a
(
θ̄i
σi

+
θ̄j
σj

; ρ
)
,

where a is a function which is positive whenever θ̄i
σi

+
θ̄j
σj
6= 0 and ρ < 1, decreasing in ρ, and

tends to 0 when ρ→ 1.
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Proof. Let G
(
θ̄i, θ̄j, ρ

)
= −1

δ
H (0, 0) where H is defined by (1) for a bivariate normal

preference distribution with mean
(
θ̄i, θ̄j

)
, standard deviation (1, 1), and correlation ρ.24

From lemma 1,
∂Gi

∂θ̄i
> 0 and

∂Gi

∂θ̄j
< 0. (10)

The curves of the function θ̄i → µi
(
θ̄i, ρ

)
and θ̄i → µj

(
θ̄i, ρ

)
in the first figure of section

4 that delineates congruent and polarized distribution are characterized by the equation

Gi

(
θ̄i, µi

(
θ̄i, ρ

)
, ρ
)

= 0 and Gj

(
θ̄i, µj

(
θ̄i, ρ

)
, ρ
)

= 0, respectively. The following steps prove

their properties.

Step 1: µi
(
θ̄i, ρ

)
and µj

(
θ̄i, ρ

)
are well defined and are symmetric of each other with

respect to the 45 degree line θ̄i = θ̄j. Fix θ̄i and ρ. Using the change of variables y = θj − θ̄j
in (1), we get

lim
θ̄j→−∞

Gi

(
θ̄i, θ̄j, ρ

)
= lim

θ̄j→−∞

(∫ ∞
−θ̄j

∫ 0

−∞
θiφ
(
θi − θ̄i, y

)
dθidy +

∫ −θ̄j
−∞

∫ ∞
0

θiφ
(
θi − θ̄i, y

)
dθidy

)
= E (θi|θi > 0) Pr (θi > 0) > 0.

Analogously, limθ̄j→∞Gi

(
θ̄i, θ̄j, ρ

)
= E (θi|θi < 0) Pr (θi < 0) , which is negative. Hence,

µi
(
θ̄i, ρ

)
exists. From (10), ∂Gi

∂θ̄j
< 0 so µi

(
θ̄i, ρ

)
is unique. The proof for µj

(
θ̄i, ρ

)
is identical.

The symmetry comes from the fact that Gj

(
θ̄i, θ̄j, ρ

)
= 0 implies Gi

(
θ̄j, θ̄i, ρ

)
= 0.

Step 2: The preference distribution with parameters
(
θ̄i, θ̄j, ρ

)
is congruent iff

θ̄j ∈ (min
{
µi
(
θ̄i, ρ

)
, µj
(
θ̄i, ρ

)}
,max

{
µi
(
θ̄i, ρ

)
, µj
(
θ̄i, ρ

)}
).

This is because (10) implies that Gk

(
θ̄i, θ̄j, ρ

)
≥ 0 iff θ̄i ≥ µk

(
θ̄i, ρ

)
.

Step 3: µi
(
θ̄i, ρ

)
and µj

(
θ̄i, ρ

)
are increasing in θ̄i and have the same sign as θ̄i. The

implicit function theorem together with (10) implies
∂µi(θ̄i,ρ)

∂θ̄i
> 0 and

∂µj(θ̄i,ρ)
∂θ̄i

> 0. To

complete the argument, observe that µi (0, ρ) = µj (0, ρ) = 0.

Step 4: µi
(
θ̄i, ρ

)
and µj

(
θ̄i, ρ

)
cross the 45 degree line θ̄i = θ̄j only at θ̄i = 0, from below

for µi
(
θ̄i, ρ

)
and from above for µj

(
θ̄i, ρ

)
. By symmetry, Gi

(
θ̄i, θ̄j, ρ

)
= Gj

(
θ̄i, θ̄j, ρ

)
only

if θ̄i = θ̄j = µ for some µ. For all µ > 0,

Gi (µ, µ, ρ) +Gj (µ, µ, ρ)− (Gi (−µ,−µ, ρ) +Gj (−µ,−µ, ρ)) =

=
∫∞

0

∫ 0

−∞ (θi + θj) (φ (θi − µ, θj − µ)− φ (θi + µ, θj + µ)) dθidθj.
(11)

24Normalizing standard deviations is w.l.o.g. because the sign of Hk (0, 0) when θ is bivariate normal
with mean

(
θ̄i, θ̄j

)
, standard deviation (σi, σj) and correlation ρ, is the same when θ is bivariate normal

with mean
(
θ̄i
σi
,
θ̄j
σj

)
, standard deviation (1, 1) and correlation ρ.

29



Simple algebra shows that (φ (θi − µ, θj − µ)− φ (θi + µ, θj + µ)) has the same sign as θi+θj,

which implies that (11) is positive. By symmetry, Gi (µ, µ, ρ) = −Gi (−µ,−µ, ρ). Therefore,

Gi (µ, µ, ρ) has the same sign as µ. Together with (10), this shows that µi
(
θ̄i, ρ

)
> θ̄i >

µj
(
θ̄i, ρ

)
for θ̄i > 0 and µi

(
θ̄i, ρ

)
< θ̄i < µj

(
θ̄i, ρ

)
for θ̄i < 0.

Step 5: µi
(
θ̄i, ρ

)
and µj

(
θ̄i, ρ

)
tend towards the 45 degree line as ρ → 1. To see this

observe that limρ→1Gi

(
θ̄i, θ̄j, ρ

)
=
∫ max(0,θ̄i−θ̄j)

min(0,θ̄i−θ̄j)
θif (θi) dθi, which is 0 only if θ̄i = θ̄j.

Step 6: µi
(
θ̄i, ρ

)
and µj

(
θ̄i, ρ

)
get closer to the 45 degree line as ρ → 1. To show this,

we will show that for θ̄i > 0,
dµi(θ̄i,ρ)

dρ
< 0 and

dµi(θ̄i,ρ)
dρ

> 0. The case θ̄i < 0 is identical.

Using the implicit function theorem and lemma 1,

∂µi
∂ρ

(
θ̄i, ρ

)
= −

∂Gi
∂ρ

(
θ̄i, µi

(
θ̄i, ρ

)
, ρ
)

∂Gi
∂θ̄j

(
θ̄i, µi

(
θ̄i, ρ

)
, ρ
) = −

(
2Φ

(
ρµi(θ̄i,ρ)−θ̄i√

1−ρ2

)
− 1

)
φ
(
−θ̄j

)
∂Gi
∂θ̄j

(
θ̄i, µi

(
θ̄i, ρ

)
, ρ
) .

Together with (10), this shows that ∂µi
∂ρ

(
θ̄i, ρ

)
has the same sign as ρµi

(
θ̄i, ρ

)
− θ̄i. Since

θ̄i > 0, by Step 3, µi
(
θ̄i, ρ

)
> 0. Clearly, ρµi

(
θ̄i, ρ

)
− θ̄i < 0 for ρ < 0. Assume that

there exists ρ0 > 0 such that µi
(
θ̄i, ρ0

)
ρ0 − θ̄i > 0. From what precedes, ∂µi

∂ρ

(
θ̄i, ρ0

)
> 0,

and hence
∂(µi(θ̄i,ρo)ρo−θ̄i)

∂ρo
> 0. Therefore, for all ρ ≥ ρ0, ρµi

(
θ̄i, ρ

)
− θ̄i > 0, and hence

∂µi
∂ρ

(
θ̄i, ρ

)
> 0. But by Step 4, µi

(
θ̄i, ρ0

)
> θ̄i, and by Step 5, limρ→1 µi

(
θ̄i, ρ

)
= θ̄i; a

contradiction.

The fact that preferences are congruent if and only if
∣∣θ̄i − θ̄j∣∣ ≤ a

(
θ̄i + θ̄j; ρ

)
for some

function a (.) comes from Step 1 and 2 and the symmetry of µi
(
θ̄i, ρ

)
and µj

(
θ̄i, ρ

)
with

respect to 45 degree line. Step 5 and 6 imply that a is decreasing in ρ and tends to 0 when

ρ→ 1. Step 4 imply that a is positive whenever θ̄i + θ̄j 6= 0 and 0 otherwise.

Lemma 2 If p ∈ P parametrizes the map Hp : R2 → R2, � is a partial order on P , and
C ⊂ R2 such that for all p ∈ P , (0, 0) ∈ C, Hp (C) ⊂ C and for all p, p′ ∈ P , p′ � p implies

Hp′ (c) (≤,≥)Hp (c) for all c ∈ C. Then for all t, ct (p) (as defined in proposition 1 using

Hp) is weakly increasing (in the order (≤,≥)) in p (in the order �).

Proof. Since c1 (p) = (0, 0) ∈ C, by induction, for all t, ct (p) ∈ C. Let p′ � p.

Obviously, c1 (p′) (≤,≥) c1 (p). Suppose that ct (p′) (≤,≥) ct (p) for some t ≥ 1, then

ct+1 (p′) = Hp′
(
ct (p′)

)
(≤,≥)Hp

(
ct (p′)

)
(≤,≥)Hp

(
ct (p)

)
= ct+1 (p) .

By induction, ct (p′) (≤,≥) ct (p) for all t.

Proof of proposition 4. Let θ be a preference distribution. For all m ∈ R2 and

δ ∈ [0, 1], Hm,δ will refer to the function H defined in (1) for the preference distribution
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θ+m, and (ct (m, δ))t∈R to the corresponding equilibrium voting thresholds. In this proof,

for all k ∈ {i, j}, fk denotes the p.d.f. of θk.
Step 1: There exists mo ∈ R2 such that for all m (≥,≤)mo, θ +m is polarized. From

(1), as m→ (+∞,−∞) , Hm,δ (0, 0) + E (θ +m)→ (0, 0), so Hm,δ (0, 0) (≤,≥) (0, 0).

Step 2: There exists mo ∈ R2 such that for all m (≥,≤)mo, Hm,1 has no fixed point.

Let (mn)n≥1 be such that m
n → (+∞,−∞). From (1), for all c,

Hmn,1
i (c)− ci = −

∫ cj−mnj

−∞

∫ ci−mni

−∞
cif (θ) dθidθj −

∫ ∞
cj−mnj

∫ ∞
ci−mni

cif (θ) dθidθj (12)

−
∫ cj−mnj

−∞

∫ ∞
ci−mni

(mn
i + θi) f (θ) dθidθj −

∫ ∞
cj−mnj

∫ ci−mni

−∞
(mn

i + θi) f (θ) dθidθj.

Let us call An (c), Bn (c), Cn (c) and Dn (c) the four integrals in the order they appear on

the right-hand side of (12). Observe first that if g is the p.d.f. of an integrable, real random

variable,
∫ x
−∞ |xg (u)| du→ 0 as x→ −∞. Therefore

sup
ci≤0
|An (c)| ≤ sup

ci≤0

∫ ci−mni

−∞
|ci| fi (θi) dθi →n→∞ 0, (13)

sup
ci≤0
|Bn (c)| ≤

∫ ∞
cj−mnj

|ci| fj (θj) dθj,

sup
ci≤0
|Dn (c)| ≤

∫ −mni
−∞

(|mn
i |+ |θi|) fi (θi) dθi →n→∞ 0.

Moreover, for all M > 0, there exists N such that for all n ≥ N , mn
i > M . So for all n ≥ N ,

inf
ci≤0
|Cn (c)| ≥ sup

ci≤0
M

∫ cj−mnj

−∞

∫ ∞
ci−mni

f (θ) dθidθj − E (|θi|)→n→∞ M − E (|θi|) .

This shows that infci≤0 |Cn (c)| is unbounded as n→∞. If step 2 does not hold, then there
exists a sequence mn → (+∞,−∞) such that for all n ≥ 1, Hmn,1 has a fixed point cn.

Substituting Hn
i (cn) = cni in (12), we obtain A

n (cn)+Bn (cn)+Cn (cn)+Dn (cn) = 0. From

step 1, we can assume that for all n, θ+mn is polarized, so cni ≤ 0. As shown above, Cn (cn)

is unbounded, An (cn) and Dn (cn) tend to 0 as n → ∞, so Bn (cn) must be unbounded.

Since cnj ≥ 0, cnj −mn
j → +∞, so if Bn (cn) is unbounded, cnj −mn

j = o (|cni |). Since cnj ≥ 0

and mn
j ≤ 0 for n large, this implies cnj = o (|cni |). Likewise, Hn

j (cn) = cnj implies that

cni = o
(∣∣cnj ∣∣), a contradiction.

Step 3: There exists mo ∈ R2 such that for all m (≥,≤)mo, c∞ (m, δ) diverges as δ → 1.

From step 1, we can assume that for allm (≥,≤)mo, θ+m is polarized. From proposition
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2, c∞ (m, δ) exists for all δ ∈ (0, 1) and from proposition 3, c∞ (m, δ) is increasing in δ in

the order (≤,≥). Therefore, if c∞ (m, δ) does not diverge as δ → 1, c∞ (m, δ)→ c∞ (m, 1)

for some finite c∞ (m, 1) as δ → 1. By continuity ofHm,δ in δ, c∞ (m, 1) must a fixed point

of Hm,1. Step 2 completes the argument.

Step 4: There exists mo ∈ R2 such that for all m (≥,≤)mo, there is no solution ci to

limcj→+∞H
m,1
i (ci, cj) = ci. Let (mn)n≥1 be such that m

n → (+∞,−∞). From (1)

lim
cj→+∞

Hmn,1
i (ci, cj)− ci = −

∫ ci−mni

−∞
cifi (θi) dθi −

∫ ∞
ci−mni

(mn
i + θi) fi (θi) dθi, (14)

for all ci. Let us call An (ci) and Cn (ci) the two integrals in their order they appear

on the right-hand side of (14). As argued in the proof of step 2 (see equation (13)),

supci≤0 |Cn (ci)| →n→∞ 0. Moreover,

sup
ci≤0
|An (ci) +mn

i | ≤
∫ −mni
−∞

|mn
i | fi (θi) dθi + E (|θi|)→n→∞ E (|θi|) . (15)

Therefore, supci≤0 |An (ci) +mn
i | is bounded and since mn

i → −∞, infci≤0 |An (ci)| must be
bounded away from 0. If step 4 does not hold, then there exists (mn)n∈N and (cni )n∈N
such that mn → (+∞,−∞) and for all n ≥ 1, cni = limcj→+∞H

mn,1
i (cni , cj). Equation

(14) implies then that |An (cni )| = |Cn (cni )|, which is impossible since An (cni ) diverges and

Cn (cni )→ 0.

Step 5: There exists mo ∈ R2 such that for all m (≥,≤)mo, both c∞i (m, δ) and

c∞j (m, δ) diverge as δ → 1. Let (mn)n≥1 be such thatm
n → (+∞,−∞). From step 2, there

exist N such that either c∞i (mn, δ)→ −∞ for all n ≥ N or c∞j (mn, δ)→∞ for all n ≥ N .

Suppose the latter to fix ideas. From step 1, we can assume that for all n, θ+mn is polarized.

So if c∞i (mn, δ) does not diverge as δ → 1, it must have a finite limit c∞i (m, 1). A standard

continuity argument implies that necessarily, limcj→+∞H
mn,1
i (c∞i (mn, 1) , cj) = c∞i (m, 1).

Step 4 concludes the proof.

Proof of Proposition 5. We proceed by induction. The case T = 1 is straightforward.

Suppose the proposition holds up to some T . For all t ≤ T + 1, the continuation game after

period t’s outcome yt is simply Γent−1,yt,N . From the induction hypothesis, it has a unique

equilibrium, and we denote its value V t−1 (yt). Since player n votes as if she is pivotal, in

every period t ≤ T + 1, her threshold strategy must be ctn = δ
2

(V t−1
n (−1)− V t−1

n (1)). In

particular, ΓenT+1,q,N has a unique equilibrium. From the induction hypothesis, c
t
n is decreasing

in n, and since θn (ε) is increasing in n for all ε, so the status quo stays in place if only if
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players M and N −M + 1 disagree. Therefore,

V t
n (1)− V t

n (−1) = δ

∫ ctN−M+1−vN−M+1

ctM−vM

(
2θn (ε) + δ

(
V t−1
n (1)− V t−1

n (−1)
))
f (ε) dε. (16)

Substituting the thresholds on both sides of (16), we get ct+1 = Hn (ct). The latter equation

with the fact that ctn is decreasing in n, implies that c
t+1
n is also decreasing in n. When

M = N+1
2
, the bounds of the integral in (16) coincide, so ct = (0, .., 0) for all t.

Proof of Corollary 3. Suppose first that vM = −vN−M+1 = v > 0. Since the

distribution of ε is symmetric, for all t, ctM = −ctN−M+1. From proposition 5, the sequence(
ctN−M+1

)
t≥1

is given recursively by c1
N−M+1 = 0 and ct+1

N−M+1 = H
(
ctN−M+1

)
where

H (c) =

∫ c+v

−c−v
(c+ v − ε) f (ε) dε = (c+ v) (2F (c+ v)− 1) . (17)

Therefore, from the proof of proposition 4, to show that
(
c∞M , c

∞
N−M+1

)
→ (−∞,+∞) as

δ → 1 for all (vM , vN−M+1) (≥,≤) (σε, σε), it suffi ces to show that H as defined in (17) has

no fixed point on R+ for v ≥ σε and δ = 1. Using the symmetry of ε and Holder inequality,

for all c > 0, H (c)− c = −2
∫∞
c+v

(c+ v) f (u) du+ v > −2
∫∞

0
uf (u) du+ v > −σε + v.

Proof of Proposition 6. All but the first and the last inequalities are proven

in corollary 5. Let HM denote the map defined in (5) for the supermajority M ; i.e.,

HM
n (ct (M)) = δ

∫ ctN−M+1−vN−M+1

ctM−vM
(ctn − vn − ε) f (ε) dε.We will prove the remaining inequal-

ities by induction. For t = 1, all players use zero threshold; therefore, the inequalities hold.

Assume they hold up to some t; i.e.,

ctN−M ′+1 (M ′) ≥ ctN−M ′+1 (M) and ctM ′ (M
′) ≤ ctM ′ (M) . (18)

Since ct+1
M ′ (M ′) = HM ′

M ′ (ct (M ′)) and ct+1
M ′ (M) = HM

M ′ (c
t (M)), to prove ct+1

M ′ (M ′) ≤ ct+1
M ′ (M),

it suffi ces to show thatHM ′
M ′ (ct (M ′)) ≤ HM

M ′ (c
t (M)). Corollary 5 and (18) imply ctM ′ (M

′) ≤
ctM (M). Since vM ′ > vM , ctM ′ (M

′) − vM ′ ≤ ctM (M) − vM . A symmetric argument shows
that ctN−M ′+1 (M ′)− vN−M ′+1 ≥ ctN−M+1 (M)− vN−M+1. Therefore,

HM ′

M ′
(
ct (M ′)

)
−HM

M ′
(
ct (M)

)
= δ

 ∫ ct
N−M′+1

(M ′)−vN−M′+1

ct
M′ (M

′)−vM′
(ctM ′ (M

′)− vM ′ − ε) f (ε) dε

−
∫ ctN−M+1(M)−vN−M+1

ctM (M)−vM (ctM ′ (M)− vM ′ − ε) f (ε) dε



33



≤ δ

 ∫ ct
N−M′+1

(M ′)−vN−M′+1

ct
M′ (M

′)−vM′
(ctM ′ (M

′)− vM ′ − ε) f (ε) dε

−
∫ ctN−M+1(M)−vN−M+1

ctM (M)−vM (ctM ′ (M
′)− vM ′ − ε) f (ε) dε


= δ

 ∫ ctM (M)−vM
ct
M′ (M

′)−vM′
(ctM ′ (M

′)− vM ′ − ε) f (ε) dε

+
∫ ct

N−M′+1
(M ′)−vN−M′+1

ctN−M+1(M)−vN−M+1
(ctM ′ (M

′)− vM ′ − ε) f (ε) dε

 ≤ 0,

where the first step follows from (18). By a symmetric argument ctN−M ′+1 (M) ≤ ctN−M ′+1 (M ′).

Proof of proposition 7. Let U
(
ΓenT,q

)
and U

(
ΓexT,q

)
be the equilibrium payoff profiles

(normalized per period) of ΓenT,q and ΓexT,q, respectively. Let D (c) denote the event that θi−ci
and θj − cj are of opposite sign. Since c∞ is a fixed point of H, equation (1) implies that

E (θi + θj|D (c∞)) = −1− δ Pr (D (c∞))

δ Pr (D (c∞))

(
c∞i + c∞j

)
. (19)

Let A+ (c) and A− (c) denote the event that θi − ci and θj − cj are both positive and both
negative, respectively, and let πt (T ) be the ex-ante probability that the status quo is 1 at the

beginning of period t in ΓenT,q. Since c
t converges, for all a ≥ 0, limT→∞ πT−a (T ) exists. Hence∑T

t=1 δ
tπT−t(T )∑T
t=1 δ

t converges to some π as T →∞. Likewise, since for all t, limT→∞ c
T−t = c∞,

Ui
(
ΓenT,q

)
= 1∑T

t=1 δ
t

∑T
t=1 δ

t (2πT−t (T )− 1)E
(
θi|D

(
cT−t

))
Pr
(
D
(
cT−t

))
+ 1∑T

t=1 δ
t

∑T
t=1 δ

t
[
E
(
θi|A+

(
cT−t

))
Pr
(
A+
(
cT−t

))
− E

(
θi|A−

(
cT−t

))
Pr
(
A−
(
cT−t

))]
→T→∞ (2π − 1)E (θi|D (c∞)) Pr (D (c∞)) + E (θi|A+ (c∞)) Pr (A+ (c∞))− E (θi|A− (c∞)) Pr (A− (c∞)) .

(20)

Case (ii): If c∞i and c∞j have the same sign, then case (i) applies. If they have opposite

signs, the uniform order condition implies that c∞i ≤ 0 ≤ c∞j .
25 Suppose first that c∞i +c∞j <

0. Equation 19 implies then that E (θi + θj|D (c∞)) > 0. Since θ has full support, 2π−1 < 1,

this implies that

limT→∞W
(
ΓenT,q

)
< E (θi + θj|D (c∞)) Pr (D (c∞))

+E (θi + θj|A+ (c∞)) Pr (A+ (c∞))− E (θi + θj|A− (c∞)) Pr (A− (c∞)) .
(21)

25For any c ∈ R, Hj (c, c) − Hi (c, c) =

∫
θi≥c

∫
θj≤c

(θi − θj) f (θ) dθ +

∫
θi≤c

∫
θj≥c

(θi − θj) f (θ) dθ, and

the right-hand side is positive by the uniform order condition. Since ∂Hi

∂ci
≥ 0, ∂Hj

∂ci
≤ 0 (see lemma 1), and

Hj (c, c) ≥ Hi (c, c), for all ci < cj , Hi (ci, cj) ≤ Hi (cj , cj) ≤ Hj (cj , cj) ≤ Hj (ci, cj) . Therefore, a simple
induction argument shows that for all t, cti ≤ ctj and c∞i ≤ c∞j .
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With an exogenous status quo q = 1,

limT→∞W
(
ΓexT,1

)
= E (θi + θj|D (0)) Pr (D (0))

+E (θi + θj|A+ (0)) Pr (A+ (0))− E (θi + θj|A− (0)) Pr (A− (0)) .
(22)

Comparing the right-hand sides of (21) and (22), we see that the two expectations differ

only on the events Θ1 =
{
θ : θi ≤ c∞i , θj ∈

[
0, c∞j

]}
and Θ2 = {θ : θj ≤ 0, θi ∈ [c∞i , 0]} (see

the figure below).

Therefore,

limT→∞
(
W
(
ΓexT,1

)
−W

(
ΓenT,q

))
> 2E (θi + θj|Θ1) Pr (Θ1)− 2E (θi + θj|Θ2) Pr (Θ2) .

(23)

Let Θ′1 be the symmetric of Θ1 with respect to the line {θ : θj = θi + c∞i }, as in the figure
above. Since c∞i + c∞j < 0, Θ′1 ⊂ Θ2, and for all θ ∈ Θ1 ∪ Θ2, θi + θj < 0. Let θ′ ∈ Θ′1 be

the symmetric of θ ∈ Θ1. Since the preference distribution is uniformly ordered one can see

from the figure above that f (θ′) ≥ f (θ). Therefore,

E (θi + θj|Θ2) Pr (Θ2) ≤ E (θi + θj|Θ′1) Pr (Θ′1) ≤ E (θi + θj|Θ1) Pr (Θ1) .

Together with (23), the inequality above shows that W
(
ΓexT,1

)
> W

(
ΓenT,q

)
for T suffi ciently

large. A symmetric argument shows that if c∞i + c∞j > 0, W
(
ΓexT,−1

)
> W

(
ΓenT,q

)
for T

suffi ciently large.

Case (i): Suppose w.l.o.g. that c∞i and c∞j are both nonnegative. Since c∞ is a fixed

point of H, equation (1) implies that E (θi|D (c∞)) ≤ 0. Substituting this in (20), we get

limT→∞ Ui
(
ΓenT,q

)
≤ −E (θi|D (c∞)) Pr (D (c∞))

+E(θi|A+(c∞)) Pr(A+(c∞))− E(θi|A−(c∞)) Pr(A−(c∞)).
(24)
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With an exogenous status quo q = −1,

Ui
(
ΓexT,−1

)
= −E (θi|D (0)) Pr (D (0))+E

(
θi|A+ (0)

)
Pr
(
A+ (0)

)
−E

(
θi|A− (0)

)
Pr
(
A− (0)

)
.

(25)

Comparing the right-hand sides of (24) and (25), we see that the two expectations differ only

on the events Θ1 =
{
θ : θi > 0, θj ∈

(
0, c∞j

)}
and Θ2 =

{
θ : θj ≥ c∞j , θi ∈ (0, c∞i )

}
. Hence,

lim
T→∞

(
Ui
(
ΓexT,−1

)
− Ui

(
ΓenT,q

))
≥ 2E (θi|Θ1) Pr (Θ1) + 2E (θi|Θ2) Pr (Θ2) .

Since c∞ 6= (0, 0), Θ1∪ Θ2 has positive measure. Moreover, θi > 0 for all θ ∈ Θ1∪ Θ2, so

limT→∞ Ui
(
ΓexT,−1

)
> limT→∞ Ui

(
ΓenT,q

)
. Hence, we have shown that whenever c∞ 6= (0, 0),

there exists q such that for T suffi ciently large, Uk
(
ΓexT,−1

)
> Uk

(
ΓenT,q

)
for all k ∈ {i, j}.

Example 4 Let 0 < r < R and consider the following preference distribution: with prob-

ability 1/2, θi and θj are independently distributed with θi ∼ N (1, ε) and θj ∼ N (−1, ε);

with probability 1/4, θ is uniformly distributed on a circle of center (−R, r) and radius r;
with probability 1/4, θ is uniformly distributed on a circle of center (−r, R) and radius r.

The corresponding p.d.f. are denoted f 1, f 2 and f 3, respectively. Conditional on (static)

disagreement and on the preferences being drawn from f 1, player i prefers 1 and player j

prefers −1. However, with probability 1/2 a preference reversal happens: under f 2 and f 3,

conditional on (static) disagreement, player i prefers −1 and player j prefers 1.

Let ΓsT be a T repetition of any static mechanism. One can show that for all (r, R) such that

1

2− δ + r < R < 2−
(

8

δ
+ 1

)
r, (26)

the equilibrium ct are such that for all t ≥ 2, the disagreement region
{
θ : (θi − cti)

(
θj − ctj

)
≤ 0
}
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does not intersect the support of f2 and f3. Let ΓsT be the T repetition of any static mecha-

nism. In the game ΓsT , nonpartisan players almost always disagree as ε → 0. However, in

the game ΓenT,q, conditionally on the preferences being drawn from f2 or f3, partisan players

vote unanimously for the socially optimal policy. Formally, one can show that

lim
ε→0,T→∞

(
W
(
ΓenT,q

)
−W (ΓsT )

)
=

1

4
(R + r) . (27)

If δ ∈ (0, 1), R ∈
[

1
2−δ , 2

]
and r is suffi ciently small, (26) is satisfied and (27) is positive.

Proof of example 4. In what follows, we let ε → 0 and omit to mention “for ε

suffi ciently small” for brevity. We first show that for all r and R that satisfy (26), c∞ is

independent of r and R. Let H be the map defined in (1) with p.d.f. f = 2f1+f2+f3

4
.By

construction,

c2 = H (0)→ δ

(
−1

2
+
R + r

4
,
1

2
− R + r

4

)
. (28)

Simple algebra shows that 2δ+(4−δ)r
4+δ

< 1
2−δ + r so (26) implies 2δ+(4−δ)r

4+δ
< R < 2−

(
8
δ

+ 1
)
r.

Substituting these inequalities in (28), we get that for t = 2

(−R + r, R− r) (≤,≥) ct (≤,≥) (−2r, 2r) . (29)

Hence, only f 1 has positive weight on the disagreement region when using voting thresholds

c2, soH (c2) can be evaluated using f = f1

2
. Moreover, from proposition 2, ct is increasing in

t in the order (≤,≥). So for all t ≥ 2,
(
cti, c

t
j

)
(≤,≥) (−2r, 2r). If we show furthermore that

(−R− r, R + r) (≤,≥) (c∞), then we can conclude that (29) holds for all t, which implies

that c∞ does not depend on r and R and can be computed viaH using the measure f = f1

2
.

From what precedes, to prove the first point, it suffi ces to show that the fixed points cf

of H evaluated using the p.d.f. f = f1

2
(or equivalently the p.d.f. f 1 and δ/2 instead of δ)

satisfy (−R + r, R− r) (≤,≥) cf . As shown in the proof of proposition 2,

cf (≥,≤)

(∫
|θi| f (θ) dθ

1− δ/2 ,

∫
|θj| f (θ) dθ

1− δ/2

)
→
(
−1

2− δ ,
1

2− δ

)
.

To conclude the proof, observe that (26) implies that 1
2−δ ≤ R− r.

We now prove (27) for all r and R satisfying (26). Using the symmetry of the distribution

and the notations of proposition 7, for all c ∈ R, E (θi + θj|D (−c, c)) = 0. Since any static
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bargaining protocol implements policy 1 on A+ (0) and −1 on A− (0), for all q,

W
(
ΓenT→∞,q

)
= E

(
θi + θj|A+ (c∞)

)
Pr
(
A+ (c∞)

)
− E

(
θi + θj|A− (c∞)

)
Pr
(
A− (c∞)

)
,

W (ΓsT ) = E
(
θi + θj|A+ (0)

)
Pr
(
A+ (0)

)
− E

(
θi + θj|A− (0)

)
Pr
(
A− (0)

)
.

Comparing the two expressions above, if we define Θi =
{
θ : θi ≤ c∞i or θi ≥ 0, θj ∈

[
0, c∞j

]}
and Θj =

{
θ : θi ∈ [c∞i , 0] , θj ≤ 0 or θj ≥ c∞j

}
, we get

W
(
ΓenT→∞,q

)
−W (ΓsT ) = −E (θi + θj|Θi) Pr (Θi) + E (θi + θj|Θj) Pr (Θj) .

The latter equality implies (27) because as ε → 0, f1 has a vanishing weight on Θi ∪ Θj,

while f 2 has all its weight on Θi and f 3 has all its weight on Θj.

Example 5 (when dictatorship of j is better for i than the endogenous status quo)
Let θj = µ+ ε and θi = −µ+ ε, with µ > 0 and ε ∼ N (0, 1) . We will show that there exists

some δ̄ < 0 such that for all δ > δ̄ and µ ∈ (0.4, 0.5) player i prefers ΓdT,j to ΓenT,q for T

suffi ciently large.

Proof. By symmetry, for all t, ctj = −cti $ ct. The preference distribution is polarized,

so from proposition 2, c∞ exists.

Let us first show that for all µ > 0.4, c∞ → ∞ as δ → 1. Using the symmetry of the

normal distribution, at δ = 1, c∞ = H (c∞) can be rewritten as

(2Φ (c∞ + µ)− 1) (c∞ + µ) = c∞ ⇔ 2 (Φ (c∞ + µ)− 1) (c∞ + µ) = µ. (30)

By plotting x → 2 (Φ (x)− 1)x, one can see that it is bounded by 0.4, so for µ > 0.4, (30)

has no solution. As shown in the proof of proposition 4, this implies that c∞ →∞ as δ → 1.

Using the notations and the argument in the proof of proposition 7 (see equation (20)),

Ui
(
ΓenT,q

)
− Ui

(
ΓdT,j

)
=

= 1∑T
t=1 δ

t

∑T
t=1 δ

t

[
2πT−t (T )E (θi|θi ∈ [−ct, µ]) Pr (θi ∈ [−ct, µ])

+2 (πT−t (T )− 1)E (θi|θi ∈ [µ, µ+ ct]) Pr (θi ∈ [µ, µ+ ct])

]
→T→∞

2πE (θi|θi ∈ [−c∞, 2µ]) Pr (θi ∈ [−c∞, 2µ]) + 2 (π − 1)E (θi|θi ∈ [2µ, 2µ+ c∞]) Pr (θi ∈ [2µ, 2µ+ c∞]) .

Since E (θi|θi ∈ [2µ, 2µ+ c∞]) ≥ 0,

lim
T→∞

Ui
(
ΓenT,q

)
−Ui

(
ΓdT,j

)
≤ 2E (θi|θi ∈ [−c∞, 2µ]) Pr (θi ∈ [−c∞, 2µ]) = 2

∫ 2µ

−c∞
θiφ (θi − µ) dθi.

(31)
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For all µ > 0.4, c∞ →∞ as δ → 1, so using Mill’s ratio formula, the right-hand side of (31)

tends to 2 (µΦ (µ)− φ (µ)) as δ → 1. By plotting µ → 2 (µΦ (µ)− φ (µ)), we see that it is

increasing for µ ≥ 0 and negative at µ = 0.5. Hence, we have shown that for all µ ∈ (0.4, 0.5),

there exists δ, such that for all δ ≥ δ, for T suffi ciently large Ui
(
ΓenT,q

)
< Ui

(
ΓdT,j

)
.

Proof of proposition 8. Let (ct (M))t≤T be the equilibrium thresholds in ΓenT,q,N with

supermajority M . Let U t
n

(
(ct (M))t≥1

)
be the expected utility of player n in period t of

ΓenT,q,N . If π (t, T, q) denotes the probability that the status quo is 1 at the beginning of

period t, if we denote etM = ctM (M)− vM and etN−M+1 = ctN−M+1 (M)− vN−M+1, then

U t
n

(
(ct (M))t≥1

)
= (2π (t, T, q)− 1)E (θn|eM ≤ ε ≤ eN−M+1) Pr (eM ≤ ε ≤ eN−M+1)

+E (θn|ε ≥ eN−M+1) Pr (ε ≥ eN−M+1)− E (θn|ε ≤ eM) Pr (ε ≤ eM) .

(32)

By symmetry, for all t, etN−M+1 = −etM , for all ε, θn (ε) + θN−n+1 (ε) = 2ε and for all e ∈ R,
E (θn + θN−n+1| − e ≤ ε ≤ e) = 0. So (32) implies

(
U t
n + U t

N−n+1

) ((
ct (M)

)
t≥1

)
=

∫ ∞
etN−M+1

2εf (ε) dε−
∫ etM

−∞
2εf (ε) dε (33)

From Propositions 5 and 6, for all t, etN−M+1 is positive and increasing in M while etM is

negative and decreasing in M. Therefore, (33) is decreasing in M .

The following lemma will be used in the proof of proposition 9.

Lemma 3 Let Γq (π,V (1) ,V (−1) ,θ) be game in which in the first period players play

Γen1,q, and in the second period, with probability (1− π) the game stops and players get termi-

nal payoff V (q), and with probability π, players are called to play Γy (π,V (1) ,V (−1) ,θ) ,

where y is outcome of the first period game Γen1,q. For almost all θ, Γq (π,V (1) ,V (−1) ,θ)

has a unique equilibrium. In each period, player use constant threshold strategies c =
δ(1−π)

2
(V (−1)− V (1)). If ci and cj have different signs, the value of Γq (π,V (1) ,V (−1) ,θ)

for player k is θkq+δ(1−π)Vk(q)
1−δπ .

Proof. Notice that the game is strategically equivalent to the infinite horizon game
in which, in each period t, player k gets θkyt + δ (1− π)Vk (yt) with certainty, where yt

is the outcome of the vote in period t, and players use the discount factor δπ. There-

fore, the set of possible intertemporal payoff from Γq (π,V (1) ,V (−1) ,θ) is included in[
−θk+δ(1−π)Vk(−1)

1−δπ , θk+δ(1−π)Vk(1)
1−δπ

]
. Assume for concreteness that θk + δ (1− π)Vk (1) > −θk +

δ (1− π)Vk (−1). In any subgame where 1 is the status quo, player k can secure his highest

possible intertemporal payoff by always voting for 1, so the outcome must be 1 in all sub-

sequent periods. Therefore, in any period t, stage undomination implies that voter k must
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vote for 1. Likewise, he will vote for −1 when the reverse inequality holds. Since θ has full

support, this uniquely determines the voting threshold.

Proof of proposition 9. We proceed by induction. Proposition 9 for L = 1 follows from

lemma 3 for V (1) = V (−1) = (0, 0). Suppose it holds up to some T . Stage undomination

implies that in the first phase of ΓenL+1,q, players use the same strategy as in the equilibrium

of Γq
(
πL+1,V

(
ΓenL,1

)
,V
(
ΓenL,−1

)
,θL+1

)
(see the notations of lemma 3) where V

(
ΓenL,q

)
is the

continuation payoff of ΓenL,q, uniquely defined by the induction hypothesis. Lemma 3 implies

then that ΓL+1
q has a unique equilibrium. Moreover, for all l ≤ L, the voting threshold in

phase l + 1 are constant and given by

cl+1
(
πl+1

)
= δ

(
1− πl+1

) V (Γenl,−1

)
− V

(
Γenl,1
)

2
. (34)

Since the status quo matters only when players vote for different alternatives, using lemma

3, we obtain

Vk
(
Γenl,−1

)
− Vk

(
Γenl,1
)

(35)

=

∫ 1

0


∫∞
clj(π)

∫ cli(π)

−∞

(
Vk
(
Γ−1

(
π,V

(
Γenl−1,−1

)
,V
(
Γenl−1,1

)
,θ
))

−Vk
(
Γ1

(
π,V

(
Γenl−1,−1

)
,V
(
Γenl−1,1

)
,θ
)) ) f (θ) dθidθj

+
∫ clj(π)

−∞
∫∞
cli(π)

(
Vk
(
Γ−1

(
π,V

(
Γenl−1,−1

)
,V
(
Γenl−1,1

)
,θ
))

−Vk
(
Γ1

(
π,V

(
Γenl−1,−1

)
,V
(
Γenl−1,1

)
,θ
)) ) f (θ) dθidθj

 g (π) dπ

=

∫ 1

0


∫∞
clj(π)

∫ cli(π)

−∞

(
−2θk+δ(1−π)(Vk(Γenl−1,−1)−Vk(Γenl−1,1))

1−δπ

)
f (θ) dθidθj

+
∫ clj(π)

−∞
∫∞
cli(π)

(
−2θk+δ(1−π)(Vk(Γenl−1,−1)−Vk(Γenl−1,1))

1−δπ

)
f (θ) dθidθj

 g (π) dπ.

Substituting (34) in both sides of (35), we get

cl+1
k

(
πl+1

)
=
(
1− πl+1

) ∫ 1

0

Hk

(
cl (π)

)
1− πδ g (π) dπ, (36)

which shows that for all l, clk(π)

(1−π)
is constant in π. Substituting ĉlk =

clk(π)

(1−π)
in both sides of

(36), we obtain ĉl+1 = G
(
ĉl
)
.
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