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Abstract

We present simple procedures for the prediction of a real valued
time series with side information. For squared loss (regression prob-
lem), survey the basic principles of universally consistent estimates.
The prediction algorithms are based on a combination of several sim-
ple predictors. We show that if the sequence is a realization of a
stationary and ergodic random process then the average of squared
errors converges, almost surely, to that of the optimum, given by the
Bayes predictor. We offer an analog result for the prediction of sta-
tionary gaussian processes. These prediction strategies have some
consequences for 0− 1 loss (pattern recognition problem).
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1 Introduction

We study the problem of sequential prediction of a real valued sequence. At
each time instant t = 1, 2, . . ., the predictor is asked to guess the value of
the next outcome yt of a sequence of real numbers y1, y2, . . . with knowledge
of the pasts yt−1

1 = (y1, . . . , yt−1) (where y0
1 denotes the empty string) and

the side information vectors xt
1 = (x1, . . . , xt), where xt ∈ Rd . Thus, the

predictor’s estimate, at time t, is based on the value of xt
1 and yt−1

1 . A
prediction strategy is a sequence g = {gt}∞t=1 of functions

gt :
(
Rd

)t × Rt−1 → R

so that the prediction formed at time t is gt(x
t
1, y

t−1
1 ).

In this study we assume that (x1, y1), (x2, y2), . . . are realizations of the
random variables (X1, Y1), (X2, Y2), . . . such that {(Xn, Yn)}∞−∞ is a jointly
stationary and ergodic process.

After n time instants, the normalized cumulative prediction error is

Ln(g) =
1

n

n∑
t=1

(gt(X
t
1, Y

t−1
1 )− Yt)

2.

Our aim to achieve small Ln(g) when n is large.
For this prediction problem, an example can be the forecasting daily

relative prices yt of an asset, while the side information vector xt may contain
some information on other assets in the past days or the trading volume in
the previous day or some news related to the actual assets, etc. This is a
widely investigated research problem. However, in the vast majority of the
corresponding literature the side information is not included in the model,
moreover, a parametric model (AR, MA, ARMA, ARIMA, ARCH, GARCH,
etc.) is fitted to the stochastic process {Yt}, its parameters are estimated,
and a prediction is derived from the parameter estimates. (cf. Tsay [34]).
Formally, this approach means that there is a parameter θ such that the best
predictor has the form

E{Yt | Y t−1
1 } = gt(θ, Y

t−1
1 ),

for a function gt. The parameter θ is estimated from the past data Y t−1
1 , and

the estimate is denoted by θ̂. Then the data-driven predictor is

gt(θ̂, Y
t−1
1 ).
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Here we don’t assume any parametric model, so our results are fully non-
parametric. This modelling is important for financial data when the process
is only approximately governed by stochastic differential equations, so the
parametric modelling can be weak, moreover the error criterion of the pa-
rameter estimate (usually the maximum likelihood estimate) has no relation
to the mean square error of the prediction derived. The main aim of this
research is to construct predictors, called universally consistent predictors,
which are consistent for all stationary time series. Such universal feature can
be proven using the recent principles of nonparametric statistics and machine
learning algorithms.

The results below are given in an autoregressive framework, that is, the
value Yt is predicted based on X t

1 and Y t−1
1 . The fundamental limit for the

predictability of the sequence can be determined based on a result of Algoet
[2], who showed that for any prediction strategy g and stationary ergodic
process {(Xn, Yn)}∞−∞,

lim inf
n→∞

Ln(g) ≥ L∗ almost surely, (1)

where

L∗ = E
{(

Y0 − E
{
Y0

∣∣X0
−∞, Y −1

−∞
})2

}

is the minimal mean squared error of any prediction for the value of Y0 based
on the infinite past X0

−∞, Y −1
−∞. Note that it follows by stationarity and the

martingale convergence theorem (see, e.g., Stout [32]) that

L∗ = lim
n→∞

E
{(

Yn − E
{
Yn

∣∣Xn
1 , Y n−1

1

})2
}

.

This lower bound gives sense to the following definition:

Definition 1 A prediction strategy g is called universally consistent with
respect to a class C of stationary and ergodic processes {(Xn, Yn)}∞−∞, if for
each process in the class,

lim
n→∞

Ln(g) = L∗ almost surely.

Universally consistent strategies asymptotically achieve the best possible
squared loss for all ergodic processes in the class. Algoet [1] and Morvai,
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Yakowitz, and Györfi [25] proved that there exists a prediction strategy uni-
versal with respect to the class of all bounded ergodic processes. However,
the prediction strategies exhibited in these papers are either very complex
or have an unreasonably slow rate of convergence even for well-behaved pro-
cesses.

Next we introduce several simple prediction strategies which, apart from
having the above mentioned universal property of [1] and [25], promise much
improved performance for “nice” processes. The algorithms build on a method-
ology worked out in recent years for prediction of individual sequences, see
Vovk [37], Feder, Merhav, and Gutman [12], Littlestone and Warmuth [23],
Cesa-Bianchi et al. [8], Kivinen and Warmuth [22], Singer and Feder [30],
and Merhav and Feder [24], Cesa-Bianchi and Lugosi [9] for a survey.

An approach similar to the one of this paper was adopted by Györfi,
Lugosi, and Morvai [20], where prediction of stationary binary sequences
was addressed. There they introduced a simple randomized predictor which
predicts asymptotically as well as the optimal predictor for all binary ergodic
processes. The present setup and results differ in several important points
from those of [20]. On the one hand, special properties of the squared loss
function considered here allow us to avoid randomization of the predictor,
and to define a significantly simpler prediction scheme. On the other hand,
possible unboundedness of a real-valued process requires special care, which
we demonstrate on the example of gaussian processes. We refer to Nobel [27],
Singer and Feder [30], [31], Yang [35], [36] to recent closely related work.

In Section 2 we survey the basic principles of nonparametric regression es-
timates. In Section 3 introduce universally consistent strategies for bounded
ergodic processes which are based on a combination of partitioning or kernel
or nearest neighbor or generalized linear estimates. In Section 4 consider the
prediction of unbounded sequences including the ergodic gaussian process.
In Section 5 study the classification problem of time series.

2 Nonparametric regression estimation

2.1 The regression problem

For the prediction of time series, an important source of the basic principles is
the nonparametric regression. In regression analysis one considers a random
vector (X, Y ), where X is Rd-valued and Y is R-valued, and one is interested
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how the value of the so-called response variable Y depends on the value of
the observation vector X. This means that one wants to find a function
f : Rd → R, such that f(X) is a “good approximation of Y ,” that is, f(X)
should be close to Y in some sense, which is equivalent to making |f(X)−Y |
“small.” Since X and Y are random vectors, |f(X)− Y | is random as well,
therefore it is not clear what “small |f(X)−Y |” means. We can resolve this
problem by introducing the so-called L2 risk or mean squared error of f ,

E|f(X)− Y |2,
and requiring it to be as small as possible.

So we are interested in a function m∗ : Rd → R such that

E|m∗(X)− Y |2 = min
f :Rd→R

E|f(X)− Y |2.

Such a function can be obtained explicitly as follows. Let

m(x) = E{Y |X = x}
be the regression function. We will show that the regression function min-
imizes the L2 risk. Indeed, for an arbitrary f : Rd → R, a version of the
Steiner theorem implies that

E|f(X)− Y |2 = E|f(X)−m(X) + m(X)− Y |2
= E|f(X)−m(X)|2 + E|m(X)− Y |2,

where we have used

E {(f(X)−m(X))(m(X)− Y )}
= E

{
E

{
(f(X)−m(X))(m(X)− Y )

∣∣X}}

= E {(f(X)−m(X))E{m(X)− Y |X}}
= E {(f(X)−m(X))(m(X)−m(X))}
= 0.

Hence,

E|f(X)− Y |2 =

∫

Rd

|f(x)−m(x)|2µ(dx) + E|m(X)− Y |2, (2)

where µ denotes the distribution of X. The first term is called the L2 error of
f . It is always nonnegative and is zero if f(x) = m(x). Therefore, m∗(x) =
m(x), i.e., the optimal approximation (with respect to the L2 risk) of Y by
a function of X is given by m(X).
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2.2 Regression function estimation and L2 error

In applications the distribution of (X, Y ) (and hence also the regression func-
tion) is usually unknown. Therefore it is impossible to predict Y using m(X).
But it is often possible to observe data according to the distribution of (X, Y )
and to estimate the regression function from these data.

To be more precise, denote by (X, Y ), (X1, Y1), (X2, Y2), . . . independent
and identically distributed (i.i.d.) random variables with EY 2 < ∞. Let Dn

be the set of data defined by

Dn = {(X1, Y1), . . . , (Xn, Yn)} .

In the regression function estimation problem one wants to use the data Dn

in order to construct an estimate mn : Rd → R of the regression function m.
Here mn(x) = mn(x,Dn) is a measurable function of x and the data. For
simplicity, we will suppress Dn in the notation and write mn(x) instead of
mn(x,Dn).

In general, estimates will not be equal to the regression function. To
compare different estimates, we need an error criterion which measures the
difference between the regression function and an arbitrary estimate mn.
One of the key points we would like to make is that the motivation for in-
troducing the regression function leads naturally to an L2 error criterion
for measuring the performance of the regression function estimate. Re-
call that the main goal was to find a function f such that the L2 risk
E|f(X)− Y |2 is small. The minimal value of this L2 risk is E|m(X)− Y |2,
and it is achieved by the regression function m. Similarly to (2), one can
show that the L2 risk E{|mn(X)− Y |2|Dn} of an estimate mn satisfies

E
{|mn(X)− Y |2|Dn

}
=

∫

Rd

|mn(x)−m(x)|2µ(dx) + E|m(X)− Y |2. (3)

Thus the L2 risk of an estimate mn is close to the optimal value if and only
if the L2 error ∫

Rd

|mn(x)−m(x)|2µ(dx) (4)

is close to zero. Therefore we will use the L2 error (4) in order to measure
the quality of an estimate and we will study estimates for which this L2 error
is small.

In this section we describe the basic principles of nonparametric regression
estimation: local averaging, local modelling, global modelling (or least squares
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estimation), and penalized modelling. (Concerning the details see Györfi et
al. [18].)

Recall that the data can be written as

Yi = m(Xi) + εi,

where εi = Yi −m(Xi) satisfies E(εi|Xi) = 0. Thus Yi can be considered as
the sum of the value of the regression function at Xi and some error εi, where
the expected value of the error is zero. This motivates the construction of
the estimates by local averaging, i.e., estimation of m(x) by the average of
those Yi where Xi is “close” to x. Such an estimate can be written as

mn(x) =
n∑

i=1

Wn,i(x) · Yi,

where the weights Wn,i(x) = Wn,i(x,X1, . . . , Xn) ∈ R depend on X1, . . . , Xn.
Usually the weights are nonnegative and Wn,i(x) is “small” if Xi is “far” from
x.

An example of such an estimate is the partitioning estimate. Here one
chooses a finite or countably infinite partition Pn = {An,1, An,2, . . . } of Rd

consisting of cells An,j ⊆ Rd and defines, for x ∈ An,j, the estimate by
averaging Yi’s with the corresponding Xi’s in An,j, i.e.,

mn(x) =

∑n
i=1 I{Xi∈An,j}Yi∑n
i=1 I{Xi∈An,j}

for x ∈ An,j, (5)

where IA denotes the indicator function of set A, so

Wn,i(x) =
I{Xi∈An,j}∑n
l=1 I{Xl∈An,j}

for x ∈ An,j.

Here and in the following we use the convention 0
0

= 0. In order to have
consistency, on the one hand we need that the cells An,j should be ”small”,
and on the other hand the number of non-zero terms in the denominator of
(5) should be ”large”. These requirements can be satisfied if the sequences
of partition Pn is asymptotically fine, i.e., if

diam(A) = sup
x,y∈A

‖x− y‖
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denotes the diameter of a set, then for each sphere S centered at the origin

lim
n→∞

max
j:An,j∩S 6=∅

diam(An,j) = 0

and

lim
n→∞

|{j : An,j ∩ S 6= ∅}|
n

= 0.

For the partition Pn, the most important example is when the cells An,j are
cubes of volume hd

n. For cubic partition, the consistency conditions above
mean that

lim
n→∞

hn = 0 and lim
n→∞

nhd
n = ∞. (6)

The second example of a local averaging estimate is the Nadaraya–Watson
kernel estimate. Let K : Rd → R+ be a function called the kernel function,
and let h > 0 be a bandwidth. The kernel estimate is defined by

mn(x) =

∑n
i=1 K

(
x−Xi

h

)
Yi∑n

i=1 K
(

x−Xi

h

) , (7)

so

Wn,i(x) =
K

(
x−Xi

h

)
∑n

j=1 K
(

x−Xj

h

) .

Here the estimate is a weighted average of the Yi, where the weight of Yi (i.e.,
the influence of Yi on the value of the estimate at x) depends on the distance
between Xi and x. For the bandwidth h = hn, the consistency conditions are
(6). If one uses the so-called naive kernel (or window kernel) K(x) = I{‖x‖≤1},
then

mn(x) =

∑n
i=1 I{‖x−Xi‖≤h}Yi∑n
i=1 I{‖x−Xi‖≤h}

,

i.e., one estimates m(x) by averaging Yi’s such that the distance between Xi

and x is not greater than h.
Our final example of local averaging estimates is the k-nearest neighbor

(k-NN) estimate. Here one determines the k nearest Xi’s to x in terms of
distance ‖x − Xi‖ and estimates m(x) by the average of the corresponding
Yi’s. More precisely, for x ∈ Rd, let

(X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x))

7



be a permutation of
(X1, Y1), . . . , (Xn, Yn)

such that
‖x−X(1)(x)‖ ≤ · · · ≤ ‖x−X(n)(x)‖.

The k-NN estimate is defined by

mn(x) =
1

k

k∑
i=1

Y(i)(x). (8)

Here the weight Wni(x) equals 1/k if Xi is among the k nearest neighbors
of x, and equals 0 otherwise. If k = kn → ∞ such that kn/n → 0 then the
k-nearest-neighbor regression estimate is consistent.

The kernel estimate (7) can be considered as locally fitting a constant to
the data. In fact, it is easy to see that it satisfies

mn(x) = arg min
c∈R

1

n

n∑
i=1

K

(
x−Xi

h

)
(Yi − c)2 . (9)

A generalization of this leads to the local modelling paradigm: instead of
locally fitting a constant to the data, locally fit a more general function,
which depends on several parameters. Let g(·, {ak}l

k=1) : Rd → R be a
function depending on parameters {ak}l

k=1. For each x ∈ Rd, choose values
of these parameters by a local least squares criterion

{âk(x)}l
k=1 = arg min

{ak}l
k=1

1

n

n∑
i=1

K

(
x−Xi

h

) (
Yi − g

(
Xi, {ak}l

k=1

))2
. (10)

Here we do not require that the minimum in (10) be unique. In case there
are several points at which the minimum is attained we use an arbitrary rule
(e.g., by flipping a coin) to choose one of these points. Evaluate the function
g for these parameters at the point x and use this as an estimate of m(x):

mn(x) = g
(
x, {âk(x)}l

k=1

)
. (11)

If one chooses g(x, {c}) = c (x ∈ Rd), then this leads to the Nadaraya–Watson
kernel estimate.
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The most popular example of a local modeling estimate is the local poly-
nomial kernel estimate. Here one locally fits a polynomial to the data. For
example, for d = 1, X is real-valued and

g
(
x, {ak}l

k=1

)
=

l∑

k=1

akx
k−1

is a polynomial of degree l − 1 (or less) in x.
A generalization of the partitioning estimate leads to global modelling or

least squares estimates. Let Pn = {An,1, An,2, . . . } be a partition of Rd and
let Fn be the set of all piecewise constant functions with respect to that
partition, i.e.,

Fn =

{∑
j

ajIAn,j
: aj ∈ R

}
. (12)

Then it is easy to see that the partitioning estimate (5) satisfies

mn(·) = arg min
f∈Fn

{
1

n

n∑
i=1

|f(Xi)− Yi|2
}

. (13)

Hence it minimizes the empirical L2 risk

1

n

n∑
i=1

|f(Xi)− Yi|2 (14)

over Fn. Least squares estimates are defined by minimizing the empirical
L2 risk over a general set of functions Fn (instead of (12)). Observe that
it doesn’t make sense to minimize (14) over all functions f , because this
may lead to a function which interpolates the data and hence is not a rea-
sonable estimate. Thus one has to restrict the set of functions over which
one minimizes the empirical L2 risk. Examples of possible choices of the
set Fn are sets of piecewise polynomials with respect to a partition Pn, or
sets of smooth piecewise polynomials (splines). The use of spline spaces
ensures that the estimate is a smooth function. An important member of
least squares estimates is the generalized linear estimates. Let {φj}∞j=1 be

real-valued functions defined on Rd and let Fn be defined by

Fn =

{
f ; f =

`n∑
j=1

cjφj

}
.
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Then the generalized linear estimate is defined by

mn(·) = arg min
f∈Fn

{
1

n

n∑
i=1

(f(Xi)− Yi)
2

}

= arg min
c1,...,c`n





1

n

n∑
i=1

(
`n∑

j=1

cjφj(Xi)− Yi

)2


 .

If the set {∑̀
j=1

cjφj; (c1, . . . , c`), ` = 1, 2, . . .

}

is dense in the set of continuous functions of d variables, `n →∞ and `n/n →
0 then the generalized linear regression estimate defined above is consistent.
For least squares estimates, other example can be the neural networks or
radial basis functions or orthogonal series estimates.

Instead of restricting the set of functions over which one minimizes, one
can also add a penalty term to the functional to be minimized. Let Jn(f) ≥ 0
be a penalty term penalizing the “roughness” of a function f . The penalized
modelling or penalized least squares estimate mn is defined by

mn = arg min
f

{
1

n

n∑
i=1

|f(Xi)− Yi|2 + Jn(f)

}
, (15)

where one minimizes over all measurable functions f . Again we do not require
that the minimum in (15) be unique. In the case it is not unique, we randomly
select one function which achieves the minimum.

A popular choice for Jn(f) in the case d = 1 is

Jn(f) = λn

∫
|f ′′(t)|2dt, (16)

where f ′′ denotes the second derivative of f and λn is some positive constant.
One can show that for this penalty term the minimum in (15) is achieved by
a cubic spline with knots at the Xi’s, i.e., by a twice differentiable function
which is equal to a polynomial of degree 3 (or less) between adjacent values
of the Xi’s (a so-called smoothing spline).
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3 Universally consistent predictions: bounded

Y

3.1 Partition-based prediction strategies

In this section we introduce our first prediction strategy for bounded ergodic
processes. We assume throughout the section that |Y0| is bounded by a
constant B > 0, with probability one, and the bound B is known.

The prediction strategy is defined, at each time instant, as a convex com-
bination of elementary predictors, where the weighting coefficients depend on
the past performance of each elementary predictor.

We define an infinite array of elementary predictors h(k,`), k, ` = 1, 2, . . .
as follows. Let P` = {A`,j, j = 1, 2, . . . , m`} be a sequence of finite partitions
of R, and let Q` = {B`,j, j = 1, 2, . . . , m′

`} be a sequence of finite partitions
of Rd. Introduce the corresponding quantizers:

F`(y) = j, if y ∈ A`,j

and
G`(x) = j, if x ∈ B`,j .

With some abuse of notation, for any n and yn
1 ∈ Rn, we write F`(y

n
1 )

for the sequence F`(y1), . . . , F`(yn), and similarly, for xn
1 ∈ (Rd)n, we write

G`(x
n
1 ) for the sequence G`(x1), . . . , G`(xn).

Fix positive integers k, `, and for each k +1-long string z of positive inte-
gers, and for each k-long string s of positive integers, define the partitioning
regression function estimate

Ê(k,`)
n (xn

1 , y
n−1
1 , z, s) =

∑
{k<t<n:G`(x

t
t−k)=z, F`(y

t−1
t−k)=s} yt∣∣{k < t < n : G`(xt

t−k) = z, F`(y
t−1
t−k) = s}

∣∣ ,

for all n > k + 1 where 0/0 is defined to be 0.
Define the elementary predictor h(k,`) by

h(k,`)
n (xn

1 , y
n−1
1 ) = Ê(k,`)

n (xn
1 , y

n−1
1 , G`(x

n
n−k), F`(y

n−1
n−k)),

for n = 1, 2, . . . . That is, h
(k,`)
n quantizes the sequence xn

1 , y
n−1
1 according

to the partitions Q` and P`, and looks for all appearances of the last seen
quantized strings G`(x

n
n−k) of length k + 1 and F`(y

n−1
n−k) of length k in the
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past. Then it predicts according to the average of the yt’s following the
string.

In contrast to the nonparametric regression estimation problem from i.i.d.
data, for ergodic observations, it is impossible to choose k = kn and ` =
`n such that the corresponding predictor is universally consistent for the
class of bounded ergodic processes. The very important new principle is the
combination or aggregation of elementary predictors (cf. Cesa-Bianchi and
Lugosi [9]). The proposed prediction algorithm proceeds as follows: let {qk,`}
be a probability distribution on the set of all pairs (k, `) of positive integers
such that for all k, `, qk,` > 0. Put c = 8B2, and define the weights

wt,k,` = qk,`e
−(t−1)Lt−1(h(k,`))/c (17)

and their normalized values

pt,k,` =
wt,k,`

Wt

, (18)

where

Wt =
∞∑

i,j=1

wt,i,j . (19)

The prediction strategy g is defined by

gt(x
t
1, y

t−1
1 ) =

∞∑

k,`=1

pt,k,`h
(k,`)(xt

1, y
t−1
1 ) , t = 1, 2, . . . (20)

i.e., the prediction gt is the convex linear combination of the elementary
predictors such that an elementary predictor has non-negligible weight in
the combination if it has good performance until time t− 1.

Theorem 1 (Györfi and Lugosi [19]) Assume that
(a) the sequences of partition P` is nested, that is, any cell of P`+1 is a subset
of a cell of P`, ` = 1, 2, . . .;
(b) the sequences of partition Q` is nested;
(c) the sequences of partition P` is asymptotically fine;
(d) the sequences of partition Q` is asymptotically fine;
Then the prediction scheme g defined above is universal with respect to the
class of all jointly stationary and ergodic processes {(Xn, Yn)}∞−∞ such that
|Y0| ≤ B.
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One of the main ingredients of the proof is the following lemma, whose
proof is a straightforward extension of standard arguments in the prediction
theory of individual sequences, see, for example, Kivinen and Warmuth [22],
Singer and Feder [31].

Lemma 1 Let h̃1, h̃2, . . . be a sequence of prediction strategies (experts), and
let {qk} be a probability distribution on the set of positive integers. Assume
that h̃i(x

n
1 , y

n−1
1 ) ∈ [−B,B] and yn

1 ∈ [−B, B]n. Define

wt,k = qke
−(t−1)Lt−1(h̃k)/c

with c ≥ 8B2, and

vt,k =
wt,k∑∞
i=1 wt,i

.

If the prediction strategy g̃ is defined by

g̃t(x
n
1 , y

t−1
1 ) =

∞∑

k=1

vt,kh̃k(x
n
1 , y

t−1
1 ) t = 1, 2, . . .

then for every n ≥ 1,

Ln(g̃) ≤ inf
k

(
Ln(h̃k)− c ln qk

n

)
.

Here − ln 0 is treated as ∞.

Proof. Introduce W1 = 1 and Wt =
∑∞

k=1 wt,k for t > 1. First we show
that for each t > 1,

[ ∞∑

k=1

vt,k

(
yt − h̃k(x

n
1 , y

t−1
1 )

)]2

≤ −c ln
Wt+1

Wt

(21)

Note that

Wt+1 =
∞∑

k=1

wt,ke
−(yt−h̃k(xn

1 ,yt−1
1 ))

2
/c = Wt

∞∑

k=1

vt,ke
−(yt−h̃k(xn

1 ,yt−1
1 ))

2
/c,

so that

−c ln
Wt+1

Wt

= −c ln

( ∞∑

k=1

vt,ke
−(yt−h̃k(xn

1 ,yt−1
1 ))

2
/c

)
.
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Therefore, (21) becomes

exp


−1

c

[ ∞∑

k=1

vt,k

(
yt − h̃k(x

n
1 , y

t−1
1 )

)]2

 ≥

∞∑

k=1

vt,ke
−(yt−h̃k(xn

1 ,yt−1
1 ))

2
/c,

which is implied by Jensen’s inequality and the concavity of the function
Ft(z) = e−(yt−z)2/c for c ≥ 8B2. Thus, (21) implies that

nLn(g̃) =
n∑

t=1

(
yt − g̃(xn

1 , y
t−1
1 )

)2

=
n∑

t=1

[ ∞∑

k=1

vt,k

(
yt − h̃k(x

n
1 , y

t−1
1 )

)]2

≤ −c

n∑
t=1

ln
Wt+1

Wt

= −c ln Wn+1

and therefore

nLn(g̃) ≤ −c ln

( ∞∑

k=1

wn+1,k

)

= −c ln

( ∞∑

k=1

qke
−nLn(h̃k)/c

)

≤ −c ln

(
sup

k
qke

−nLn(h̃k)/c

)

= inf
k

(
−c ln qk + nLn(h̃k)

)
,

which concludes the proof. 2

Another main ingredient of the proof of Theorem 1 is known as Breiman’s
generalized ergodic theorem [6], see also Algoet [2] and Györfi et al. [18].

Lemma 2 (Breiman [6]). Let Z = {Zi}∞−∞ be a stationary and ergodic
process. Let T denote the left shift operator. Let fi be a sequence of real-
valued functions such that for some function f , fi(Z) → f(Z) almost surely.
Assume that E{supi |fi(Z)|} < ∞. Then

lim
t→∞

1

n

n∑
i=1

fi(T
iZ) = E{f(Z)} almost surely.
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Proof of Theorem 1. Because of (1), it is enough to show that

lim sup
n→∞

Ln(g) ≤ L∗ a.s.

By a double application of the ergodic theorem, as n →∞, almost surely,

Ê(k,`)
n (Xn

1 , Y n−1
1 , z, s) =

1
n

∑
{k<i<n:G`(X

t
t−k)=z, F`(Y

t−1
t−k )=s} Yi

1
n

∣∣{k < i < n : G`(X t
t−k) = z, F`(Y

t−1
t−k ) = s}

∣∣

→
E{Y0I{G`(X

0
−k)=z, F`(Y

−1
−k )=s}}

P{G`(X0
−k) = z, F`(Y

−1
−k ) = s}

= E{Y0|G`(X
0
−k) = z, F`(Y

−1
−k ) = s},

and therefore

lim
n→∞

sup
z

sup
s
|Ê(k,`)

n (Xn
1 , Y n−1

1 , z, s)− E{Y0|G`(X
0
−k) = z, F`(Y

−1
−k ) = s}| = 0

almost surely. Thus, by Lemma 2, as n →∞, almost surely,

Ln(h(k,`)) =
1

n

n∑
i=1

(h(k,`)(X i
1, Y

i−1
1 )− Yi)

2

=
1

n

n∑
i=1

(Ê(k,`)
n (X i

1, Y
i−1
1 , G`(X

i
i−k), F`(Y

i−1
i−k ))− Yi)

2

→ E{(Y0 − E{Y0|G`(X
0
−k), F`(Y

−1
−k )})2}

def
= εk,`.

Since the partitions P` and Q` are nested, E
{
Y0|G`(X

0
−k), F`(Y

−1
−k )

}
is a

martingale indexed by the pair (k, `). Thus, the martingale convergence
theorem (see, e.g., Stout [32]) and assumption (c) and (d) for the sequence
of partitions implies that

inf εk,` = lim
k,`→∞

εk,` = E
{(

Y0 − E{Y0|X0
−∞, Y −1

−∞}
)2

}
= L∗.

Now by Lemma 1,

Ln(g) ≤ inf
k,`

(
Ln(h(k,`))− c ln qk,`

n

)
, (22)
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and therefore, almost surely,

lim sup
n→∞

Ln(g) ≤ lim sup
n→∞

inf
k,`

(
Ln(h(k,`))− c ln qk,`

n

)

≤ inf
k,`

lim sup
n→∞

(
Ln(h(k,`))− c ln qk,`

n

)

≤ inf
k,`

lim sup
n→∞

Ln(h(k,`))

= inf
k,`

εk,`

= lim
k,`→∞

εk,`

= L∗

and the proof of the theorem is finished. 2

Theorem 1 shows that asymptotically, the predictor gt defined by (20)
predicts as well as the optimal predictor given by the regression function
E{Yt|Y t−1

−∞ }. In fact, gt gives a good estimate of the regression function in
the following (Cesáro) sense:

Corollary 1 Under the conditions of Theorem 1

lim
n→∞

1

n

n∑
i=1

(
E{Yi|X i

−∞, Y i−1
−∞} − gi(X

i
1, Y

i−1
1 )

)2
= 0 almost surely.

Proof. By Theorem 1,

lim
n→∞

1

n

n∑
i=1

(
Yi − gi(X

i
1, Y

i−1
1 )

)2
= L∗ almost surely.

Consider the following decomposition:

(
Yi − gi(X

i
1, Y

i−1
1 )

)2

=
(
Yi − E{Yi|X i

−∞, Y i−1
−∞}

)2

+2
(
Yi − E{Yi|X i

−∞, Y i−1
−∞}

) (
E{Yi|X i

−∞, Y i−1
−∞} − gi(X

i
1, Y

i−1
1 )

)

+
(
E{Yi|X i

−∞, Y i−1
−∞} − gi(X

i
1, Y

i−1
1 )

)2
.
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Then the ergodic theorem implies that

lim
n→∞

1

n

n∑
i=1

(
Yi − E{Yi|X i

−∞, Y i−1
−∞}

)2
= L∗ almost surely.

It remains to show that

lim
n→∞

1

n

n∑
i=1

(
Yi − E{Yi|X i

−∞, Y i−1
−∞}

) (
E{Yi|Y i−1

−∞} − gi(X
i
1, Y

i−1
1 )

)
= 0. (23)

almost surely. But this is a straightforward consequence of Kolmogorov’s
classical strong law of large numbers for martingale differences due to Chow
[10] (see also Stout [32, Theorem 3.3.1]). It states that if {Zi} is a martingale
difference sequence with

∞∑
n=1

EZ2
n

n2
< ∞, (24)

then

lim
n→∞

1

n

n∑
i=1

Zi = 0 almost surely.

Thus, (23) is implied by Chow’s theorem since the martingale differences Zi =(
Yi − E{Yi|X i

−∞, Y i−1
−∞}

) (
E{Yi|X i

−∞, Y i−1
−∞} − gi(X

i
1, Y

i−1
1 )

)
are bounded by

4B2. (To see that the Zi’s indeed form a martingale difference sequence just
note that E{Zi|X i

−∞, Y i−1
−∞} = 0 for all i.) 2

Remark. Choice of qk,`. Theorem 1 is true independently of the choice
of the qk,`’s as long as these values are strictly positive for all k and `. In
practice, however, the choice of qk,` may have an impact on the performance
of the predictor. For example, if the distribution {qk,`} has a very rapidly
decreasing tail, then the term − ln qk,`/n will be large for moderately large
values of k and `, and the performance of g will be determined by the best of
just a few of the elementary predictors h(k,`). Thus, it may be advantageous
to choose {qk,`} to be a large-tailed distribution. For example, qk,` = c0k

−2`−2

is a safe choice, where c0 is an appropriate normalizing constant.

3.2 Kernel-based prediction strategies

We introduce in this section a class of kernel-based prediction strategies for
stationary and ergodic sequences. The main advantage of this approach in
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contrast to the partition-based strategy is that it replaces the rigid discretiza-
tion of the past appearances by more flexible rules. This also often leads to
faster algorithms in practical applications.

To simplify the notation, we start with the simple “moving-window”
scheme, corresponding to a uniform kernel function, and treat the general
case briefly later. Just like before, we define an array of experts h(k,`), where
k and ` are positive integers. We associate to each pair (k, `) two radii rk,` > 0
and r′k,` > 0 such that, for any fixed k

lim
`→∞

rk,` = 0, (25)

and
lim
`→∞

r′k,` = 0. (26)

Finally, let the location of the matches be

J (k,`)
n =

{
k < t < n : ‖xt

t−k − xn
n−k‖ ≤ rk,`, ‖yt−1

t−k − yn−1
n−k‖ ≤ r′k,`

}

Then the elementary expert h
(k,`)
n at time n is defined by

h(k,`)
n (xn

1 , y
n−1
1 ) =

∑
{t∈J

(k,`)
n } yt

|J (k,`)
n |

, n > k + 1, (27)

where 0/0 is defined to be 0. The pool of experts is mixed the same way as
in the case of the partition-based strategy (cf. (17), (18), (19) and (20)).

Theorem 2 Suppose that (25) and (26) are verified. Then the kernel-based
strategy defined above is universally consistent with respect to the class of all
jointly stationary and ergodic processes {(Xn, Yn)}∞−∞ such that |Y0| ≤ B.

Remark. This theorem may be extended to a more general class of kernel-
based strategies. Define a kernel function as any map K : R+ → R+. The
kernel-based strategy parallels the moving-window scheme defined above,
with the only difference that in definition (27) of the elementary strategy,
the regression function estimate is replaced by

h(k,`)
n (xn

1 , y
n−1
1 )

=

∑
{k<t<n} K

(‖xt
t−k − xn

n−k‖/rk,`

)
K

(‖yt−1
t−k − yn−1

n−k‖/r′k,`

)
yt∑

{k<t<n} K
(‖xt

t−k − xn
n−k‖/rk,`

)
K

(‖yt−1
t−k − yn−1

n−k‖/r′k,`

) .

18



Observe that if K is the naive kernel K(x) = I{x≤1}, we recover the moving-
window strategy discussed above. Typical nonuniform kernels assign a smaller
weight to the observations xt

t−k and yt−1
t−k whose distance from xn

n−k and yn−1
n−k

is larger. Such kernels promise a better prediction of the local structure of
the conditional distribution.

3.3 Nearest neighbor-based prediction strategy

This strategy is yet more robust with respect to the kernel strategy and thus
also with respect to the partition strategy. Since it does not suffer from
scaling problem as partition and kernel-based strategies where the quantizer
and the radius has to be carefully chosen to obtain “good” performance. As
well as this, in practical applications it runs extremely fast compared with
the kernel and partition schemes as it is much less likely to get bogged down
in calculations for certain experts.

To introduce the strategy, we start again by defining an infinite array
of experts h(k,`), where k and ` are positive integers. Just like before, k is
the length of the past observation vectors being scanned by the elementary
expert and, for each `, choose p` ∈ (0, 1) such that

lim
`→∞

p` = 0 , (28)

and set
¯̀= bp`nc

(where b.c is the floor function). At time n, for fixed k and ` (n > k+¯̀+1), the
expert searches for the ¯̀ nearest neighbors (NN) of the last seen observation
xn

n−k and yn−1
n−k in the past and predicts accordingly. More precisely, let

J (k,`)
n =

{
k < t < n : (xt

t−k, y
t−1
t−k) is among the ¯̀ NN of (xn

n−k, y
n−1
n−k) in

(xk+1
1 , yk

1), . . . , (x
n−1
n−k−1, y

n−2
n−k−1)

}

and introduce the elementary predictor

h(k,`)
n (xn

1 , y
n−1
1 ) =

∑
{t∈J

(k,`)
n } yt

|J (k,`)
n |

if the sum is nonvoid, and 0 otherwise. Finally, the experts are mixed as
before (cf. (17), (18), (19) and (20)).
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Theorem 3 Suppose that (28) is verified and that for each vector s the ran-
dom variable

‖(Xk+1
1 , Y k

1 )− s‖
has a continuous distribution function. Then the nearest neighbor strategy
defined above is universally consistent with respect to the class of all jointly
stationary and ergodic processes {(Xn, Yn)}∞−∞ such that |Y0| ≤ B.

3.4 Generalized linear estimates

This section is devoted to an alternative way of defining a universal predic-
tor for stationary and ergodic processes. It is in effect an extension of the
approach presented in Györfi and Lugosi [19]. Once again, we apply the
method described in the previous sections to combine elementary predictors,
but now we use elementary predictors which are generalized linear predic-
tors. More precisely, we define an infinite array of elementary experts h(k,`),

k, ` = 1, 2, . . . as follows. Let {φ(k)
j }`

j=1 be real-valued functions defined on

(Rd)
(k+1)×Rk. The elementary predictor h

(k,`)
n generates a prediction of form

h(k,`)
n (xn

1 , y
n−1
1 ) =

∑̀
j=1

cn,jφ
(k)
j (xn

n−k, y
n−1
n−k) ,

where the coefficients cn,j are calculated according to the past observations
xn

1 , yn−1
1 . More precisely, the coefficients cn,j are defined as the real numbers

which minimize the criterion

n−1∑

t=k+1

(∑̀
j=1

cjφ
(k)
j (xt

t−k, y
t−1
t−k)− yt

)2

(29)

if n > k + 1, and the all-zero vector otherwise. It can be shown using
a recursive technique (see e.g., Tsypkin [33], Györfi [17], Singer and Feder
[31], and Györfi and Lugosi [19]) that the cn,j can be calculated with small
computational complexity.

The experts are mixed via an exponential weighting, which is defined the
same way as earlier (cf. (17), (18), (19) and (20)).
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Theorem 4 (Györfi and Lugosi [19]) Suppose that |φ(k)
j | ≤ 1 and, for

any fixed k, suppose that the set
{∑̀

j=1

cjφ
(k)
j ; (c1, . . . , c`), ` = 1, 2, . . .

}

is dense in the set of continuous functions of d(k+1)+k variables. Then the
generalized linear strategy defined above is universally consistent with respect
to the class of all jointly stationary and ergodic processes {(Xn, Yn)}∞−∞ such
that |Y0| ≤ B.

4 Universally consistent predictions: unbounded

Y

4.1 Partition-based prediction strategies

Let Ê
(k,`)
n (xn

1 , y
n−1
1 , z, s) be defined as in Section 3.1. Introduce the truncation

function

Tm(z) =





m if z > m
z if |z| < m
−m if z < −m,

Define the elementary predictor h(k,`) by

h(k,`)
n (xn

1 , y
n−1
1 ) = Tnδ

(
Ê(k,`)

n (xn
1 , y

n−1
1 , G`(x

n
n−k), F`(y

n−1
n−k))

)
,

where
0 < δ < 1/8,

for n = 1, 2, . . . . That is, h
(k,`)
n is the truncation of the elementary predictor

introduced in Section 3.1.
The proposed prediction algorithm proceeds as follows: let {qk,`} be a

probability distribution on the set of all pairs (k, `) of positive integers such
that for all k, `, qk,` > 0. For a time dependent learning parameter ηt > 0,
define the weights

wt,k,` = qk,`e
−ηt(t−1)Lt−1(h(k,`)) (30)

and their normalized values

pt,k,` =
wt,k,`

Wt

, (31)
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where

Wt =
∞∑

i,j=1

wt,i,j . (32)

The prediction strategy g is defined by

gt(x
t
1, y

t−1
1 ) =

∞∑

k,`=1

pt,k,`h
(k,`)(xt

1, y
t−1
1 ) , t = 1, 2, . . . (33)

Theorem 5 (Györfi and Ottucsák [21]) Assume that the conditions
(a), (b), (c) and (d) of Theorem 1 are satisfied. Choose ηt = 1/

√
t. Then

the prediction scheme g defined above is universally consistent with respect
to the class of all ergodic processes {(Xn, Yn)}∞−∞ such that

E{Y 4
1 } < ∞.

Here we describe a result, which is used in the analysis. This lemma is a
modification of the analysis of Auer et al. [3], which allows of the handling
the case when the learning parameter of the algorithm (ηt) is time-dependent
and the number of the elementary predictors is infinite.

Lemma 3 (Györfi and Ottucsák [21]) Let h(1), h(2), . . . be a sequence
of prediction strategies (experts). Let {qk} be a probability distribution on
the set of positive integers. Denote the normalized loss of the expert h =
(h1, h2, . . . ) by

Ln(h) =
1

n

n∑
t=1

lt(h),

where
lt(h) = l(ht, Yt)

and the loss function l is convex in its first argument h. Define

wt,k = qke
−ηt(t−1)Lt−1(h(k))

where ηt > 0 is monotonically decreasing, and

pt,k =
wt,k

Wt
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where

Wt =
∞∑

k=1

wt,k .

If the prediction strategy g = (g1, g2, . . . ) is defined by

gt =
∞∑

k=1

pt,kh
(k)
t t = 1, 2, . . .

then for every n ≥ 1,

Ln(g) ≤ inf
k

(
Ln(h(k))− ln qk

nηn+1

)
+

1

2n

n∑
t=1

ηt

∞∑

k=1

pt,kl
2
t (h

(k)).

Proof. Introduce some notations:

w′
t,k = qke

−ηt−1(t−1)Lt−1(h(k)),

which is the weight wt,k, where ηt is replaced by ηt−1 and the sum of these
are

W ′
t =

∞∑

k=1

w′
t,k.

We start the proof with the following chain of bounds:

1

ηt

ln
W ′

t+1

Wt

=
1

ηt

ln

∑∞
k=1 wt,ke

−ηtlt(h(k))

Wt

=
1

ηt

ln
∞∑

k=1

pt,ke
−ηtlt(h(k))

≤ 1

ηt

ln
∞∑

k=1

pt,k

(
1− ηtlt(h

(k)) +
η2

t

2
l2t (h

(k))

)
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because of e−x ≤ 1− x + x2/2 for x ≥ 0. Moreover,

1

ηt

ln
W ′

t+1

Wt

≤ 1

ηt

ln

(
1− ηt

∞∑

k=1

pt,klt(h
(k)) +

η2
t

2

∞∑

k=1

pt,kl
2
t (h

(k))

)

≤ −
∞∑

k=1

pt,klt(h
(k)) +

ηt

2

∞∑

k=1

pt,kl
2
t (h

(k)) (34)

= −
∞∑

k=1

pt,kl(h
(k)
t , Yt) +

ηt

2

∞∑

k=1

pt,kl
2
t (h

(k))

≤ −l

( ∞∑

k=1

pt,kh
(k)
t , Yt

)
+

ηt

2

∞∑

k=1

pt,kl
2
t (h

(k)) (35)

= −lt(g) +
ηt

2

∞∑

k=1

pt,kl
2
t (h

(k)) (36)

where (34) follows from the fact that ln(1 + x) ≤ x for all x > −1 and in
(35) we used the convexity of the loss l(h, y) in its first argument h. From
(36) after rearranging we obtain

lt(g) ≤ − 1

ηt

ln
W ′

t+1

Wt

+
ηt

2

∞∑

k=1

pt,kl
2
t (h

(k)) .

Then write a telescope formula:

1

ηt

ln Wt − 1

ηt

ln W ′
t+1 =

(
1

ηt

ln Wt − 1

ηt+1

ln Wt+1

)

+

(
1

ηt+1

ln Wt+1 − 1

ηt

ln W ′
t+1

)

= (At) + (Bt).
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We have that
n∑

t=1

At =
n∑

t=1

(
1

ηt

ln Wt − 1

ηt+1

ln Wt+1

)

=
1

η1

ln W1 − 1

ηn+1

ln Wn+1

= − 1

ηn+1

ln
∞∑

k=1

qke
−ηn+1nLn(h(k))

≤ − 1

ηn+1

ln sup
k

qke
−ηn+1nLn(h(k))

= − 1

ηn+1

sup
k

(
ln qk − ηn+1nLn(h(k))

)

= inf
k

(
nLn(h(k))− ln qk

ηn+1

)
.

ηt+1

ηt
≤ 1, therefore applying Jensen’s inequality for concave function, we get

that

Wt+1 =
∞∑
i=1

qie
−ηt+1tLt(h(i))

=
∞∑
i=1

qi

(
e−ηttLt(h(i))

) ηt+1
ηt

≤
( ∞∑

i=1

qie
−ηttLt(h(i))

) ηt+1
ηt

=
(
W ′

t+1

) ηt+1
ηt .

Thus,

Bt =
1

ηt+1

ln Wt+1 − 1

ηt

ln W ′
t+1

≤ 1

ηt+1

ηt+1

ηt

ln W ′
t+1 −

1

ηt

ln W ′
t+1

= 0.

We can summarize the bounds:

Ln(g) ≤ inf
k

(
Ln(h(k))− ln qk

nηn+1

)
+

1

2n

n∑
t=1

ηt

∞∑

k=1

pt,kl
2
t (h

(k)) .
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2

Proof of Theorem 5. Because of (1), it is enough to show that

lim sup
n→∞

Ln(g) ≤ L∗ a.s.

Because of the proof of Theorem 1, as n →∞, a.s.,

Ê(k,`)
n (Xn

1 , Y n−1
1 , z, s) → E{Y0 | G`(X

0
−k) = z, F`(Y

−1
−k ) = s},

and therefore for all z and s

Tnδ

(
Ê(k,`)

n (Xn
1 , Y n−1

1 , z, s)
)
→ E{Y0 | G`(X

0
−k) = z, F`(Y

−1
−k ) = s}.

By Lemma 2, as n →∞, almost surely,

Ln(h(k,`))

=
1

n

n∑
t=1

(h(k,`)(X t
1, Y

t−1
1 )− Yt)

2

=
1

n

n∑
t=1

(
Ttδ

(
Ê

(k,`)
t (X t

1, Y
t−1
1 , G`(X

t
t−k), F`(Y

t−1
t−k ))

)
−Yt

)2

→E{(Y0 − E{Y0 | G`(X
0
−k), F`(Y

−1
−k )})2}

def
= εk,`.

In the same way as in the proof of Theorem 1, we get that

inf
k,l

εk,l = lim
k,`→∞

εk,` = E
{(

Y0 − E{Y0|X0
−∞, Y −1

−∞}
)2

}
= L∗.

Apply Lemma 3 with choice ηt = 1√
t
and for the squared loss lt(h) = (ht−Yt)

2,

then the square loss is convex in its first argument h, so

Ln(g) ≤ inf
k,`

(
Ln(h(k,`))− 2 ln qk,`√

n

)

+
1

2n

n∑
t=1

1√
t

∞∑

k,`=1

pt,k,`

(
h(k,`)(X t

1, Y
t−1
1 )− Yt

)4
. (37)
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On the one hand, almost surely,

lim sup
n→∞

inf
k,`

(
Ln(h(k,`))− 2 ln qk,`√

n

)

≤ inf
k,`

lim sup
n→∞

(
Ln(h(k,`))− 2 ln qk,`√

n

)

= inf
k,`

lim sup
n→∞

Ln(h(k,`))

= inf
k,`

εk,`

= lim
k,`→∞

εk,`

= L∗.

On the other hand,

1

n

n∑
t=1

1√
t

∑

k,`

pt,k,`(h
(k,`)(X t

1, Y
t−1
1 )− Yt)

4

≤ 8

n

n∑
t=1

1√
t

∑

k,`

pt,k,`

(
h(k,`)(X t

1, Y
t−1
1 )4 + Y 4

t

)

≤ 8

n

n∑
t=1

1√
t

∑

k,`

pt,k,`

(
t4δ + Y 4

t

)

=
8

n

n∑
t=1

t4δ + Y 4
t√

t
,

therefore, almost surely,

lim sup
n→∞

1

n

n∑
t=1

1√
t

∑

k,`

pt,k,`(h
(k,`)(X t

1, Y
t−1
1 )− Yt)

4

≤ lim sup
n→∞

8

n

n∑
t=1

Y 4
t√
t

= 0,

where we applied that E{Y 4
1 } < ∞ and 0 < δ < 1

8
. Summarizing these

bounds, we get that, almost surely,

lim sup
n→∞

Ln(g) ≤ L∗
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and the proof of the theorem is finished. 2

Corollary 2 (Györfi and Ottucsák [21]) Under the conditions of The-
orem 5,

lim
n→∞

1

n

n∑
t=1

(
E{Yt | X t

−∞, Y t−1
−∞ } − gt(X

t
1, Y

t−1
1 )

)2
= 0 a.s. (38)

Proof. By Theorem 5,

lim
n→∞

1

n

n∑
t=1

(
Yt − gt(X

t
1, Y

t−1
1 )

)2
= L∗ a.s. (39)

and by the ergodic theorem we have

lim
n→∞

1

n

n∑
t=1

E
{(

Yt − E{Yt | X t
−∞, Y t−1

−∞ }
)2 | X t

−∞, Y t−1
−∞

}
= L∗ (40)

almost surely. Now we may write as n →∞, that

1

n

n∑
t=1

(
E{Yt | X t

−∞, Y t−1
−∞ } − gt(X

t
1, Y

t−1
1 )

)2

=
1

n

n∑
t=1

E{(Yt − gt(X
t
1, Y

t−1
1 )

)2 | X t
−∞, Y t−1

−∞ }

− 1

n

n∑
t=1

E{(Yt − E{Yt | X t
−∞, Y t−1

−∞ }
)2 | X t

−∞, Y t−1
−∞ }

=
1

n

n∑
t=1

E{(Yt − gt(X
t
1, Y

t−1
1 )

)2 | X t
−∞, Y t−1

−∞ }

− 1

n

n∑
t=1

(
Yt − gt(X

t
1, Y

t−1
1 )

)2
+ o(1) (41)

= 2
1

n

n∑
t=1

gt(X
t
1, Y

t−1
1 )(Yt − E{Yt | X t

−∞, Y t−1
−∞ })

− 1

n

n∑
t=1

(
Y 2

t − E{Y 2
t | X t

−∞, Y t−1
−∞ }

)
+ o(1) a.s.
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where (41) holds because of (39) and (40). The second sum is

1

n

n∑
t=1

(
Y 2

t − E{Y 2
t | X t

−∞, Y t−1
−∞ }

) → 0 a.s.

by the ergodic theorem. Put

Zt = gt(X
t
1, Y

t−1
1 )(Yt − E{Yt | X t

−∞, Y t−1
−∞ }).

In order to finish the proof it suffices to show

lim
n→∞

1

n

n∑
t=1

Zt = 0 . (42)

Then
E{Zt | X t

−∞, Y t−1
−∞ } = 0,

for all t, so the Zt’s form a martingale difference sequence. By the strong
law of large numbers for martingale differences due to Chow [10], one has to
verify (24). By the construction of gn,

E
{
Z2

n

}
= E

{(
gn(Xn

1 , Y n−1
1 )(Yn − E{Yn | Xn

−∞, Y n−1
−∞ }))2

}

≤ E
{
gn(Xn

1 , Y n−1
1 )2Y 2

n

}

≤ n2δE
{
Y 2

1

}
,

therefore (24) is verified, (42) is proved and the proof of the corollary is
finished. 2

4.2 Kernel-based prediction strategies

Apply the notations of Section 3.2. Then the elementary expert h
(k,`)
n at time

n is defined by

h(k,`)
n (xn

1 , y
n−1
1 ) = Tmin{nδ,`}

(∑
{t∈J

(k,`)
n } yt

|J (k,`)
n |

)
, n > k + 1,

where 0/0 is defined to be 0 and 0 < δ < 1/8. The pool of experts is mixed
the same way as in the case of the partition-based strategy (cf. (30), (31),
(32) and (33)).
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Theorem 6 (Biau et al [5]) Choose ηt = 1/
√

t and suppose that (25)
and (26) are verified. Then the kernel-based strategy defined above is univer-
sally consistent with respect to the class of all jointly stationary and ergodic
processes {(Xn, Yn)}∞−∞ such that

E{Y 4
0 } < ∞.

4.3 Nearest neighbor-based prediction strategy

Apply the notations of Section 3.3 Then the elementary expert h
(k,`)
n at time

n is defined by

h(k,`)
n (xn

1 , y
n−1
1 ) = Tmin{nδ,`}

(∑
{t∈J

(k,`)
n } yt

|J (k,`)
n |

)
, n > k + 1,

if the sum is nonvoid, and 0 otherwise and 0 < δ < 1/8. The pool of experts
is mixed the same way as in the case of the histogram-based strategy (cf.
(30), (31), (32) and (33)).

Theorem 7 (Biau et al [5]) Choose ηt = 1/
√

t and suppose that (28) is
verified. Suppose also that for each vector s the random variable

‖(Xk+1
1 , Y k

1 )− s‖
has a continuous distribution function. Then the nearest neighbor strategy
defined above is universally consistent with respect to the class of all jointly
stationary and ergodic processes {(Xn, Yn)}∞−∞ such that

E{Y 4
0 } < ∞.

4.4 Generalized linear estimates

Apply the notations of Section 3.4 The elementary predictor h
(k,`)
n generates

a prediction of form

h(k,`)
n (xn

1 , y
n−1
1 ) = Tmin{nδ,`}

(∑̀
j=1

cn,jφ
(k)
j (xn

n−k, y
n−1
n−k)

)
,

with 0 < δ < 1/8. The pool of experts is mixed the same way as in the case
of the histogram-based strategy (cf. (30), (31), (32) and (33)).

30



Theorem 8 (Biau et al [5]) Choose ηt = 1/
√

t and suppose that |φ(k)
j | ≤ 1

and, for any fixed k, suppose that the set
{∑̀

j=1

cjφ
(k)
j ; (c1, . . . , c`), ` = 1, 2, . . .

}

is dense in the set of continuous functions of d(k+1)+k variables. Then the
generalized linear strategy defined above is universally consistent with respect
to the class of all jointly stationary and ergodic processes {(Xn, Yn)}∞−∞ such
that

E{Y 4
0 } < ∞.

4.5 Prediction of gaussian processes

We consider in this section the classical problem of gaussian time series pre-
diction (cf. Brockwell and Davis [7]). In this context, parametric models
based on distribution assumptions and structural conditions such as AR(p),
MA(q), ARMA(p,q) and ARIMA(p,d,q) are usually fitted to the data (cf.
Gerencsér and Rissanen [15], Gerencsér [13, 14], Goldenshluger and Zeevi
[16]). However, in the spirit of modern nonparametric inference, we try to
avoid such restrictions on the process structure. Thus, we only assume that
we observe a string realization yn−1

1 of a zero mean, stationary and ergodic,
gaussian process {Yn}∞−∞, and try to predict yn, the value of the process at
time n. Note that there is no side information vectors xn

1 in this purely time
series prediction framework.

It is well known for gaussian time series that the best predictor is a linear
function of the past:

E{Yn | Yn−1, Yn−2, . . .} =
∞∑

j=1

c∗jYn−j,

where the c∗j minimize the criterion

E





( ∞∑
j=1

cjYn−j − Yn

)2


 .

Following Györfi and Lugosi [19], we extend the principle of generalized
linear estimates to the prediction of gaussian time series by considering the

31



special case

φ
(k)
j (yn−1

n−k) = yn−jI{1≤j≤k},

i.e.,

h̃(k)
n (yn−1

1 ) =
k∑

j=1

cn,jyn−j.

Once again, the coefficients cn,j are calculated according to the past obser-
vations yn−1

1 by minimizing the criterion:

n−1∑

t=k+1

(
k∑

j=1

cjyt−j − yt

)2

if n > k, and the all-zero vector otherwise.
With respect to the combination of elementary experts h̃(k), Györfi and

Lugosi applied in [19] the so-called “doubling-trick”, which means that the
time axis is segmented into exponentially increasing epochs and at the be-
ginning of each epoch the forecaster is reset.

In this section we propose a much simpler procedure which avoids in
particular the doubling-trick. To begin, we set

h(k)
n (yn−1

1 ) = Tmin{nδ,k}
(
h̃(k)

n (yn−1
1 )

)
,

where 0 < δ < 1
8
, and combine these experts as before. Precisely, let {qk}

be an arbitrarily probability distribution over the positive integers such that
for all k, qk > 0, and for ηn > 0, define the weights

wk,n = qke
−ηn(n−1)Ln−1(h

(k)
n )

and their normalized values

pk,n =
wk,n∑∞
i=1 wi,n

.

The prediction strategy g at time n is defined by

gn(yn−1
1 ) =

∞∑

k=1

pk,nh(k)
n (yn−1

1 ), n = 1, 2, . . .
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Theorem 9 (Biau et al [5]) Choose ηt = 1/
√

t. Then the prediction
strategy g defined above is universally consistent with respect to the class of
all jointly stationary and ergodic zero-mean gaussian processes {Yn}∞−∞.

The following corollary shows that the strategy g provides asymptotically
a good estimate of the regression function in the following sense:

Corollary 3 (Biau et al [5]) Under the conditions of Theorem 9,

lim
n→∞

1

n

n∑
t=1

(
E{Yt | Y t−1

1 } − g(Y t−1
1 )

)2
= 0 almost surely.

Corollary 3 is expressed in terms of an almost sure Cesáro consistency.
It is an open problem to know whether there exists a prediction rule g such
that

lim
n→∞

(
E{Yn|Y n−1

1 } − g(Y n−1
1 )

)
= 0 almost surely (43)

for all stationary and ergodic gaussian processes. Schäfer [29] proved that,
under some additional mild conditions on the gaussian time series, the con-
sistency (43) holds.

5 Pattern recognition for time series

In this section we apply the same ideas to the seemingly more difficult clas-
sification (or pattern recognition) problem. The setup is the following: let
{(Xn, Yn)}∞−∞ be a stationary and ergodic sequence of pairs taking values
in Rd × {0, 1}. The problem is to predict the value of Yn given the data
(Xn

1 , Y n−1
1 ).

We may formalize the prediction (classification) problem as follows. The
strategy of the classifier is a sequence f = {ft}∞t=1 of decision functions

ft :
(
Rd

)t × {0, 1}t−1 → {0, 1}

so that the classification formed at time t is ft(X
t
1, Y

t−1
1 ). The normalized

cumulative 0− 1 loss for any fixed pair of sequences Xn
1 , Y n

1 is now

Rn(f) =
1

n

n∑
t=1

I{ft(Xt
1,Y t−1

1 )6=Yt}.
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In this case there is a fundamental limit for the predictability of the
sequence, i.e., Algoet [2] proved that for any classification strategy f and
stationary ergodic process {(Xn, Yn)}∞n=−∞,

lim inf
n→∞

Rn(f) ≥ R∗ a.s., (44)

where

R∗= E

{
min

(
P{Y0 = 1|X0

−∞, Y −1
−∞},P{Y0 = 0|X0

−∞, Y −1
−∞}

)}
,

therefore the following definition is meaningful:

Definition 2 A classification strategy f is called universally consistent if for
all stationary and ergodic processes {Xn, Yn}∞−∞,

lim
n→∞

Rn(f) = R∗ almost surely.

Therefore, universally consistent strategies asymptotically achieve the
best possible loss for all ergodic processes. The first question is, of course,
if such a strategy exists. Ornstein [28] and Bailey [4] proved the existence
of universally consistent predictors. This was later generalized by Algoet
[1]. A simpler estimator with the same convergence property was introduced
by Morvai, Yakowitz, and Györfi [25]. Motivated by the need of a practi-
cal estimator, Morvai, Yakowitz, and Algoet [26] introduced an even simpler
algorithm. However, it is not known whether their predictor is universally
consistent. Györfi, Lugosi, and Morvai [20] introduced a simple randomized
universally consistent procedure with a practical appeal. Their idea was to
combine the decisions of a small number of simple experts in an appropriate
way.

The same idea was used in Weissman and Merhav [39]. They studied the
consistency in noisy environment. In their model the past of Yt is not avail-
able for the predictor, it has only access to the noisy past X t−1

1 . Xt is a noisy
function of Yt, that is, Xt = u(Yt, Nt), where u : {0, 1}×R→ R is a function
and {Nt} is some noise process. A general loss function l(f ′t(X

t−1
1 ), Yt) is

considered, where f ′t : Rt−1 → R and f ′t(X
t−1
1 ) is the estimate of Yt. They

used an algorithm based on Vovk [38] to combine the simple experts and
used doubling trick to fit the algorithm to infinite time horizon. In case of
0 − 1 loss, one may easily modify the results in the sequel such that, they
can be applied for the problem of [39].
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5.1 Pattern recognition

In pattern recognition, the label Y takes only finitely many values. For
simplicity assume that Y takes two values, say 0 and 1. The aim is to
predict the value of Y given the value of feature vector X (e.g., to predict
whether a patient has a special disease or not, given some measurements of
the patient like body temperature, blood pressure, etc.). The goal is to find
a function g∗ : Rd → {0, 1} which minimizes the probability of g∗(X) 6= Y ,
i.e., to find a function g∗ such that

P{g∗(X) 6= Y } = min
g:Rd→{0,1}

P{g(X) 6= Y }, (45)

where g∗ is called the Bayes decision function, and P{g(X) 6= Y ) is the
probability of misclassification. (Concerning the details see Devroye, Györfi,
and Lugosi [11].)

The Bayes decision function can be obtained explicitly.

Lemma 4

g∗(x) =

{
1 if P{Y = 1|X = x} ≥ 1/2,
0 if P{Y = 1|X = x} < 1/2,

is the Bayes decision function, i.e., g∗ satisfies (45).

Proof. Let g : Rd → {0, 1} be an arbitrary (measurable) function. Fix
x ∈ Rd. Then

P{g(X) 6= Y |X = x} = 1−P{g(X) = Y |X = x}
= 1−P{Y = g(x)|X = x}.

Hence,

P{g(X) 6= Y |X = x} −P{g∗(X) 6= Y |X = x}
= P{Y = g∗(x)|X = x} −P{Y = g(x)|X = x} ≥ 0,

because

P{Y = g∗(x)|X = x} = max {P{Y = 0|X = x},P{Y = 1|X = x}}
by the definition of g∗. This proves

P{g∗(X) 6= Y |X = x} ≤ P{g(X) 6= Y |X = x}
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for all x ∈ Rd, which implies

P{g∗(X) 6= Y } =

∫
P{g∗(X) 6= Y |X = x}µ(dx)

≤
∫

P{g(X) 6= Y |X = x}µ(dx)

= P{g(X) 6= Y }.

2

P{Y = 1|X = x} and P{Y = 0|X = x} are the so-called a posteriori
probabilities. Observe that

P{Y = 1|X = x} = E{Y |X = x} = m(x).

A natural approach is to estimate the regression function m by an estimate
mn using data Dn = {(X1, Y1), . . . , (Xn, Yn)} and then to use a so-called
plug-in estimate

gn(x) =

{
1 if mn(x) ≥ 1/2,
0 if mn(x) < 1/2,

to estimate g∗. The next lemma implies that if mn is close to the real
regression function m, then the error probability of decision gn is near to
the error probability of the optimal decision g∗.

Lemma 5 Let m̂ : Rd → R be a fixed function and define the plug-in decision
ĝ by

ĝ(x) =

{
1 if m̂(x) ≥ 1/2,
0 if m̂(x) < 1/2.

Then

0 ≤ P{ĝ(X) 6= Y } −P{g∗(X) 6= Y }
≤ 2

∫

Rd

|m̂(x)−m(x)|µ(dx)

≤ 2

(∫

Rd

|m̂(x)−m(x)|2µ(dx)

) 1
2

.
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Proof. It follows from the proof of Lemma 4 that, for arbitrary x ∈ Rd,

P{ĝ(X) 6= Y |X = x} −P{g∗(X) 6= Y |X = x}
= P{Y = g∗(x)|X = x} −P{Y = ĝ(x)|X = x}
= I{g∗(x)=1}m(x) + I{g∗(x)=0}(1−m(x))

− (
I{ĝ(x)=1}m(x) + I{ĝ(x)=0}(1−m(x))

)

= I{g∗(x)=1}m(x) + I{g∗(x)=0}(1−m(x))

− (
I{g∗(x)=1}m̂(x) + I{g∗(x)=0}(1− m̂(x))

)

+
(
I{g∗(x)=1}m̂(x) + I{g∗(x)=0}(1− m̂(x))

)

− (
I{ĝ(x)=1}m̂(x) + I{ĝ(x)=0}(1− m̂(x))

)

+
(
I{ĝ(x)=1}m̂(x) + I{ĝ(x)=0}(1− m̂(x))

)

− (
I{ĝ(x)=1}m(x) + I{ĝ(x)=0}(1−m(x))

)

≤ I{g∗(x)=1}(m(x)− m̂(x)) + I{g∗(x)=0}(m̂(x)−m(x))

+ I{ĝ(x)=1}(m̂(x)−m(x)) + I{ĝ(x)=0}(m(x)− m̂(x))

(because of

I{ĝ(x)=1}m̂(x) + I{ĝ(x)=0}(1− m̂(x)) = max{m̂(x), 1− m̂(x)}
by definition of ĝ)

≤ 2|m̂(x)−m(x)|.

Hence

0 ≤ P{ĝ(X) 6= Y } −P{g∗(X) 6= Y }
=

∫
(P{ĝ(X) 6= Y |X = x} −P{g∗(X) 6= Y |X = x}) µ(dx)

≤ 2

∫
|m̂(x)−m(x)|µ(dx).

The second assertion follows from the Cauchy-Schwarz inequality. 2

It follows from Lemma 5 that the error probability of the plug-in decision
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gn defined above satisfies

0 ≤ P{gn(X) 6= Y |Dn} −P{g∗(X) 6= Y }
≤ 2

∫

Rd

|mn(x)−m(x)|µ(dx)

≤ 2

(∫

Rd

|mn(x)−m(x)|2µ(dx)

) 1
2

.

Thus estimates mn with small L2 error automatically lead to estimates gn

with small misclassification probability.
This can be generalized to the case where Y takes M ≥ 2 distinct values,

without loss of generality (w.l.o.g.) 1, . . . , M (e.g., depending on whether
a patient has a special type of disease or no disease). The goal is to find a
function g∗ : Rd → {1, . . . , M} such that

P{g∗(X) 6= Y } = min
g:Rd→{1,...,M}

P{g(X) 6= Y },

where g∗ is called the Bayes decision function. It can be computed using the
a posteriori probabilities P{Y = k|X = x} (k ∈ {1, . . . ,M}):

g∗(x) = arg max
1≤k≤M

P{Y = k|X = x}.

The a posteriori probabilities are the regression functions

P{Y = k|X = x} = E{I{Y =k}|X = x} = m(k)(x).

Given data Dn = {(X1, Y1), . . . , (Xn, Yn)}, estimates m
(k)
n of m(k) can be

constructed from the data set

D(k)
n = {(X1, I{Y1=k}), . . . , (Xn, I{Yn=k})},

and one can use a plug-in estimate

gn(x) = arg max
1≤k≤M

m(k)
n (x)

to estimate g∗. If the estimates m
(k)
n are close to the a posteriori probabilities,

then again the error of the plug-in estimate is close to the optimal error.
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5.2 Prediction for binary labels

In this section we present a simple (non-randomized) on-line classification
strategy, and prove its universal consistency. Consider the partitioning pre-
diction scheme gt(X

t
1, Y

t−1
1 ) introduced in Sections 3.1 or 3.2 or 3.3 or 3.4,

and then introduce the corresponding classification scheme:

ft(X
t
1, Y

t−1
1 ) =

{
1 if gt(X

t
1, Y

t−1
1 ) > 1/2

0 otherwise.

The main result of this section is the universal consistency of this simple
classification scheme:

Theorem 10 (Györfi and Ottucsák [21]) Assume that the conditions
of Theorems 1 or 2 or 3 or 4. Then the classification scheme f defined above
satisfies

lim
n→∞

Rn(f) = R∗ almost surely

for any stationary and ergodic process {(Xn, Yn)}∞n=−∞.

Proof. Because of (44) we have to show that

lim sup
n→∞

Rn(f) ≤ R∗ a.s.

By Corollary 1,

lim
n→∞

1

n

n∑
t=1

(
E{Yt | X t

−∞, Y t−1
−∞ } − gt(X

t
1, Y

t−1
1 )

)2
= 0 a.s. (46)

Introduce the Bayes classification scheme using the infinite past:

f ∗t (X t
−∞, Y t−1

−∞ ) =

{
1 if P{Yt = 1 | X t

−∞, Y t−1
−∞ } > 1/2

0 otherwise,

and its normalized cumulative 0− 1 loss:

Rn(f ∗) =
1

n

n∑
t=1

I{f∗t (Xt
−∞,Y t−1

−∞ )6=Yt}.

Put

R̄n(f) =
1

n

n∑
t=1

P{ft(X
t
1, Y

t−1
1 ) 6= Yt | X t

−∞, Y t−1
−∞ }
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and

R̄n(f ∗) =
1

n

n∑
t=1

P{f ∗t (X t
−∞, Y t−1

−∞ ) 6= Yt | X t
−∞, Y t−1

−∞ }.

Then
Rn(f)− R̄n(f) → 0 a.s.

and
Rn(f ∗)− R̄n(f ∗) → 0 a.s.,

since they are the averages of bounded martingale differences. Moreover, by
the ergodic theorem

R̄n(f ∗) → R∗ a.s.,

so we have to show that

lim sup
n→∞

(R̄n(f)− R̄n(f ∗)) ≤ 0 a.s.

Lemma 5 implies that

R̄n(f)− R̄n(f ∗) =
1

n

n∑
t=1

(
P{ft(X

t
1, Y

t−1
1 ) 6= Yt | X t

−∞, Y t−1
−∞ }

−P{f ∗t (X t
−∞, Y t−1

−∞ ) 6= Yt | X t
−∞, Y t−1

−∞ }
)

≤ 2
1

n

n∑
t=1

∣∣E{Yt | X t
−∞, Y t−1

−∞ } − gt(X
t
1, Y

t−1
1 )

∣∣

≤ 2

√√√√ 1

n

n∑
t=1

∣∣E{Yt | X t−∞, Y t−1
−∞ } − gt(X t

1, Y
t−1
1 )

∣∣2

→ 0 a.s.,

where in the last step we applied (46). 2
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