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Abstract This survey intends to collect the developments on Goodness-of-Fit for
regression models during the last 20 years, from the very first origins with the pro-
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this paper are focused on two main classes of tests statistics: smoothing-based tests
(kernel-based) and tests based on empirical regression processes, although other tests
based on Maximum Likelihood ideas will be also considered. Starting from the sim-
plest case of testing a parametric family for the regression curves, the contributions
in this field provide also testing procedures in semiparametric, nonparametric, and
functional models, dealing also with more complex settings, as those ones involving
dependent or incomplete data.
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1 Introduction. From density to regression

With the aim of testing if a data distribution belongs to a certain parametric family,
Pearson introduced at the beginning of the twentieth century the term Goodness-of-
Fit (GoF). Since then, there has been an enormous amount of papers on this topic.
As an example, MathScinet database reported in October 2012 approximately 3000
references from the search by Goodness-of-Fit, referring the oldest entries to GoF
for distribution models. On the other hand, the most recent papers on this topic con-
sider much more complicated settings, such as diffusion models or multidimensional
covariance structures. This simple notice states the impossibility of condensing in a
single paper an exhaustive review of all the contributions in this field.

More recently, since the early 1990s, there has been also a large amount of contri-
butions concerning GoF for regression models, which will be the focus of this work.
Another search in MathScinet provides approximately 250 references on this topic,
showing the interest that has been aroused within the statistical community in the last
20 years.

An up-to-date review of the most important recent contributions on GoF for regres-
sion models will be given in this paper. The final goal is to show the clear connection
between the developments of GoF for regression models with the previous ideas on
GoF for density or distribution, jointly with the possible extensions and applications
to different contexts of increasing complexity, both regarding the data characteristics
and/or the model assumptions. As will be soon noticed by the reader, and all along
this paper, smoothing is crucial in most of the methodological developments, and
the authors are concerned about kernel smoothing methods although other smoothing
techniques could also be applied. Other testing procedures such as the ones consid-
ering empirical regression processes and related tests based on likelihood functions
and residuals distributions will also be commented on.

In this introductory section, some basic ideas of classical tests for density and dis-
tribution functions will be presented, jointly with the first works on GoF for regres-
sion models, starting from the 1990s. Yet in these early works, two main approaches
to the GoF testing problem can be considered: a first approach is based on smooth-
ing methods for regression, whereas the second one considers the construction of
empirical regression processes. Section 2 explores some more recent perspectives for
GoF testing in regression models, introduced in the beginning of this century, collect-
ing likelihood-based tests, tests based on the empirical distribution of the residuals,
and also tests designed for avoiding the curse of dimensionality. Test calibration in
practice and power analysis is briefly commented on in Sect. 3, and GoF tests in more
complex semiparametric and nonparametric models are introduced in Sect. 4. Tempo-
ral and/or spatial correlation structures must be taking into account in order to adapt
GoF tests to dependent data, and this issue is considered in Sect. 5. GoF tests with
censored, truncated, and biased data and data with measurement errors are revised in
Sect. 6, whereas the methodological related topic of comparison of regression curves
is commented on in Sect. 7. Finally, some very recent advances on GoF testing are
presented in Sect. 8, concerning models with random effects, quantile, and functional
regression.
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1.1 Distribution and density tests

The basic and fundamental ideas, in the roots of the recent developments on GoF
theory for regression models, are limited to the comparison of a nonparametric pilot
estimator of the distribution F or the density f of a certain random variable (r.v.)
X, with a consistent (under the null hypothesis) estimator of the target function. The
pilot estimator is usually given by the empirical cumulative distribution function, for
the distribution F , and by a kernel density estimator for f . In 1973, two essential
contributions for further methodological developments are published: the paper by
Durbin (1973) on the distribution and the one by Bickel and Rosenblatt (1973) on the
density.

The general statement of these tests is the following. Given a random sample
{X1, . . . ,Xn} of a r.v. X, the goal is to test the following hypothesis in an omnibus
way:

H0 : F ∈ Fdist = {Fθ }θ∈Θ⊂Rq , vs. Ha : F /∈ Fdist,

for the distribution function or, for the density:

H0 : F ∈ Fdens = {fθ }θ∈Θ⊂Rq , vs. Ha : F /∈ Fdens,

assuming obviously that these functions exist. Formally, the test statistics are usually
based on a discrepancy between the pilot estimator, which is universally consistent,
and the corresponding consistent estimator under the null hypothesis H0. Hence, for
the distribution case, the test statistic can be written in generic form as

Tn = T (Fn,F̂θ ) ≡ T (αn), (1)

where Fn(x) = n−1card{j ;Xj ≤ x} is the empirical cumulative distribution func-
tion (where card denotes the cardinality of a set) and F

̂θ is a parametric estima-
tor under H0, ̂θ being a

√
n-consistent estimator of θ0 ∈ Θ , the true parameter un-

der H0. Expression (1) can also be written in terms of αn, which denotes an em-
pirical process with estimated parameter ̂θ . Specifically, αn(·) = √

n(Fn(·) − F
̂θ (·)).

Weak convergence of αn, studied in detail by Durbin (1973), is the key for deriving
the asymptotic behavior of any continuous functional of this process. For instance,
Tn = supx |αn(x)| = ‖αn(·)‖∞ (where ‖ · ‖∞ denotes the supremum norm), corre-
sponding to the Kolmogorov–Smirnov test, or Tn = ∫

α2
n(x) dFn(x), the well-known

Cramér–von Mises test. In general, the asymptotic behavior of the tests T (αn) is de-
termined by the continuous functional operating on a Gaussian limit process, denoted
by α (see Durbin 1973 for further details).

The test statistic for a density can be written as Tn = T (fnh, f̂θ ), or more exactly
as

Tn = T
(

fnh,E
̂θ (fnh)

) ≡ T (α̃n) (2)

where fnh(x) = n−1 ∑n
i=1 Kh(x −Xi) is the kernel density estimator (see Rosenblatt

1956 and Parzen 1962), with K a kernel density function and h the smoothing param-
eter or bandwidth. Kh denotes the rescaled kernel, which in the one-dimensional case
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is Kh(x) = h−1K(x/h). Considering E
̂θ (fnh) in (2), with Eθ (fnh(x)) = ∫

Kh(x −
u)dFθ (u) instead of f

̂θ , avoids the bias inherent to nonparametric density estimation.
Similar to the distribution case (1), the test statistic in (2) can be expressed as

Tn ≡ T (α̃n) where α̃n(·) = √
nh(fnh(·) − E

̂θ (fnh(·))) is the empirical process asso-
ciated to the density whose limit process α̃ is also Gaussian (see Rosenblatt 1991).
Unlike the limit process α for the distribution case, the covariance structure of α̃

is independent of the distribution of ̂θ . This alternative route for GoF is related
to the seminal paper by Bickel and Rosenblatt (1973), whose ideas were extended
to the p-dimensional setting in the 1990s. Specifically, an L2-test in dimension p

in given by Tn ≡ T (α̃n) = ∫

α̃n
2(x)ω(x)dx, with ω a weight function to mitigate

edge-effects and, in this case, fnh(x) a p-dimensional kernel density estimator (with
Kh(x) = h−pK(x/h) a p-dimensional rescaled kernel) and a rate

√
nhp in the defi-

nition of the empirical process. Then, it can be seen that

h−p/2
(

Tn −
∫

K2(x) dx

∫

f (x)ω(x)dx

)

d−→ N
(

0,2
∫

(K ∗ K)2(x) dx

∫

f 2(x)ω2(x) dx

)

(
d→ denoting convergence in distribution) where K ∗ K denotes the self-convolution

of the kernel, h ≡ hn → 0 and nhp → ∞ (see Fan 1994, 1998). This convergence
result can be derived using arguments from continuous functionals on Gaussian pro-
cesses, or Central Limit Theorems (CLT) for U -statistics with kernels varying with n

(see, for instance, de Jong 1987). Analogous CLT structures to the one above will
appear along this paper for GoF tests based on smooth estimators.

Bickel and Rosenblatt test has been the subject for a large collection of statisti-
cal papers, adjusting the methodology for different data contexts or exploring other
functionals beyond the L2 distance. The adaptation of the test for multivariate proba-
bility density functions was studied by Ahmad and Cerrito (1993) while Gouriéroux
and Tenreiro (2001) and Chebana (2004) derived its asymptotic power properties,
under local alternatives. Location-scale invariant GoF tests are considered by Ten-
reiro (2007), for multidimensional random vectors, whereas test for assessing nor-
mality were studied by Tenreiro (2009). The Bickel and Rosenblatt test has also been
adapted for diffusion processes by Lee (2006), showing also asymptotic normality.
The law of the iterated logarithm for Tn was discussed by Liang and Jing (2007)
under fixed alternatives, motivated by the previous work by Giné and Mason (2004).
For weakly dependent observations, Neumann and Paparoditis (2000) modified Tn in-
cluding a parametric estimate of the stationary density, using bootstrap for calibration.
The asymptotic distribution of such a test statistic is derived by Lee and Na (2002) for
autoregressive models. The initial distributional results on Tn were extended by Bach-
mann and Dette (2005) for fixed alternatives, explaining also the asymptotic behavior
of the tests statistic proposed by Lee and Na (2002) in the autoregressive setting.
From a different perspective, Chebana (2006) established the functional asymptotic
normality of Tn as a process indexed on a family of weight functions, providing a
finite-dimensional limit law and a result guaranteeing the stochastic equicontinuity
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of the process. The discrepancy between the nonparametric estimator and the corre-
sponding density under the null hypothesis may be measured with an L1 distance, as
proposed by Cao and Lugosi (2005) and Albers and Schaafsma (2008). Liero et al.
(1998) derived the behavior of a test based on the supremum norm, and compare
its power behavior under Pitman alternatives with the classical test. Finally, inspired
by the previous ideas, Fermanian (2005) proposed distribution free GoF for copulas,
investigating their asymptotic distribution, and Bücher and Dette (2010) derived the
asymptotic properties under fixed alternatives.

1.2 Basic ideas on GoF tests for regression

The ideas of GoF for density and distribution have been naturally extended in the
1990s to regression models. Considering as a reference a regression model with ran-
dom design Y = m(X) + ε, {(Xi, Yi)}ni=1 being a random sample of (X,Y ) ∈ R

p+1

(that is, (Xi, Yi) independent and identically distributed (i.i.d.) as (X,Y )), the goal is
to test:

H0 : m ∈ Mθ = {mθ }θ∈Θ⊂Rq , vs. Ha : m /∈ Mθ ,

where m(x) = E(Y |X = x) is the regression function of Y over X, with E(ε|X) = 0.
In the regression context, apart from the target function m, there are usually some
nuisance functions such as the conditional variance σ 2(x) = Var(Y |X = x) or the
density of the explanatory variable X, namely f , playing a role in the test statistics
distribution.

Smoothing-based tests Although there exist a large variety of smoothing methods
for regression models, this review will mainly consider kernel type estimators such
as the Nadaraya–Watson estimator (Nadaraya 1964; Watson 1964), given by

mnh(x) =
n

∑

i=1

Wni(x)Yi, with Wni(x) = Kh(x − Xi)
∑n

j=1 Kh(x − Xj)
, i = 1, . . . , n.

With the same spirit as for the previous tests for the p-dimensional density func-
tion, the empirical process for the p-dimensional regression problem (in the sense
that the dimension of the explanatory variable is p) is given by

αn(x) = √
nhp

(

mnh(x) − E
̂θ

(

mnh(x)
))

= √
nhp

n
∑

i=1

Wni(x)
(

Yi − m
̂θ (Xi)

)

= √
nhp

n
∑

i=1

Wni(x)̂εi0,

which can be interpreted as a smoothing over the residuals {̂εi0}ni=1, with ε̂i0 =
Yi − m

̂θ (Xi), and providing E
̂θ an estimate of Eθ0 , θ0 being the true parameter under

H0 and ̂θ a
√

n-consistent estimator of θ0, such as the one obtained by least squares
or maximum likelihood for Gaussian errors.



366 W. González-Manteiga, R.M. Crujeiras

Again, a general test based on αn can be devised by applying a continuous func-
tional on the empirical process, such as

Tn =
∫

αn
2(x)ω(x)dx. (3)

The limit distribution of Tn, under some regularity conditions, can be obtained
from empirical process theory or using the aforementioned results by de Jong (1987):

h−p/2
(

Tn −
∫

K2(x) dx

∫

σ 2(x)ω(x)

f (x)
dx

)

d−→ N
(

0,2
∫

(K ∗ K)2(x) dx

∫

σ 4(x)ω2(x)

f 2(x)
dx

)

. (4)

Denoting by T1n the test statistic introduced by Härdle and Mammen (1993)

T1n =
∫

(

mnh(x) − mnh(x,̂θ)
)2

ω(x)dx, (5)

the test statistic Tn in (3) can be written as follows:

Tn = nhpT1n = nhp

∫

(

mnh(x) − mnh(x,̂θ)
)2

ω(x)dx, with

mnh(x,̂θ) =
n

∑

i=1

Wni(x)m
̂θ (Xi)

the data smoother under H0. A discretized version of this test statistic can be found
in González-Manteiga and Cao (1993). In terms of T1n, the limit distribution result
in (4) can be rewritten as

nhp/2
(

T1n − (

nhp
)−1

∫

K2(x) dx

∫

σ 2(x)ω(x)

f (x)
dx

)

d−→ N
(

0,2
∫

(K ∗ K)2(x) dx

∫

σ 4(x)ω2(x)

f 2(x)
dx

)

. (6)

Moreover, the discretized version of T1n, that is, T D
1n = n−1 ∑n

i=1(mnh(Xi) −
mnh(Xi,̂θ))2ω(Xi), estimates consistently E(E2(ε0|X)ω(X)) which is null under
H0, with ε0 = Y − mθ0(X).

Alternatively, as can be seen in Zhang and Dette (2004), it is possible to define
other test statistics based on consistent estimators of different characteristics of the
null hypothesis to test. For instance, by estimating E(ε0E(ε0|X)f (X)ω(X)) which is
null nuder H0. Except for a negligible bias term, a natural estimate for this quantity
is given by

T2n = 1

n(n − 1)

∑

i �=j

Kh(Xi − Xj)
(

Yi − m
̂θ (Xi)

)(

Yj − m
̂θ (Xj )

)

ω(Xi), (7)
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the test statistic introduced by Zheng (1996), which presents no asymptotic bias. A re-
cent extension to the case where covariates may have a discrete component can be
seen in Hsiao et al. (2007).

Also E([ε2
0 − (ε0 − E(ε0|X))2]ω(X)) is null under H0 and an estimate for this

quantity is

T3n = 1

n

n
∑

i=1

(

Yi − m
̂θ (Xi)

)2
ω(Xi) − 1

n

n
∑

i=1

(

Yi − mnh(Xi)
)2

ω(Xi), (8)

based on the differences of the error variance estimates in the regression model, in-
troduced by Dette (1999) and closely related to the generalized likelihood ratio test
(see Fan et al. 2001 and Fan and Jiang 2007) to be revised later.

Asymptotic distributions of both T2n and T3n follow a similar architecture to T1n

in (6). Precisely, for T2n:

nhp/2T2n
d−→ N

(

0,2
∫

K2(x) dx

∫

σ 4(x)f 2(x)ω2(x) dx

)

(9)

and for the variance difference statistic T3n, with K2∗ = 2K −K ∗K , the asymptotic
distribution is

nhp/2
(

T3n − (

nhp
)−1

K2∗(0)

∫

σ 2(x)ω(x)dx

)

d−→ N
(

0,2
∫

K2∗(x) dx

∫

σ 4(x)ω2(x) dx

)

. (10)

Although other tests could be chosen in this preliminary section, it should be no-
ticed that T1n, as well as T2n and T3n are naturally motivated from conditions charac-
terizing the null hypothesis.

The test proposed by Härdle and Mammen (1993) owns a large collection of
variants, with different smooth estimators for the regression function, with alterna-
tive estimators under the null hypothesis or considering other discrepancy measures.
For instance, Kozek (1991) presented a supremum-norm-based test comparing the
nonparametric kernel estimate of a regression function with the corresponding least-
squares estimator, under the null parametric hypothesis, proving the consistency of
such a test and Koul and Ni (2004) studied a class of minimum distance tests for
multidimensional covariates and heteroscedatiscity. Alcalá et al. (1999) checked a
parametric null hypothesis using local polynomial regression (see Fan and Gijbels
1996 for a survey on local polynomial modeling). Also based on local polynomial
fitting, Liu et al. (2000) introduced a consistent model especification test and com-
pared its performance with simple kernel regression estimators. Stute and González-
Manteiga (1996) proposed a test for linearity based on the comparison of a nearest
neighbor estimator and a parametric estimator of m. Li (2005) assessed the lack of fit
of a nonlinear regression model, comparing the local linear kernel and parametric fits.
Resembling the classical theory for the F test, Raz (1990) proposed an approximation
to a permutation test where a kernel estimator is used. Müller (1992) compared a non-
parametric fit with the least squares estimator by a kernel approach, for fixed design
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regression models. Diagnostic tests have been proposed by Staniswalis and Severini
(1991), comparing the fitted models in a collection of points, and by Samarov (1993),
by means integral type functionals. A test for parametric nonlinearities has been also
studied by Wooldridge (1992).

The use of the asymptotic distributions in (6), (9) or (10) for testing in practice,
entails selecting the smoothing parameter h, a broadly studied problem in regres-
sion estimation but with serious gaps for testing problems. Hart (1997), Fan et al.
(2001), and Eubank et al. (2005) gave some strategies on bandwidth selection. Al-
though the literature is relatively scarce on this topic, it is worth citing the works by
Kulasekera and Wang (1997), Zhang (2003, 2004) or more recently, Gao and Gijbels
(2008). Added to this difficulty, there is also the need to estimate nonparametrically
the nuisance functions, and also the slow rate of convergence to the Gaussian limit
distribution.

Although this paper is focused on nonparametric kernel regression estimators, dif-
ferent pilot estimator such as splines, wavelets or orthogonal expansions can also
be used for GoF tests. Eubank and Hart (1992) studied the large-sample properties
of GoF for linearity, considering cubic smoothing splines over regression residuals
whereas Hart and Wehrly (1992) introduced smoothing splines to deal with the edge-
effect phenomenon in nonparametric regression and proposed a test for the adequacy
of a polynomial regression function. Eubank and Hart (1993) also considered smooth-
ing splines for comparing the performance of different type of tests. Eubank and
LaRiccia (1993) proposed different tests based on weighted sums of Fourier coeffi-
cients and investigated their asymptotic properties.

It should also be mentioned the book by Hart (1997), which collects a survey on
the use of nonparametric smoothing methods for testing the fit of a parametric model.

Tests based on empirical regression processes An alternative methodology for
avoiding the selection of a smoothness parameter, inspired by the GoF methods
for distributions, is based on the empirical estimator of the integrated regression
function I(x) = ∫ x

−∞ m(t) dF (t) = E(Y I(X ≤ x)), where I denotes the indica-
tor function. The integrated regression function I can be estimated by In(x) =
n−1 ∑n

i=1 YiI(Xi ≤ x) and a new empirical process can be constructed:

αn(x) = √
n
(

In(x) − E
̂θ

(

In(x)
)) = √

n

n
∑

i=1

ε̂i0I(Xi ≤ x).

This empirical process can be taken again as the basis for generating test statistics,
such as a Cramér–von Mises or Kolmogorov–Smirnov type tests, introduced for the
distribution function case. The study of the asymptotic distribution of this type of
tests is based on the weak convergence of αn to a Gaussian limit process, being Stute
(1997) an obliqued reference in this context, with a preliminary approximation given
by Bierens (1982) and an earlier work by Su and Wei (1991). GoF tests based on
empirical process for regression models with non-random design have been studied
by Koul and Stute (1998) and Diebolt (1995), for a nonlinear parametric regression
function. The extension to nonlinear and heteroscedastic regression is the goal of
Diebolt and Zuber (1999, 2001).
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1.3 Some notes for the reader

For the sake of simplicity, the notation that will be repeatedly used along this paper is
introduced now, some already established in this first section. In a parametric setting,
Mθ denotes a parametric family of regression functions, with θ ∈ Θ ⊂ R

q . Note
that q is the dimension of the parameter space, and p will be used for the dimension
of the covariate in the regression model. Dimension of a vector or a matrix is denoted
by dim. A

√
n-consistent estimator for θ will be denoted by ̂θ .

In the general formulation of smoothing-based tests, a nonnegative weight func-
tion is needed, and it will be denoted by ω. The indicator function is written as I. The
superscript t denotes the transpose of a vector or a matrix, ‖ · ‖ is the Euclidean norm,
and ∗ is the convolution operator.

Sup stands for the support of a random variable (with capital S) and sup denotes
the supremum. The symbol ∼ will be used to denote equality in distribution, whereas

convergence in distribution is denoted as
d→. As usual, iff is a shortcut for the if and

only if condition. RSS0 and RSS1 denote the average residual sums of squares under
the null and the alternative hypotheses.

A collection of test statistics for GoF in different contexts will be presented along
this paper. A generic test statistic will be denoted by Tn, and its expression may be
different according to the regression setting considered. For smoothing-based tests
statistics, notation T1n, T2n and T3n is reserved for the tests presented above, specif-
ically, in (5), (7) and (8), or suitable adaptations. Kolmogorov–Smirnov or Cramér–
von Mises type tests, both computed from empirical processes or from the empirical
distribution of the residuals, will be denoted by TnKS and TnCM , respectively. Empir-
ical regression processes are denoted by αn, as an abuse of notation, since they also
depend on h, but the bandwidth dependence will be made explicit only if necessary.
The Gaussian limit of such a process will be denoted by α along the paper, except in
Sect. 3, devoted to test calibration. In this section, following the standard notation, α

denotes the significance level of a test.
Finally, likelihood ratio test statistics will be denoted by Λn (generalized likeli-

hood ratio test), ΛE
n (generalized empirical likelihood ratio test) and ΛL

n (local em-
pirical likelihood ratio test).

2 Some recent tests from the last ten years

In the last decade, a variety of alternative procedures to the previous testing methods,
based on smoothing techniques and empirical processes, have been introduced for
solving the GoF problem. Some of them are inspired by the classical likelihood ratio
test or in the novel notion of empirical likelihood; other ones make use of the empir-
ical distribution of the residuals under the null hypothesis and some other tests are
designed to avoid the curse of dimensionality. In what follows, these previous ideas
will be revised and some references will be given for each of these methodological
settings.
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2.1 The generalized likelihood ratio test

Assuming that the error process ε in a regression models follows a Gaussian distri-
bution N (0, σ 2), it is possible to build the generalized likelihood ratio test (GLRT)
as

Λn = l(mnh, σ̂ ) − l(m
̂θ , σ̂0)

where l(m,σ ) = −n log(
√

2πσ 2) − (2σ 2)−1 ∑n
i=1(Yi − m(Xi))

2 is the Gaussian
log-likelihood with σ̂ 2

0 = n−1 ∑n
i=1(Yi − m

̂θ (Xi))
2 = RSS0, the maximum likeli-

hood estimators for the error variance under H0 and RSS1 = σ̂ 2 = n−1 ∑n
i=1(Yi −

mnh(Xi))
2, the corresponding generalized maximum likelihood estimator in the non-

parametric context. This testing procedure has been studied by Fan et al. (2001) and
more recently by Fan and Jiang (2007), in a survey for Test journal. The proposed
method is a natural extension of the classical likelihood ratio test where, under the
alternative, the likelihood function is evaluated in a nonparametric estimator of the
regression function. The GLRT test, as noted in Fan et al. (2001), is given by

Λn = n

2
log

RSS0

RSS1
≈ n

2

RSS0 − RSS1

RSS1
(11)

which resembles the F -test construction for regression models (see, for instance,
Seber 1977 or Seber and Wild 1989). The numerator in (11) is essentially the test
statistic in (8). See also Gijbels and Rousson (2001) for an F -test in local linear
regression.

The asymptotic properties of the GLRT are similar to the previous tests, but a
significant property of the GLRT is that the asymptotic distribution does not depend
on nuisance functions, exhibiting what is known as Wilks phenomenon: the limit
distribution of Λn in (11) is asymptotically χ2. Specifically, τΛn ∼ χ2

μn
, with μn →

∞ and τ a constant such that

(2μn)
−1/2(τΛn − μn)

d−→ N (0,1), (12)

and neither μn nor τ in (12) depend on the nuisance parameters or functions (see Fan
et al. 2001 and Fan and Jiang 2007 for details).

As an example, assume that σ 2(x) = Var(Y |X = x) = σ 2, the univariate explana-
tory variable X has density f with Sup(X) = [0,1] and the error ε ∼ N (0, σ 2).
When testing the null hypothesis of linearity, that is, H0 : m ∈ Mθ with Mθ = {mθ :
mθ(x) = θ0 + θ1x}, then

τ = K(0) − 2−1
∫

K2(x) dx
∫

(K(x) − 2−1(K ∗ K)(x))2 dx
and

μn = 1

h

(K(0) − 2−1
∫

K2(x) dx)2
∫

(K(x) − 2−1(K ∗ K)(x))2 dx
.

Regarding the structure of Λn in (11) as an approximated generalized F -test, an-
other class of GoF tests for regression models can be introduced. Some early con-
tributions to the F -test type procedures, with spline smoothing, are Ramil-Novo and
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González-Manteiga (1998) and Ramil-Novo and González-Manteiga (2000). More
recently, Huang and Chen (2008) used kernel smoothing for the same purpose. See
also Huang and Davidson (2010) for an extension to partially linear models.

2.2 The empirical process based on the empirical likelihood ratio test

The ideas of empirical likelihood (see Owen 2001) can be used to provide likelihood
ratio tests, representing also an option to the test based on the integrated regression
function (Sect. 1) or simply using the local empirical likelihood as an alternative to
smoothing methods, and that will be seen in next section.

Taking into account that establishing a null parametric hypothesis H0 : m ∈ Mθ

is equivalent to set E(I(X ≤ x)(Y − mθ0(X))) = 0 for some θ0 ∈ Θ and x ∈ Sup(X),
the empirical likelihood based on an i.i.d. sample of (X,Y ) ∼ F can be written as

max
F

n
∏

i=1

PF

(

(Xi, Yi) = (X,Y )
) = LF , subject to E

(

I(X ≤ x)ε0
) = 0.

For instance, for a unidimensional X, the empirical likelihood is given by

LF =
n

∏

i=1

(

F(Xi,Yi) − F
(

X−
i , Yi

) − F
(

Xi,Y
−
i

) + F
(

X−
i , Y−

i

))

and the generalized empirical likelihood ratio test statistic is

ΛE
n (x) = sup{LF̄ ;EF̄ (I(X ≤ x)(Y − m

̂θ (X))) = 0}
supLF

= sup

{

nn

n
∏

i=1

pi,pi ≥ 0,

n
∑

i=1

pi = 1,

n
∑

i=1

piI(Xi ≤ x)
(

Yi − m
̂θ (Xi)

) = 0

}

.

A test statistic can be given by any continuous functional on ΛE
n , such as Tn =

−2
∫

logΛE
n (x)ω(x)dx. See the works by Hjort et al. (2009) and Van Keilegom

et al. (2008b) for more details on this methodology.

2.3 The local empirical likelihood ratio test

A local version of the empirical likelihood for the test given in Sect. 2.2 is

ΛL
n = −2

∫

log
(

Ln

(

m̃(x,̂θ)nn
))

ω(x)dx,

where Ln(m̃(x,̂θ)) = max
∏n

i=1 pi(x), subject to

n
∑

i=1

pi(x) = 1,

n
∑

i=1

pi(x)Kh(x − Xi)
(

Yi − m̃(x,̂θ)
) = 0
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with m̃(x,̂θ) = E
̂θ (mnh(x)) the empirical local likelihood under H0 (see Chen and

Cui 2003 and Chen and Van Keilegom 2009b for more details). In the exhaustive
review (with discussion) of Chen and Van Keilegom (2009b) in Test, the neat asymp-
totic result can be checked. Under H0 : m ∈ Mθ , it can be established that

h−p/2(ΛL
n − 1

) d−→ N
(

0,
2
∫

(K ∗ K)2(x) dx
∫

ω(x)dx
∫

K2(x) dx

)

(13)

under some regularity conditions, shows a distribution free asymptotic behavior sim-
ilar to the Wilks phenomenon exhibited by (12). Some previous references on this
methodology can be consulted in Tripathi and Kitamura (2003) and Kitamura et al.
(2004), and an extension to multidimensional response models can be found in Chen
and Van Keilegom (2009a).

2.4 Tests based on the empirical distribution of the residuals

Assume that the regression model can be written in a location-scale form as

Y = m(X) + σ(X)ε,

with ε independent of X and with error distribution Fε(y) = P(ε ≤ y) = P(
Y−m(X)

σ(X)
≤

y). If θ̃0 denotes the argument that minimizes E((m(X) − mθ(X))2) over the param-
eter set Θ ⊂ R

q , then mθ̃0
is the parametric model with minimum distance to m, and

the error distribution under this model is built as

Fε0(y) = P(ε0 ≤ y) = P

(

Y − mθ̃0
(X)

σ(X)
≤ y

)

.

Hence, the null hypothesis H0 : m ∈ Mθ is true if and only if the error distributions
Fε and Fε0 are the same. This result opens a way for doing GoF by considering
continuous functionals of the process {F̂ε(·) − F̂ε0(·)}, where the estimators of the
error distribution can be given by

F̂ε(y) = 1

n

n
∑

i=1

I

(

Yi − mnh(Xi)

σ̂ (Xi)
≤ y

)

= 1

n

n
∑

i=1

I(̂εi ≤ y)

and

F̂ε0(y) = 1

n

n
∑

i=1

I

(

Yi − m
̂θ (Xi)

σ̂ (Xi)
≤ y

)

= 1

n

n
∑

i=1

I(̂εi0 ≤ y)

respectively, where the variance estimator is

σ̂ 2(x) =
n

∑

i=1

Wni(x)Y 2
i − m2

nh(x)

{Wni}ni=1 being a sequence of Nadaraya–Watson weights and ̂θ a least squares esti-
mator. See Van Keilegom et al. (2008a) and Khmadladze and Koul (2009) for p = 1



An updated review of Goodness-of-Fit tests for regression models 373

(one-dimensional covariate) and Neumeyer (2009) and Neumeyer and Van Keilegom
(2010) for p ≥ 1.

Based on the empirical distribution of the residuals, the Kolmogorov–Smirnov and
Cramér–von Mises tests are given by

TnKS = n1/2 sup
y∈R

∣

∣F̂ε(y) − F̂ε0(y)
∣

∣, and TnCM = n

∫

(

F̂ε(y) − F̂ε0(y)
)2

dF̂ε0(y).

(14)
From this methodology, a test for the error distribution can also be constructed,

without further assumptions on m and σ , just comparing the empirical distribution of
the residuals {̂εi}ni=1 with the one estimated under H0 : Fε ∈ Fθ .

A pioneer work for heteroscedastic regression models is the one by Akritas and
Van Keilegom (2001). Jiménez-Gamero et al. (2005) studied the GoF testing prob-
lem in a multivariate linear model. Also for multivariate covariates, Müller et al.
(2009) provided a result for the empirical distribution of the residuals when these are
obtained from an undersmoothed local polynomial approximation. Mora and Pérez-
Alonso (2009) tested a parametric family for the regression errors, considering a mar-
tingale transform of the empirical process. GoF tests for the error distribution were
studied by Heuchenne and Van Keilegom (2010) without imposing a parametric for
the regression or the variance.

The equality of the error distribution can also be interpreted in terms of the char-
acteristic functions: if Fε and Fε0 coincide, the same happens with their characteristic
functions. Hence, test statistics can be designed in terms of the corresponding empir-
ical counterparts, φ̂ε(t) = n−1 ∑n

j=1 eit ε̂j and φ̂ε0(t) = n−1 ∑n
j=1 eit ε̂j0 , denoting i

the imaginary number. This also extends to functionals on the empirical characteristic
functions, such as

Tn = n

∫

∣

∣φ̂ε(t) − φ̂ε0(t)
∣

∣

2
ω(t) dt, (15)

among others (see Huskova and Meintanis 2009 for further details). Some other re-
lated papers are Huskova and Meintanis (2007, 2010).

Finally, it should be mentioned that the asymptotic limit distribution of (14)
and (15) can be derived based on the weak convergence of the processes {F̂ε(·) −
F̂ε0(·)} and {φ̂ε(·)− φ̂ε0(·)}, respectively, given that both tests are obtained from con-
tinuous functionals operating on these processes.

2.5 Tests design for avoiding the curse of dimensionality

A great deal of the theory developed during the 1990s, already introduced in Sect. 1,
considers tests statistics constructed from the comparison of a nonparametric esti-
mator of the regression model and an estimator under the null hypothesis (that is,
based on the αn process), or in the comparison of the corresponding integrated re-
gression function estimators (based on the αn process). In both cases, the curse of
dimensionality as p increases, p being the dimension of the explanatory variable,
can be appreciated. For those tests based on αn, the effect of the increasing dimen-
sion is clear when regarding the asymptotic power, although it is not that obvious
for the other class of tests. Nevertheless, recent simulation studies have shown that
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the curse of dimensionality for tests based on αn also appears for small samples and
some further comments on the asymptotic power of GoF tests will be given in next
section.

The difficulties aforementioned lead to different modifications of the previous
methods in order to avoid the curse of dimensionality. For the tests based on smooth-
ing methods, corresponding to process αn, the works by Lavergne and Patilea (2008)
and Xia (2009) should be noticed. Inspired on the projection pursuit ideas, the null hy-
pothesis H0 : m ∈ Mθ is true if and only if m = mθ0 ∈ Mθ , and this is also equivalent
to E(ε|X) = E(ε0|X) = E(Y −mθ0(X)|X) = 0. In addition, this is also equivalent to:

sup
β,‖β‖=1

sup
ν

∣

∣E
(

ε|βtX = ν
)∣

∣ = 0 ⇔ sup
β,‖β‖=1

E
(

εE
(

ε|βtX
)) = 0

under some regularity conditions, and this allows for the construction of some tests,
similar to (7) (see Lavergne and Patilea 2008) which adapted to this context is given
by

Tn = sup
β,‖β‖=1

∑

i<j

Kh

(

βt (Xi − Xj)
)(

Yi − m
̂θ (Xi)

)(

Yj − m
̂θ (Xj )

)

.

Another interesting idea consists on projecting the covariate X in the direction of β =
β0 such that β0 (with ‖β0‖ = 1) minimizes E

2(ε −E(ε|βtX)) = E
2(ε −mβ(X)), the

single-indexing procedure obtained through the corresponding empirical counterparts
(see Xia 2009). This enables to construct test statistics such as

Tn = 1

n

n
∑

i=1

ω(Xi)
(

ε̂i0 − m̂
̂βi

(

̂βt
i Xi

))2
,

where

β̂i = arg min
β,‖β‖=1

∑

i �=j

(

ε̂j0 − m̂i
β(Xj )

)2
, i = 1, . . . , n

and

m̂i
β(x) = 1

nf̂ i
β(Xi)

∑

i �=j

Kh

(

βt (x−Xj)
)

ε̂j0, and f̂ i
β(x) = 1

n

∑

i �=j

Kh

(

βt (x−Xj)
)

.

In Xia (2009), the author proposed a single-indexing cross-validation, as a measure
for the fit of the residuals, concluding that if the residuals cannot be predicted from
the covariates, then the model is adequate.

Regarding the tests based on empirical regression processes, in Stute et al. (2008),
the authors replaced the empirical process αn by

αn
g
(t) = n−1/2

n
∑

i=1

(

g(Xi) − g
)

I(̂εi0 ≤ t), t ∈ R (16)

indexed unidimensionally in t , with g = n−1 ∑n
i=1 g(Xi). The key for the adequate

behavior of the tests based on (16) lies in the fourth term of the asymptotic represen-
tation (see Stute et al. 2008). Under the assumption that ε is independent of X in the
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regression model, this term is given by the empirical counterpart of

A = E
[(

g(X) − E
(

g(X)
))

H(t,X, θ̃0)
]

with H(t, x, θ) = P(ε ≤ t + mθ(X) − m(X)|X = x) and θ̃0 defined at the beginning
of Sect. 2.4. If the null hypothesis H0 : m ∈ Mθ does not hold, then A �= 0, guaran-
teeing the power of the test for fixed alternatives. The selection of the function g is
also discussed in Stute et al. (2008) with the goal of maximizing power.

It is also worth it mentioning the contribution made by Escanciano (2006b), based
on the almost sure characterization of the null hypothesis as E(ε0I(βtX ≤ u)) = 0, for
some θ0 ∈ Θ , ∀u ∈ R and ∀β such that ‖β‖ = 1. This leads to a process αn(β,u) =
n−1/2 ∑n

i=1 ε̂i0I(βtXi ≤ u), indexed in β and u. A detailed study on the distribution
of functionals of αn can be found in Escanciano (2004) and Escanciano and Velasco
(2006b). Specifically, the Kolmogorov–Smirnov and the Cramér–von Mises tests can
be extended to this setting, with the following statistics:

TnKS = sup
u

sup
β,‖β‖=1

∣

∣

∣

∣

∣

n−1/2
n

∑

i=1

ε̂i0I
(

βtXi ≤ u
)

∣

∣

∣

∣

∣

= sup
u

sup
β,‖β‖=1

∣

∣αn(β,u)
∣

∣,

TnCM =
∫

Sp×R

(

αn(β,u)
)2

dFnβ(u)dω(β)

Fnβ being the empirical distribution of {βtXi}ni=1 and ω a weight function over the
projection direction. To some extent, TnCM can be interpreted as the average limit of
the Cramér–von Mises statistic on the projection directions β with associated proba-
bility ω.

3 Approximating the test distribution

Consider a generic testing problem in statistical inference,1

H0 : g ∈ G = {gθ }θ∈Θ, vs. Ha : g /∈ G

to be solved by the construction of a test statistic Tn, where g may be the distribu-
tion F , the density f , the regression function m or the integrated regression func-
tion I . Once a suitable test statistic is available, a crucial task is the calibration of
critical points for a given level α, namely cα . Usually, the estimation of these criti-
cal points cα such that PH0(Tn ≥ cα) = α can be done by means of the asymptotic
distribution, which is Gaussian for the tests designed for g = f and g = m, density
and regression, (4), (6), (9) and (10) or taking advantage of the Wilks phenomenon
for (11). This can also be done using the limit distribution of continuous functionals
associated to the empirical process, for instance, for the distribution function in (1).
For the regression setting, the same applies for functions over ΛE

n in Sect. 2.2, or for
functionals on the empirical process (14) or (15).

1Note that α is the significance level of the test. Empirical processes are denoted by αn or αnh , to make
the dependence on h explicit. Along this section, g denotes a target function to test (density, distribution
or regression function).
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3.1 Distribution approximation under H0

The use of asymptotic theory for calibration poses some problems such as the need to
estimate some nuisance functions, a slow convergence rate to the limit distribution,
or the difficulty of determining the limit distribution associated to continuous func-
tionals on Gaussian processes. Under these circumstances, calibration can be done
by means of resampling procedures, such as bootstrap (see Efron 1979).

One of the earlier references in this approach for calibrating the distribution of
Tn = T (Fn,F̂θ ) can be found in Stute et al. (1993). Specifically, if T ∗

n = T (F ∗
n ,F ∗̂

θ
)

is the bootstrap test statistic, then cα can be estimated by ĉα such that P
∗
H0

(T ∗
n ≥

ĉα) = α, where F ∗
n and F ∗̂

θ
are obtained from a bootstrap sample {X∗

1, . . . ,X∗
n} with

P
∗ denoting the probability in the resampling. The bootstrap sample is a collection of

i.i.d. generations from X∗ ∼ F
̂θ (parametric bootstrap). This procedure is extended

for the calibration of Tn = ∫

αn
2(x)ω(x)dx by Härdle and Mammen (1993), using

Nadaraya–Watson kernel estimation, or with local linear methods by Alcalá et al.
(1999). Stute et al. (1998a) considered the same idea for calibrating tests based on
empirical regression processes. Actually, most of the papers on GoF methods af-
ter the cited ones include details about bootstrap algorithms for calibrating the test
statistic distribution. The idea in this setting is based on obtaining bootstrap sam-
ples {(X∗

i , Y
∗
i )}ni=1, from the bootstrap regression model Y ∗

i = m̂H0(X
∗
i ) + ε∗

i . The
errors in the bootstrap model ε∗

i may follow the empirical distribution of the residu-
als {̂εi0}ni=1 (naive bootstrap), may be generated by wild bootstrap (see Wu 1986 or
Liu 1988), or can be obtained by smooth bootstrap, considering the convolution of
the empirical distribution function of the residuals with a kernel (see Van Keilegom
et al. 2008a and Cao and González-Manteiga 1993 for other smoothing methods),
among many other choices. The choice of the bootstrap resampling method (naive,
wild or smooth) is driven by the different characteristics of the regression model.
Hence, naive bootstrap works for homocedastic model, although it is proved to be
inconsistent when heterocedasticity is present. In this case, wild bootstrap is the al-
ternative. In addition, if there is information available on the regularity of the error
distribution, then smooth bootstrap can be used.

It should also be mentioned that, in the bootstrap regression model, m̂H0 represents
the estimation of the regression function under the null hypothesis, which can be
obtained by parametric methods, nonparametrically or in a semiparametric way, as
will be seen later.

An alternative to bootstrap methods for calibration can be found in the martingale
transform of the empirical processes (see Stute et al. 1998b and Khmadladze and
Koul 2004), or also in Monte Carlo methods as proposed by Zhu (2005), introduc-
ing a randomization of the addends in the i.i.d. representation of the test statistics by
some noise with zero mean and unit variance. See, for instance, Cao and González-
Manteiga (2008) as an example of the application of this technique in some new tests
based on smoothing methods. A comparison between the bootstrap and the martin-
gale transform was provided by Koul and Sakhanenko (2005), and a recent contri-
bution on the martingale approach was given by Song (2010). A justification for the
accuracy of bootstrap can be always found in the high order expansions for the test
statistic distributions (see Fan and Linton 2003).
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3.2 Power comparison

Once a test has been properly calibrated for a certain level α, the one with maxi-
mum power should be chosen. In the regression setting, this can be done considering
Pitman alternatives, that is:

H0 : m ∈ Mθ , vs. Ha : m ≡ mn = mθ + cnd

where cn → 0 and d is a deterministic function collecting the deviation direction for
the alternative hypothesis. Among all those tests with level α, the most powerful is
that one with asymptotic power tending to one with a smallest cn. As an example,
the classical F -test for parametric regression models and parametric alternative with
higher dimension verifies that cn ∼ n−1/2, a parametric rate.

A test for a linear null hypothesis H0 : mθ(x) = θ tx based on smoothing the resid-
uals such as Tn = ∫

α2
n(x)ω(x)dx, and all the previous tests based on smoothing,

verify that cn ∼ n−1/2h−p/4. This is the price to pay for setting a nonparametric es-
timation under the alternative hypothesis, namely a contiguous or Pitman alternative.

A parametric rate for cn can be achieved for Tn = ∫

αn
2
(x) dFn(x) (see Stute 1997).

These remarks on the convergence rates also hold for the two testing approaches,
based on smoothing or based on empirical regression processes, for more complex
hypothesis, discussed in next sections.

From the previous considerations, could it be concluded that tests based on empir-
ical regression processes are more powerful than tests based on smoothed residuals?
Although this assertion holds asymptotically, it is not the same for small samples
as shown by different simulation studies, as the one carried out by Miles and Mora
(2002). Actually, the convergence rate for smoothed residuals test can be improved
by using the following modified test statistic:

Tn = max
h∈Hn

∫

αnh
2(x)ω(x)dx −̂EH0(

∫

αnh
2(x)ω(x)dx)

̂Var1/2
(
∫

αnh
2(x)ω(x)dx)

, (17)

which is just a studentized version of Tn for different h ∈ Hn, a suitably chosen grid
for the bandwidth values. Although (17) considers an L2 norm, this philosophy is
directly applied to other tests. In Horowitz and Spokoiny (2001), it can be seen that
the former test has a rate cn ∼ n−1/2(log logn)1/2 (see also Spokoiny 2001 for math-
ematical details). In addition, the data-driven modification in Guerre and Lavergne
(2005) leads to rates close to cn ∼ n−1/2. The rate n−1/2h−p/4, for the smoothed
tests, clearly highlights the curse of dimensionality, can be ameliorated following
Lavergne and Patilea (2008). In general, as noticed by Hall and Yatchew (2005), those
tests based on

√
n-rate estimates of characteristics under the null hypothesis, detect

alternatives at this same rate. As an example, tests based on the empirical distribution
of the residuals also achieve this rate.

Another way of analyzing the asymptotic power of a test is considering Ingster’s
minimax approximation (see Ingster 1982, 1993a, 1993b, 1993c). From this perspec-
tive, m is assumed to belong to a certain space of differentiable functions on R

p ,
denoted by B, departing from the null hypothesis at a distance cn → 0. The goal
of the minimax approach is to find the cn rate with the fastest convergence to zero,
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guaranteeing that the test is uniformly consistent in B, leading to the optimal rate of
testing.

If limn→∞ infm∈B P(Reject H0|m) = 1, then a test is uniformly consistent in
a space B. Thus, for Hölder, Sobolev, and Besov spaces with derivatives of or-
der s ≥ p/4 and known s, the rate is n−2s/(4s+p) (see Ingster works and Guerre
and Lavergne 2002). For unknown s, Spokoiny (1996) showed that the rate is
(n−1√log logn)2s/(4s+p) and for s < p/4, it is shown in Guerre and Lavergne (2002)
that the rate is n−1/4. The modified test statistic in (17) achieves the optimal minimax
rate.

4 Goodness-of-Fit in semiparametric and nonparametric models

This section revises different procedures for testing more complex hypotheses for the
regression model, beyond the purely parametric case, as well as hypothesis about the
nuisance functions appearing in the model, such as the conditional variance.

4.1 Tests on the regression function

After the extensive statistical literature on parametric regression models from the first
half of the 1990s, the spotlight turned later to more complex nonparametric and semi-
parametric hypotheses. The primary goal is the statement of GoF tests for simplified
models, with higher interpretability or tests for mitigating the curse of dimensionality.

Along this section, GoF tests for the following hypotheses will be commented:

– Partially linear model, with a linear function on a set of covariates X1:

H0PL : E(Y |X) = θ t
0X1 + m2(X2) (18)

with X = (X1,X2) and dim(X1) = p1, dim(X2) = p2 (with p1 + p2 = p).
– Simplified model, with regression function depending only on a part of the covari-

ates:

H0SM : E(Y |X) = m1(X1) (19)

with dim(X1) = p1.
– Additive model:

H0AM : E(Y |X) = c + m1(X1) + · · · + mp(Xp) (20)

with X = (X1, . . . ,Xp).
– Single index model, with unknown link function H:

H0SIM : E(Y |X) = H
(

θ t
0X

)

. (21)

– Generalized additive model, with link function H, including possible interactions
of different orders:

H0GAM : E(Y |X) = H
(

c +
p

∑

d=1

md(Xd) +
∑

i<j

mij (Xi,Xj ) + · · ·
)

, (22)
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mij representing the function associated with coordinates i, j of the predictor vec-
tor X.

The testing problem in (18) has been solved both using smoothing methods
and empirical regression processes. For instance, the test statistic T2n in (7) can
be adapted to this setting. Denote the errors in the model under H0PL by εi0 =
Yi − θ t

0X1i − m2(X2i ), for i = 1, . . . , n. The null hypothesis H0PL holds if and only
if E(εi0E(εi0|Xi)) = 0 and a natural estimator of this characteristic is given by

T PL
2n = 1

n(n − 1)

n
∑

i=1

∑

i �=j

Kh(Xi − Xj )̂εi0ε̂j0f̂2(X2i )f̂2(X2j ),

with f̂2 is a p2-dimensional kernel density estimator (to avoid a random denomina-
tor), and ε̂i0 = Yi − ̂θXi1 − m̂2h̃

(X2i ), with bandwidth h̃ associated to a Nadaraya–
Watson p2-dimensional weight, estimated in two stages (see Robinson 1988 or
Speckman 1988). Asymptotic theory results for nhp/2T PL

2n can be found in Fan and
Li (1996), obtaining an asymptotic variance equal to

2
∫

K2(x) dx

∫

σ 4(x)f 2(x)f 4
2 (x) dx,

f2 being the density of the X2 component.
A similar argument also holds for H0SM. Now, the model errors are εi0 =

Yi − m1(X1i ) and the test in (7) can be adapted as

T SM
2n = 1

n(n − 1)

n
∑

i=1

∑

i �=j

Kh(Xi − Xj )̂εi0ε̂j0f̂1(X1i )f̂1(X1j ),

with f̂1 a p1-dimensional kernel density estimator, ε̂i0 = Yi − m̂1h̃
(X1i ), for i =

1, . . . , n, and m̂1h̃
being a p1-dimensional Nadaraya–Watson estimator with smooth-

ing parameter h̃.
The asymptotic behavior of nhp/2T SM

2n was derived by Fan and Li (1996) where
the asymptotic variance is equal to 2

∫

K2(x) dx
∫

σ 4(x)f 2(x)f 4
1 (x) dx. The previ-

ous asymptotic expressions are useful for test calibration based on the limit distribu-
tion. In Li and Wang (1998) and Gu et al. (2007), for instance, some other alternatives
based on bootstrap methods for calibration were explored.

Regarding H0SIM in (21) for the single index model, and denoting by εi0 = Yi −
H(θ t

0Xi), for i = 1, . . . , n, a test statistic could be based on an adequate estimate of

E
(

εi0fθ0

(

θ t
0Xi

)

E
(

εi0fθ0

(

θ t
0Xi

)|Xi

)

f (Xi)
)

where fθ0 denotes the density of θ t
0Xi , also avoiding random denominators in kernel

smoothing. The analogous test statistic is given by

T SIM
2n = 1

n(n − 1)

n
∑

i=1

∑

i �=j

ε̂i0ε̂j0f̂̂θ

(

̂θ tXi

)

f̂
̂θ

(

̂θ tXj

)

Kh(Xi − Xj).
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The asymptotic variance of the rescaled previous test nhp/2T SIM
2n , for the single in-

dex model, is equal to 2
∫

K2(x) dx
∫

σ 4(x)f 2(x)f 4
θ0

(θ t
0x)dx. One could proceed

similarly adapting the tests in (5) and (8), based on smoothing methods.
The alternative testing route based on empirical regression processes was studied

in Zhu and Ng (2003) and Delgado and González-Manteiga (2001). For instance,
for the testing problem associated with H0SM, it is enough to consider the empirical
process

α̃n(x) = 1√
n

n
∑

i=1

f̂1(X1i )̂εi0I(Xi ≤ x) (23)

which results from the almost sure characterization of H0SM as

f1(X1)E
(

Y − m(X1)|X
) = 0 ⇔ T (x) = E

(

f1(X1)
(

Y − m1(X1)
)

I(X ≤ x)
) = 0,

for all x ∈ Supp(X), which has a Gaussian limit (see Delgado and González-
Manteiga 2001 for details). Similarly, for the partial linear model, H0PL holds al-
most surely iff E[{(Y − E(Y |X2)) − θ t

0(X1 − E(X1|X2))}I(X ≤ x)f2(X2)] = 0 for
all x ∈ Supp(X) and the associated empirical process is (see Delgado and González-
Manteiga 2001)

˜α̃n(x) = 1√
n

n
∑

i=1

ε̂i0f̂2(X2i )I(Xi ≤ x). (24)

With respect to the single index model, H0SIM is almost surely equivalent to
E((Y − H(θ t

0X))I(X ≤ x)) = 0, for all x ∈ Supp(X), and the empirical process is
now given by

˜
˜α̃n(x) = 1√

n

n
∑

i=1

ε̂i0f̂̂θ

(

̂θ tXi

)

I(Xi ≤ x), (25)

whose asymptotic behavior was studied by Xia et al. (2004), jointly with different
estimators for θ0.

For the calibration of the previous tests distribution, based on (23), (24) and (25),
the bootstrap ideas introduced in Stute et al. (1998a) can be adapted. It should also be
mentioned that, regarding the power and the asymptotic properties of the tests based
on smoothing methods or in empirical regression processes, the remarks in Sect. 4
for parametric regression models also apply in these settings. Besides, a simple mod-
ification of ΛE

n (ΛL
n ) in the empirical process based on the global (or local) empirical

likelihood, replacing the error estimates for the corresponding ones according to the
hypothesis to test, allows the extension of the methodology discussed in Sects. 2.2
and 2.3 to these general contexts (see Van Keilegom et al. 2008b).

Apart from the smoothing and empirical processes-based tests, there are also other
alternatives in the literature. For instance, Stute and Zhu (2005a) propose a score-
type test for H0SIM, which detects Pitman alternatives at a

√
n-rate, and also peak

alternatives, being undetectable for the previous tests, as discussed in Horowitz and
Spokoiny (2001).
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From the former work by Eubank et al. (1995), there has been an extensive liter-
ature on tests for H0AM in (20), such as the contributions by Dette and von Lieres
und Wilkau (2001), Gozalo and Linton (2001), Härdle et al. (2001), Derbort et al.
(2002), and Fan and Jiang (2005). Denoting by m̂ the general nonparametric estima-
tor and m̂0 the estimator under the null hypothesis, usually obtained by backfitting or
marginal integration (see Sperlich et al. 1999 for a comparison of both methods), the
following test statistic can be constructed:

T AM
1n = 1

n

n
∑

i=1

(

m̂(Xi) − m̂0(Xi)
)2

, (26)

which is just a natural generalization of the tests in T1n in (5) or its discretized ver-
sion T D

1n , with asymptotic bias and variance as in (4). Motivated by the incorrelation
between ε0 and (m(X) − m0(X)) (see Gozalo and Linton 2001), the following test
statistic:

T AM∗
1n = 1

n

n
∑

i=1

(

m̂(Xi) − m̂0(Xi)
)

ε̂i0 (27)

has asymptotic bias K(0)
∫

σ 2(x) dx and asymptotic variance

2
∫

K2(x) dx

∫

σ 4(x) dx.

Following the test statistic in (8),

T AM
3n = 1

n

n
∑

i=1

(

ε̂2
i0 − ε̂2

i

)

(28)

has asymptotic bias and variance similar to (10), and following the construction in (7)

T AM
2n = 1

n(n − 1)

∑

i �=j

Kh(Xi − Xj )̂εi0ε̂j0, (29)

presents asymptotic behavior mimicking (9). Finally, the GLRT test in (11), can be
adapted to this context as

ΛAM
n = n

2
log

RSS0

RSS1
≈ n

2

RSS0 − RSS1

RSS1
, (30)

with RSS0 = ∑n
i=1(Yi − ĉ − ∑p

j=1 m̂j (Xij ))
2 and RSS1 = ∑n

i=1(Yi − m̂(Xi))
2.

The test statistics in (26)–(30) follow the same asymptotic distributions as the cor-
responding ones in the fully parametric context, also for Pitman alternatives. This is a
consequence of the CLT in de Jong (1987), related to the asymptotic behavior of U -
statistics, recalling that although the additive model is nonparametric, its dimension
is lower than under the general hypothesis. Similar comments can be made regarding
fixed alternatives (see Dette et al. 2005).
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Finally, for the generalized additive model (22), or its simpler version (21) with
known link H, Stute and Zhu (2005b) extended the empirical regression process for
generalized linear models (GLMs). Rodríguez-Campos et al. (1998) (and also Az-
zalini and Bowman 1993 and Azzalini et al. 1989 as previous references) adapt the
test from González-Manteiga and Cao (1993) for GLMs and Härdle et al. (1998) and
Müller (2001) provided an extension for the generalized partial linear model (GPLM)

H0GPL : E(Y |X) = H
(

θ t
0X1 + m2(X2)

)

, (31)

in an approach inspired by the likelihood ratio test. Sperlich et al. (2002) and Roca-
Pardiñas et al. (2005) studied interaction tests under a generalized additive model
(22), and Liang et al. (2010), using generalized versions of the GLRT, introduced test
statistics for the more general partial linear single index model

H0PLSIM : E(Y |X) = θ t
0X1 + H

(

θ̄ t
0X2

)

. (32)

An exhaustive comparative study for different testing methods for (21), (22) and (31)
is given by Roca-Pardiñas and Sperlich (2007).

The inmense flow of contributions on GoF tests for complex regression models,
such as (32), in the last decade, makes it extremely difficult to condense a detailed list
of reference. Some alternatives to the aforementioned test can be found in Escanciano
and Song (2009), Song (2010), and Maity et al. (2009).

4.2 Tests for the variance function

In testing methods for the regression function, from parametric, nonparametric or
semiparametric settings, in order to use the asymptotic distribution or to obtain a
simpler functional formulation, the nuisance functions behavior must be determined.
Among the possible nuisance functions, the conditional variance σ 2(x) = Var(Y |X =
x), is the most frequent one, existing many contributions devoted to test H0 : σ 2 ∈ S
vs. Ha : σ 2 /∈ S . The homocedasticity test, (σ 2 constant), is a particular case. Tests for
constant variance have been studied by Diblasi and Bowman (1997), smoothing the
residuals on a suitably transformed scale, and Dette and Munk (1998). A residual-
based tests for heteroscedasticity was proposed by Dette (2002) and Liero (2003)
derived a tests for checking the hypothesis of constant conditional variance against
its dependence on the design of the covariate. The empirical process approach has
been considered by Zhu et al. (2001) in this context. See also the book by Carroll and
Ruppert (1988) for previous references on the topic.

For a location-scale model, Y = m(X) + σ(X)ε, with ε independent of X, a more
general hypothesis than homocedasticity may be of interest:

H0 : σ 2 ∈ Sγ = {

σ 2
γ , γ ∈ Γ

}

, vs. Ha : σ 2 /∈ Sγ .

Considering ε = (Y − m(X))/σ (X) and ε0 = (Y − m(X))/σγ̃0(X), with

γ̃0 = arg min
γ∈Γ

E
2((Y − m(X)

)2 − σ 2
γ (X)

) = arg min
γ∈Γ

(

σ 2(X) − σ 2
γ (X)

)2
,
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the null hypothesis H0 holds iff the distributions of the errors ε and ε0 are the same.
Hence, the methodology for GoF tests for regression based on the empirical distribu-
tion of the residuals can be generalized for testing about the variance (see Dette et al.
2007 for further details) m being the nuisance function in this scenario.

Apart from these previous ideas, there have been also other proposals for tests on
the variance inspired by the estimation of the regression and the integrated regression
functions, as detailed in Chap. 7 in Zhu (2005) or, more recently, by Samarakoon and
Song (2010). It is also possible to test other hypothesis about σ 2, with nonparametric
or semiparametric assumptions on m, similar to Sect. 5.1. For some examples, see
You and Chen (2005), Dette and Marchlewski (2008), and Wong et al. (2009).

5 Testing when dependence is present

As in many other areas of statistical inference, GoF methods for regression models
have been also adapted to account for dependent data. In this section, testing on the
trend and on the correlation function for fixed and random design models will be
revised, both in time series, spatial and spatio-temporal models and for continuos
time processes.

5.1 Testing in time series

Consider the following simple fixed design regression model:

Yi = m(xi) + εi, i = 1, . . . , n (33)

where m is the regression function (or trend, in the time series glossary), xi is an
empirical known predictor. For instance, xi = i/n, for i = 1, . . . , n a sequence of
time moments which is typically assumed to belong to the unit interval, xi ∈ [0,1].
This predictors are linked to some particular design, such as i/n = ∫ xi

0 f (t) dt f

being the design density, allowing this formulation also for non-equally spaced mo-
ments. In addition, the zero-mean error sequence {εi}ni=1 in (33) is assumed to show
a certain second-order stationary dependence structure, with covariance function
C(k) = E(ε1εk+1). This stationarity condition means that the covariance is just a
function of the lag between two time moments.

Most of the test based on smoothing methods and described in Sect. 1 can be
adapted to this context for assessing H0 : m ∈ Mθ . Specifically, the tests statistic T1n

in (5) or its discretized version, T D
1n , can be directly applied for this testing problem,

as well as the test T3n in (7). The key is using a smoothing method suitably adapted
for fixed design (see, for instance, Priestley and Chao 1972 or Gasser and Müller
1979).

The asymptotic behavior of the smoothed test statistics with time dependence is
quite similar to the independent case, just replacing the conditional variance by the
covariance sum,

∑∞
k=−∞ C(k).

GoF tests in linear regression models with correlated errors have been studied
by González-Manteiga and Vilar-Fernández (1995), considering a MA(∞) struc-
ture. Bootstrap calibration of tests with ARMA structure was performed by Vilar-
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Fernández and González-Manteiga (1996, 2000). Biederman and Dette (2000) ex-
tended the results in González-Manteiga and Vilar-Fernández (1995) under fixed al-
ternatives. GoF testing with dependent data have been also extended to partial lin-
ear regression models (see González-Manteiga and Aneiros-Pérez 2003), also un-
der long-memory dependence (see Aneiros-Pérez et al. 2004). Biederman and Dette
(2001) proposed optimal designs for testing the functional form of a regression
model, under fixed design with heterocedastic errors and their ideas could be ex-
tended to the dependent case.

In a random design problem, the random sample is given by {(Xt , Yt )}nt=1, a col-
lection of (p + 1)-dimensional vectors from a series {(Xt , Yt )}t∈Z, following the
model Yt = m(Xt) + εt . Considering a strictly stationary distribution F(x, y) associ-
ated with a prototype variable (X0, Y0), a test for the trend function can be done based
on the smoothed tests with convenient modifications, usually assuming that {εt }t∈Z

is a strictly stationary process with E(εt |Ft ) = 0, Ft being the σ -algebra generated
by the past observation of the process up to a time t , {(Xk,Yk−1)}k≤t . A suitable
adaptation of (5) is

T TS
1n =

∫

(

1

n

n
∑

t=1

Kh(x − Xt)
(

Yt − m̂H0(Xt )
)

)2

ω(x)dx (34)

with m̂H0 a consistent estimator under the null hypothesis to test, which may be
parametric, nonparametric or semiparametric. It turns out that the asymptotic bias
of nhp/2T TS

1n is given by

h−p/2
∫

K2(u)ω(x + hu)Π(x)σ 2(x) dx du

and the asymptotic variance

2
∫

σ 4(x)Π2(x)ω(x)dx

∫

K(u)K(v)K(u − z)K(v − z) dudv dz,

where σ 2(x) = Var(Yt |Xt = x) denotes the conditional variance and Π is the station-
ary density of {Xt }t∈Z. Hence, the asymptotic bias and variance of the previous test
is the same as for the original T1n, as long as the dimension of the null hypothesis is
smaller than the nonparametric dimension of the alternative. Similar results can also
be seen in González-Manteiga et al. (2002).

Kreiss et al. (2008) provided an extensive review on this type of tests, justifying
the consistency of a variety of resampling procedures for test calibration (see also
Franke et al. 2002). In Gao (2007), the adaptation of the test (7) can be found. For
other tests based on empirical likelihood ideas, see Chen et al. (2003) and Chen and
Gao (2007).

There are also some previous works on simpler hypothesis, such as the linearity of
the trend, which implies that Xt = (Yt−1, . . . , Yt−k), defining an AR(k) model (see
Hjellvik and Tjøstheim 1995, 1996, and Hjellvik et al. 1998). Also for this AR(k)

model, Li and Tkacz (2006) propose a testing procedure for a parametric model for
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the conditional density: H0 : Π(y|x) = Π(y|x, θ), Π(·|x) being the stationary den-
sity of Yt |(Yt−1, . . . , Yt−k) = x.

The adaptation of empirical processes based GoF tests for AR(k) processes is also
possible. Consider Xt = (Yt−1, . . . , Yt−k,Zt ) with k ≤ t and Zt a p-dimensional
variable. For testing H0 : m ∈ Mθ , the following empirical process can be con-
structed:

α∗
n(x,ω) = √

n

n
∑

t=k

(

Yt − m
̂θ (Xt )

)

ω(Xt , x).

The convergence of α∗
n , as well as the properties of the associated tests and resampling

methods for calibration, have been studied by different authors. Koul and Stute (1999)
considered the case Xt = Yt−1 (Markovian hypothesis of order one) with ω(Xt , x) =
I(Xt ≤ x). With the same weight function, Dominguez and Lobato (2003) considered
a Markovian hypothesis of higher order, also studied by Stute et al. (2006) for a
general linear model.

GoF tests for a parametric time series using empirical regression processes have
been proposed by Escanciano (2006a, 2007a), establishing weak convergence of the
process and investigating the asymptotic properties under the null hypothesis and
for Pitman alternatives, being bootstrap an option for calibration. For possibly non-
stationary time series, under martingale conditions, Escanciano (2007b) proved the
weak convergence of a class of empirical processes. In related works, Escanciano and
Velasco (2006a) and Escanciano (2009) proposed tests for the martingale difference
hypothesis.

Also in this context, model identification based on cummulative lagged condi-
tional mean and variance, for a parametric time series model, was earlier studied by
McKeague and Zhang (1994). Diagnostic tests for self-exciting threshold autoregres-
sive models have been proposed by Koul et al. (2005) whereas the extension to a
multivariate context was studied by Chabot-Hallé and Duchesne (2008).

Weak convergence of the process α∗
n is obtained by martingale difference theory,

which is also useful for tests in the spectral domain (see Escanciano and Velasco
2006a), playing a key role for testing about the dependence structure.

For dependent data in general, and for a second-order stationary time series
{Xt }t∈Z in particular, it is also worthwhile to assess hypotheses about the depen-
dence structure, characterized by the covariance function C(k) = Cov(Xt ,Xt+k) or
by its Fourier transform, the spectral density, f . The spectral density can be estimated
nonparametrically by the periodogram

I (λk) = 1

2πn

∣

∣

∣

∣

∣

n
∑

t=1

Xte
−itλk

∣

∣

∣

∣

∣

, λk = 2πk

N
, k = 1, . . . ,N =

⌊

n − 1

2

⌋

with λk the Fourier frequencies. If {Xt }t∈Z admits a linear representation, the peri-
odogram can be written as the response variable in the following regression model:

I (λk) = f (λk)Vk + Rk (35)

with {Vk}Nk=1, a sequence of independent standard exponential random variables, and
Rk an asymptotically negligible term (see Brockwell and Davis 1991). Taking loga-
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rithms in (35), and denoting by Yk = log I (λk), it is easy to see that

Yk = m(λk) + zk + rk (36)

with m = logf , the log-spectral density, {zk}Nk=1 are i.i.d. random variables with
Gumbel(0,1) distribution and rk = log(1 + Rk/(f (λk)Vk)). Ignoring the negligible
terms in models (35) and (36), these expressions can be interpreted as a multiplicative
and an additive regression model respectively.

Based on model (35), Paparoditis (2000) proposed a GoF for a parametric model
for the spectral density, following the ideas in Bickel and Rosenblatt (1973). Specif-
ically, for testing H0 : f ∈ Fθ vs. Ha : f /∈ Fθ and based on representation (35), the
author considered the test statistic

Tn = nh−1/2
∫ π

−π

(

1

n

N
∑

k=−N

Kh(λ − λk)

(

I (λk)

f
̂θ (λk)

− 1

)

)2

dλ,

which has asymptotic distribution-free bias and variance,

h−1/2
∫ π

−π

K2(x) dx, π−1
∫ 2π

−2π

(∫ π

−π

K(u)K(u + x)du

)2

dx.

Focusing on the regression model in the log-spectral scale (36), Fan and Zhang
(2004) proposed a testing method for assessing a parametric model for the log-
spectral density function (H0 : m ∈ Mθ vs. Ha : m /∈ Mθ ) using the GLRT theory
introduced in Fan et al. (2001) and discussed in Sect. 2. Ignoring rk in model (36),
the log-likelihood function is given by

∑N
k=−N(Yk −m(λk)− eYk−m(λk)). A paramet-

ric estimator under the null hypothesis can be obtained by Whittle’s log-likelihood,
whereas local linear smoothing is used for the nonparametric estimator under the gen-
eral model. The GLRT in this context also exhibits the Wilks phenomenon mentioned
before.

Apart from these procedures which make use of smoothing methods, some other
tests have been proposed based on the ideas of the integrated regression function on
the ratio between the periodogram and the parametric spectral density. See Delgado
et al. (2005), Hidalgo and Kreiss (2006), and Delgado and Velasco (2010).

There are also quite recent contributions in this topic, such as the proposal of a GoF
tests based on the supremum norm in the time domain (see Hidalgo 2008) or a testing
procedure for nonstationary models (see Gao et al. 2009). Confidence bands for the
spectral density have been developed by Neumann and Paparoditis (2008a). GoF for
multivariate covariance structures have been studied by Eichler (2008), Dette and Pa-
paroditis (2009), and Dette and Hildebrandt (2012). A general Markovian hypothesis
has been tested by Neumann and Paparoditis (2008b). There are also some further
works on GoF tests in the spectral domain as Sergides and Paparoditis (2007, 2009),
Paparoditis (2009, 2010).

5.2 Testing in spatial and spatio-temporal models

Literature on GoF tests with spatial or spatio-temporal dependent data, inspired by
GoF tests from time series models, is quite recent. In spatial statistics (see Cressie
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1993), the dependence structure of second-order stationary processes can be modeled
by the covariogram (or by the variogram, in an intrinsic stationary context). Denoting
the spatial process by Z(s), with s ∈ D ⊂ R

d (and d = 2 for spatial data), second-
order stationarity implies that E(Z(s)) = μ, ∀s ∈ D and Cov(Z(s1),Z(s2)) =
C(s1 − s2), ∀s1, s2 ∈ D. Under intrinsic stationarity, the dependence structure can
be described by the variogram function 2γ (s1 − s2) = Var(Z(s1) − Z(s2)), being
the variogram and the covariogram related for a second-order stationary process:
2γ (s) = 2(C(0) − C(s)). Determining the dependence is crucial for spatial and
spatio-temporal prediction.

Estimation of the covariogram and the variogram function, given a realization of a
spatial process {Z(s1), . . . ,Z(sn)}, is a well-studied problem in the spatial statistical
literature, but this is not the case for testing problems. Diblasi and Bowman (2001)
proposed a test for independence for the spatial case, which in terms of the variogram
(or more precisely, in terms of the semivariogram γ ) can be written as H0 : γ = σ 2

vs. Ha : γ �= σ 2. The test statistic is based on the comparison of smooth estimators
of the semivariogram, similar to an F -test. The idea was extended by Diblasi and
Maglione (2004) for testing a parametric family for the variogram.

For second-order stationary spatial processes, similar to time series, tests about
the dependence structure can be formulated from the spectral domain. The spatial
spectral density (bidimensional Fourier transform of the spatial covariance) can be
estimated nonparametrically by the spatial periodogram, with suitable modifications
to guarantee consistency (see Guyon 1982). Adaptations of the test proposed by Pa-
paroditis (2000) and the GLRT test can be found in Crujeiras et al. (2010a), where
the hypothesis to test is H0 : f ∈ Fθ , f being the spatial spectral density. Hidalgo
(2009) presented an alternative method based on empirical processes associated with
the spatial periodogram. In these works, bootstrap calibration procedures are also
detailed.

One of the simplifying assumptions in spatio-temporal processes is separability.
Separability implies that the covariance structure can be factorized as a product of
a spatial and a temporal covariance functions. That is, for a spatio-temporal process
{Z(s, t), s ∈ D, t ∈ T }, the covariance Cov(Z(s + u, t + v) − Z(s, t)) = C(u, v) can
be written as C(u, v) = CS(u)CT (v), where CS and CT are spatial and temporal
covariance functions, respectively. It is straightforward to check that, under separa-
bility, the log-spectral density is the sum of a spatial log-spectral density logfS plus
a temporal log-spectral density logfT . Hence, testing for separability can be seen
as testing for additivity in the log-spectral domain. Crujeiras et al. (2010b) propose
testing procedures for separability adapting additivity tests described in Sect. 5.

5.3 Testing in continuous time models

Consider a continuous time diffusion process, commonly used to model the dynamics
of interest rates or stock prices exchanges in finance:

dXt = m(Xt) dt + σ(Xt ) dWt , t ∈ T ⊂ R
+ (37)

where {Xt }t∈T is a continuous time process, m is the drift function and σ is the
diffusion function, with {Wt }t∈T a standard Brownian motion. It may be of interest
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to test a null hypothesis such as H0 : dXt = mθ(Xt) dt +σθ (Xt ) dWt with θ ∈ Θ . As
a special case in the financial context, Xt = rt may be an interest rate process, which
has motivated a significant amount of papers related to the study of (37).

A reasonable strategy consists in discretizing Eq. (37) for {Xt } = {rt : t ∈ T },
observed at time moments ti = iΔ, for i = 0,1, . . . , n (with spacing Δ > 0). The
discretized version of (37) is then given by

Yti = rti+1 − rti = m(rti )Δ + σ(rti )(Wti+1 − Wti ),

for i = 0,1, . . . , n − 1, which can be rewritten as a regression model as

Δ−1Yti = m(rti ) + σ(rti )
εti√
Δ

, (38)

with εti ∼ N (0,1) independent of rti . Hence, taking as initial random sample
{(rti ,Δ−1Yti )}n−1

i=0 , the previous GoF testing techniques can be adapted for the drift
function: smoothed-based tests, tests using empirical regression process, GLRT, . . .

always testing a null hypothesis over a continuous time model by a discretized ap-
proximation.

There is a large collection of references on this topic, which could be classified
attending to the target function to test. For instance, Aït-Sahalia (1996) proposed test-
ing parametric models for the marginal density of Xt rates by comparing the implied
density with a nonparametric estimator, without considering discrete approximations
to the process, whereas Corradi and Swanson (2005) discussed GoF tests by compar-
ing cumulative distribution functions instead of densities. Tests for marginal density
functions have been also studied by Gao and King (2004) and Hong and Li (2005),
involving kernel estimators, as well as Arapis and Gao (2006) and the Bickel and
Rosenblatt test was adapted by Lee (2006) for diffusion processes.

GoF tests for the drift coefficient were studied by Negri and Nishiyama (2009),
using empirical processes and by Negri and Nishiyama (2010), based on continuous
observations. Kutoyants (2010) considered the problem of testing a simple null hy-
pothesis for the drift coefficient, based on a Cramér–von Mises test. Gao and Casas
(2008) proposed tests for the specification of the drift and the volatility functions of
a semiparametric diffusion process, under a discrete approximation, using nonpara-
metric estimation methods.

With respect to the variance, specification tests have been analyzed by Corradi
and White (1999), Dette and von Lieres und Wilkau (2003), and Li (2007) without
requiring a complete knowledge of the functional form of the drift model. Dette et al.
(2006) and Dette and Podolskij (2008) assessed the parametric form based on esti-
mations and stochastic processes of the integrated volatility.

Finally, joint model specification problems have been also analyzed. A test for a
parametric model specification, based on kernel estimation and using the ideas of em-
pirical likelihood, was proposed by Chen et al. (2008). Kristensen (2011) introduced
misspecification tests for semiparametric and fully parametric univariate diffusion
models. GLRT methodology has been also adapted to diffusion process by Fan and
Zhang (2003) and Fan et al. (2003). Martingale theory has been used by Masuda et al.
(2010) and Song (2011) for constructing GoF tests for diffusion models. Aït-Sahalia
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et al. (2010) proposed procedures to test a Markov hypothesis in a mixing stationary
process. Lee and Wee (2008) studied the residual empirical processes for model (37)
and Monsalve-Cobis et al. (2011) introduce a bootstrap GoF tests based on empirical
processes for testing parametric hypothesis on the drift and the volatility functions.

6 Goodness-of-fit tests for regression models with complex data

Usually, the sample at hand does not provide complete information about the under-
lying population, posing some problems for the application of GoF tests. Apart from
the dependent data case, data may also be censored and/or truncated, some data may
be missing, present some error measurement or even length-bias.

6.1 Censored and/or truncated data

The main motivation for the analysis of censored and/or truncated data can be found
in survival and reliability analysis, and more recently, also in econometrics. Trun-
cation appears when the individual lifetime finishes before the study follow up (left
truncation, LT) whereas censoring happens when the individual lifetime is not ob-
served until its end due to a previous censoring event (right censoring, RC).

In this general context, information for each individual is given by the value of
(X,T ,Z, δ), where X is a vector of covariates, T denotes the truncation time, Z =
min{Y,C} is the observed value where Y is the lifetime of the individual and C is the
censoring time and δ = I(Y ≤ C). The vector is completely observed if T ≤ Z.

Some GoF tests for different models based on an observed sample denoted by
{(Xi, Ti,Zi, δi)}ni=1 were proposed by Cao and González-Manteiga (2008) in the fol-
lowing scenarios:

– Polynomial regression model:

H0PR : Ψ (

F(·|X = x)
) = At(X)θ (39)

with A : R
p → R

q , θ ∈ R
q and Ψ (Q) = ∫ 1

0 Q−1(s)J (s) ds for any distribution
Q with quantile function Q−1(s) = inf{u;Q(u) ≥ s, }, for s ∈ [0,1]. J is a non-
negative function such that

∫ 1
0 J (s) ds = 1 and F(·|X = x) denotes the conditional

distribution of Y |X = x. If J is taken as the uniform density, then Ψ (F(·|X =
x)) = At(X)θ = E(Y |X = x). For p = 1 and A(x) = (1, x, . . . , xq−1), the poly-
nomial regression model is obtained.

– Proportional hazard model:

H0PH : λ(t |X = x) = λ0(t) exp
(

At(X)θ
)

, (40)

where λ(·|X = x) is the conditional hazard rate of Y |X = x and λ0 is a baseline
function. The model in H0PH is the well-known Cox regression model, introduced
by Cox (1972).

– Additive risk models:

H0AR : λ(t |X = x) = λ0(t) + At(X)θ. (41)
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– Proportional odds model:

H0PO : logit
(

1 − exp
(−Λ(t |X = x)

)) = log

(

P(Y ≤ t |X = x)

P(Y > t |X = x)

)

(42)

= α0(t) + At(X)θ, (43)

with logit(u) = log(u/(1 − u)), α0 an increasing function and Λ(·|X = x) the
cumulative hazard rate function.

Estimation of the previous models have been studied by Grigoletto and Akritas
(1999). For instance, considering A(x) = (1, x, . . . , xq−1), a suitable statistic for test-
ing problems (39)–(43) is

Tn = arg min
θ∈Θ

1

n

n
∑

i=1

(

̂Ωr − (

θ0 + θ1Xt + · · · + θpX
q−1
t

))2
,

with ̂Ωr an estimator of Ωr = Ω(Xr), an adequate transform of Λ(·|X) for obtaining
a regression model. Specifically, for (39), this Ω transform is Ω(x) = Ψ (F(·|X =
x)); for (40) is Ω(x) = ∫ ∞

0 logΛ(s|X = x)dω(s) with ω a nonnegative weight

function such that
∫ 1

0 dω(s) = 1; for (41), Ω(x) = ∫ ∞
0 Λ(s|X = x)dω̃(s) with

ω̃(s) = ω(s)/
∫ ∞

0 udω(u); finally, for (43), Ω(x) = ∫ ∞
0 logit(1 − exp(−Λ(s|X =

x))) dω(s).
The key issue is the nonparametric estimation of Ω(x) via the estimation of

F(·|X = x) under censoring and/or truncation. In Iglesias-Pérez and González-
Manteiga (1999), a generic estimator for this conditional distribution function was
established. Based on an i.i.d. representation of F̂ (·|X = x), Cao and González-
Manteiga (2008) derive the limit behavior for nh1/2Tn, and calibration is performed
by Monte Carlo methods. For the complete data case, E(Y |X = x) = Ψ (F(·|X = x))

resulting the discretized version of (5), T D
1n for polynomial regression as a particu-

lar case. A generalization of hypothesis (39) is H0 : Ψ (F(u|X = x)) = At
u(x)θ with

time u, was analyzed in Teodorescu and Van Keilegom (2010) and Teodorescu et al.
(2010).

All these proposals use a generalized Kaplan–Meier estimator, following Iglesias-
Pérez and González-Manteiga (1999), under the assumption of conditional indepen-
dence between Y and C given X. In the particular case of no truncation and assuming
that Y and C are independent and P(δ = 1|X,Y) = P(δ = 1|Y) (see Stute 1993 for
some insight in this assumption), we have E( δ

1−G(Z−)
Φ(X,Z)|X) = E(Φ(X,Z)|X),

for any functional Φ , with G the distribution of the censoring variable. This al-
lows for an adaptation to the GoF for regression models theory with Φ(X,Z) = Z,
considering ̂Y ∗

i = δiZi/(1 − ̂G(Zi)) the new response values and ̂G the Kaplan–
Meier estimator of G(t) = P(C ≤ t). In Lopez and Patilea (2009), the test statis-
tic (7) was adapted to this context. That is, under a parametric null hypothesis
H0 : m ∈ Mθ , the residual ε̂0i = Yi − m

̂θ (Xi) is replaced by ε̂∗
0i = ̂Y ∗

i − m
̂θ (Xi),

with ̂θ = arg minθ

∑n
i=1(

̂Y ∗
i − mθ(Xi))

2, a least squares estimator as proposed by
Koul et al. (1981). This reasoning can be extended to other testing procedures, and
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also adapted for more complex hypothesis such as additivity (see Debbarh and Vial-
lon 2008). Another alternative is to change the estimation of θ and consider

˜θ = arg min
θ

n
∑

i=1

(

Zi − mθ(Xi)
)2

Win = arg min
θ

∫

(

y − mθ(x)
)

d ̂Fn(x, y),

̂Fn being the generalized Kaplan–Meier estimator with covariates (see Stute 1993,
1996, 1999; Stute et al. 2000), and Win = δi

n(1−̂G(Z−
i ))

, the Kaplan–Meier weights

over the response variable Y . The residuals are now given by ε̂∗
0i = δi

1−̂G(Z−
i )

(Zi −
m

̂θ (Xi)), for i = 1, . . . , n.
Tests based on empirical regression processes can also be adapted, estimating the

integrated regression function E(Y I(X ≤ x)) by
∫

zI(u ≤ x)d ̂Fn(u, z) (see Stute
et al. 2000 and Sánchez-Sellero et al. 2005).

Under the assumption of conditional independence between Y and C given X,
there is another alternative to GoF testing, by generating a random variable that
estimates Υ (X,Y ) properly, being this function Υ (x, y) = y or Υ (x, y) = (y −
mθ0(x))2, for instance. Thus, Υ ∗(X,Z, δ) = Υ (X,Z)δ +E(Υ (X,Z)|Y > C,X)(1−
δ), and in this case E(Υ ∗(X,Z, δ)|X) = E(Υ (X,Y |X)). For generating such a ran-
dom variable, Υ ∗ is estimated by the conditional Kaplan–Meier under censoring
(see Beran 1981 for its introduction and González-Manteiga and Cadarso-Suárez
1994). In González-Manteiga et al. (2007), using the generalized integrated regres-
sion E(Υ (X,Z)I(X ≤ x)) with artificial sample {(Xi,̂Y

∗
i )}ni=1, some GoF tests based

on empirical processes for the regression function were proposed, as well as some
other tests for the conditional variance.

The methodology based on the empirical distribution of the residuals, with the
conditional independence assumption, can also be extended to this context replacing
the residuals obtained with complete data by the following ones:

{

Zi − m
̂θ (Xi)

σ̂ (Xi)
, δi

}n

i=1
, and

{

Zi − m̂(Xi)

σ̂ (Xi)
, δi

}n

i=1
.

With these residuals, the error distribution was obtained adapting the Kaplan–Meier
estimator (see Pardo-Fernández et al. 2007a). See also Dette and Heuchenne (2012)
for a test on the variance function in this setting.

6.2 Missing data

Given a regression model in location-scale form, Y = m(X) + σ(X)ε, there may be
missing data (missing at random, along this section) in the sample, possibly since the
response variable Y cannot be observed. Hence, each data is (Xi, Yi) if Y is observed
and (Xi, ·) if the response value is not recorded. In order to model this scenario, a
new variable δ is introduced, such that δi = 1 if Yi is observed and δi = 0 if not. The
missing at random assumption states that P(δ = 1|Y,X) = P(δ = 1|X) for X ∈ R

p .
In González-Manteiga and Pérez-González (2006), the test statistic (5) was adapted
to this context comparing which is a best option: (a) using the complete information
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(observed data) through the test statistic

n|H |1/4T M1
1n = n|H |1/4

∫

(

mnH (x) − m
̂θ (x)

)2
ω(x)dx,

with mnH the (multidimensional) Nadaraya–Watson or the local-linear estimator with
smoothing matrix H and ̂θ a

√
n-consistent estimator with the complete sample, or

(b) using imputed values for the unobserved data via the statistic

n|H |1/4T M2
1n = n|H |1/4

∫

(

mI
nH ˜H

(x) − m
̂θ (x)

)2
ω(x)dx,

with mI
nH ˜H

the smooth estimator with the imputed sample {(Xi, δiYi + (1 −
δi)mn ˜H (Xi))}ni=1, where a smoothing matrix ˜H is used for imputation. For the par-
ticular case p = 1 and complete data, n|H |1/4T M1

1n = n|H |1/4T M2
1n = nh1/2T1n, ob-

taining the test in Alcalá et al. (1999). The choice between both options (a) and (b) is
done based on the ratio | ˜H |1/2/|H |1/2, summarizing if the imputation is convenient.
If the ratio tends to infinity as the sample size increases, this indicates that there is
oversmoothing in the imputation, leading to large bias, so imputation is not reason-
able. On the other hand, if the ratio tends to zero, both tests are equivalent, and the
benefit of imputation is achieved when the ratio tends to a positive finite value. Re-
cently, Li (2012) suggested a test for a similar situation but with imputation under
the null hypothesis, that is, considering the sample {(Xi, δiYi + (1 − δi)m̂θ (Xi))}ni=1,
avoiding a discussion about the pilot smoothing matrix ˜H .

Tests based on empirical processes can also be used with missing data. For in-
stance, the test proposed by Stute (1997) can be used replacing in the empiri-
cal process αn the response Yi by the imputed values under the null hypothesis
(δiYi + (1 − δi)m̂θ (Xi)) (see Sun and Wang 2009 for the linear model mθ(X) =
At(X)θ , and also Sun et al. 2009 for the extension to partially linear models).

A different problem is the absence of data in the covariates, but literature on this
topic is much more scarce. We should mention the work by Zhu et al. (2009) where
the methodology based on empirical regression processes was applied to tackle this
problem.

6.3 Data with measurement error

Another interesting situation, with quite recent contributions, is GoF for regression
when observations are given with some measurement error. Specifically, consider the
following regression model Y = m(X) + ε, where the covariate X is not observable
and E(ε) = 0. In this setting, what the practitioner gets is a sample {(Zi, Yi)}ni=1,
with each Zi an observation from a random variable Z such that X = Z + η, with
E(η) = 0. Usually, ε, η and Z are assumed to be mutually independent.

The problem of estimating a parametric model for the regression function (known
as Berkson’s parametric model (Berkson 1950)) has been widely studied. In or-
der to test a parametric model, that is, testing H0 : m ∈ Mθ , some of the previous
test statistics can be adapted. First, denote by fε , fX , fη and fZ the density func-
tions of ε, X, η and Z have densities, respectively, and assume that fη is known.
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Then, it is possible to obtain generalized tests. Assume first that fη is known. Then
fX(x) = ∫

fZ(z)fη(x − z) dz and a kernel estimator of this density is given by
f̂X(x) = n−1 ∑n

i=1 Kh(x,Zi) with Kh(x, z) = ∫

Kh(z − y)fη(x − y)dy.
Define the following functions: Ψ (z) = E(m(X)|Z = z) and J (x) = E(Ψ (Z)|X =

x). A natural kernel estimator for the regression function is given by

m̂h(x) =
∑n

i=1 Kh(x,Zi)Yi
∑n

i=1 Kh(x,Zi)
.

However, this estimator is consistent for J (x) but not for m(x). In order to ob-
tain a test statistic for H0 it should be noticed that, if this hypothesis holds, then
Ψ (z) = Ψθ(z) = E(mθ (X)|Z = z) and J (x) = Jθ (x) = E(Ψθ (Z)|X = x). Hence, an
adaptation of the test (5) can be constructed as

T ME
1n = nhp/2

∫

(

1

nf̂X(x)

n
∑

i=1

Kh(x,Zi)
(

Yi − Ψ
̂θ (Zi)

)

)2

ω(x)dx,

where θ̂ is a consistent estimator for θ under H0, f̂X is the kernel density estimator
for fX and Kh(x,Zi) has been introduced above. See details in Song (2008) and
Koul and Song (2009).

From another point of view, and bearing in mind that Ψ (z) = E(Y |Z = z), one
may consider the regression model, Y = Ψ (Z) + ζ , with E(ζ |Z) = 0. In this setting,
testing the null hypothesis H0 : m ∈ Mθ is equivalent to test H0 : Ψ ∈ {Ψθ }θ∈Θ . For
constructing a test statistic, a nonparametric estimator for Ψ is required and it is given
by

̂Ψh(z) =
∑n

i=1 Kh(z − Zi)Yi

nf̂
Zh̃

(z)
, with f̂

Zh̃
(z) = 1

n

n
∑

i=1

K∗
h̃
(z − Zi),

with K∗
h̃

a kernel with bandwidth h̃, and the test statistic is

Tn = nhp/2
∫

(

1

nf̂
Zh̃

(z)

n
∑

i=1

Kh(z − Zi)
(

Yi − Ψ
̂θ (Zi)

)

)2

ω(z)dz, (44)

which extends the test in Koul and Ni (2004), and for h̃ = h, the test in Härdle and
Mammen (1993). Asymptotic behavior of the test can be seen in Koul and Song
(2009).

An alternative way for building test based on smoothing methods is using deconvo-
lution, based on characteristic functions: let f be a density in R

p with characteristic
function Φf and consider

fh(x) = 1

(2π)p

∫

Rp

e−itx Φf (t)

ΦK(t/h)
dt,

where K is a kernel function in R
p . Again, recall that under the parametric null

hypothesis, the function Ψ (z) = Ψθ(z) has also a parametric form. In the context
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described at the beginning of this section, a deconvolution estimator for fX is given
by

f̂Xh(x) = 1

nhp

n
∑

i=1

fh

(

x − Zi

h

)

.

Noticing that

Ψ (z) =
∫

m(x)fX(x)fη(z − x)dx
∫

fX(x)fη(z − x)dx
,

an estimator for Ψ under the null hypothesis (assuming that fη is known), is given
by

̂Ψ
̂θ (z) =

∫

m
̂θ (x) ̂fXh(x)fη(z − x)dx
∫

̂fXh(x)fη(z − x)dx
,

and a test statistic similar to Tn in (44) can be constructed. Splitting sample methods
for designing test statistics are used by Song (2008), overcoming the slow conver-
gence rate of deconovolution estimators.

All the tests in this section are based on smoothing methods, but it is also possi-
ble to extend those tests dealing with empirical regression processes, which may be
suitably adapted by taking

˜αn(x) = 1√
n

n
∑

i=1

(

Yi − Ψ
̂θ (Zi)

)

I(Zi ≤ x),

or rescaled versions of this process (see Koul and Song 2008). Recently, Koul and
Song (2010) proposed a test for the partial linear model in this context. Some addi-
tional recent references are Hall and Ma (2007), Carroll et al. (2011), and Ma et al.
(2011).

6.4 Length-biased data

In some situations, the sample from (X,Y ) associated to the regression model Y =
m(X) + ε is not i.i.d. and what is available is just a biased version from the previous
variable: (Xω,Yω) with distribution

dFω(x, y) = f ω(x, y) dx dy = ω(x, y)f (x, y)

μy

dx dy

with F and f the distribution and density functions of (X,Y ), respectively, and μY

the marginal expected value of Y . Selection bias is introduced via ω, whereas Fω and
f ω are the distribution and density of the biased population. We have

E
ω(Y |X = x) = m(x)

(

1 + Cov(Y,ω(X,Y )|X = x)

m(x)E(ω(X,Y )|X = x)

)

and estimation procedures relying on the data sample do not lead to the estimation of
the regression function, which makes it difficult to test a null hypothesis such as the
parametric one H0 : m ∈ Mθ based on the biased sample.
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The bias sampling problem appears in several applications (see Cox 1969) and
estimation methods should account for this fact. For instance, for the particular case
of length-biased data, ω(x, y) = y, the least squares estimation of θ is given by

̂θ = arg min
θ∈Θ

n
∑

i=1

1

Yi

(

Yi − mθ(Xi)
)2

,

and the nonparametric local-linear estimator is m̂nh(x) = ̂β0(x) such that

(

̂β0(x), ̂β1(x)
) = arg min

(β0,β1)

n
∑

i=1

1

Yi

(

Yi − β0 − β1(Xi − x)
)2

Kh(x − Xi).

The test in (5) can be easily extended for length-biased data (see Ojeda et al. 2008).
The methodology based on empirical regression processes can also be adapted by
setting

αn
ω
(x) = 1√

n

n
∑

i=1

1

Yi

(

Yi − m
̂θ (Xi)

)

I(Xi ≤ x)

as studied in Ojeda et al. (2011). The use of the empirical distribution of the residuals
for testing in this context has been analyzed by Ojeda and Van Keilegom (2009).

A common property of the tests for complex data situations is that convergence
rates are similar to those ones for complete data presented in Sect. 1, and a similar
discussion can be done about power comparison. Obviously, bootstrap calibration can
be suitably adapted accounting for the complexity nature under the null hypothesis. In
the references along this section, there are several alternatives for these adjustments.

7 Some related tests: comparison of regression curves and applications

The comparison of two or more groups of variables is one of the principal problems
in statistical inference. Checking means, medians or other characteristics of the vari-
able of interest across groups enables this comparison. When the variable of interest
Y is accompanied by a regression covariable X a more ambitious objective is to com-
pare the regression functions ml(x) = E(Yl |Xl = x), with l = 1, . . . ,L, labeling the
groups.

For parametric models in the different groups, ml = mθl
, with θl ∈ Θ ⊂ R

q , one
may perform a classical covariance analysis. However, when no parametric assump-
tions are made and {ml}Ll=1, with ml ∈ M and M a functional space satisfying some
regularity conditions, the problem is more complicated.

For the fixed design case, the regression model can be compactly written as

Yli = ml(tli ) + σl(tli )εli , l = 1, . . . ,L, i = 1, . . . , nl (45)

where εli are zero mean i.i.d. random variables, ml and σ 2
l are the regression and

variance function in the lth group and tli ∈ [0,1], without loss of generality and
N = ∑L

l=1 nl . The testing problem H0 : m1 = · · · = mL vs. H1 : ∃(k, l) such that
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mk �= ml , can be approached from different perspectives, specifically, using smooth-
ing methods, based on empirical regression processes or considering the empirical
distribution of the residuals.

An L2 distance may be used to compare the regression curves in the groups. The
discrepancy D = ∑

k<l

∫ 1
0 (mk(t)−ml(t))

2 dt is null iff the null hypothesis of equal-
ity holds and a test statistic which estimates D is

TN =
∑

k<l

∫ 1

0

(

m̂k(t) − m̂l(t)
)2

ωkl(t) dt,

where {ωkl}k<l are weight functions and m̂l(t) = ∑nl

i=1 Wli(t)Yli is the nonparamet-
ric kernel estimator of the regression function in each group l = 1, . . . ,L.

A general result on the previous test statistic distribution is derived in Vilar-
Fernández and González-Manteiga (2004) for model (45), considering a correlation
structure in the error. Specifically, for L = 2, we have

nh1/2
(

TN − 1

nh

∫

ω(t) dtΓΔ

∫

K2(t) dt

)

d−→ N
(

0, σ 2
T

)

,

with ΓΔ = ∑∞
k=−∞ CΔ(k) and σ 2

T = 2Γ 2
Δ

∫

(K ∗ K)2(t) dt
∫

ω2(t) dt , with CΔ de-
noting the covariance of the error differences between two groups, with n1 = n2 = n

and tli = i/nl for l = 1,2.
Similar asymptotic results can be obtained for other tests, for instance, considering

the variance difference test in (8), with corresponding test statistic

T3N = 1

N

L
∑

l=1

nl
∑

i=1

(

Yli − m̂(tli )
)2 − 1

N

L
∑

l=1

nlσ̂
2
l ,

where σ̂ 2
l = n−1

l

∑nl

i=1(Yli − m̂l(tli ))
2. An ANOVA-type test statistic such as

T ANOVA
N = 1

N

L
∑

l=1

nl
∑

i=1

(

m̂(tli ) − m̂l(tli )
)2

is also an alternative. Asymptotic results can also be derived studying the behavior of
U -statistics with kernels changing with the sample size.

Suppose that there is a common covariate X for two groups (with n1 = n2 = n),
that is, the samples are observed from (X,Y 1) and (X,Y 2), and the goal is to test if

H0 : E
(

Y 1|X = x
) = E

(

Y 2|X = x
)

, ∀x ∈ I ⊂ R,

I being any subinterval in R. This is equivalent to test H0 : E(Y 1 − Y 2|X = x) = 0,
for all x ∈ I . The empirical regression process for this case can be built as

αN(x) = 1√
n

n
∑

i=1

I(Xi ≤ x)
(

Y 1
i − Y 2

i

)

,
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which has an asymptotic Gaussian limit process. The different class of tests can be
obtained as continuous functionals of this process. See Delgado (1993) or, more re-
cently, Ferreira and Stute (2004) for dependent data.

However, the covariates in each group can be different and random, so a more
general test can be built on the following empirical regression process:

αN(x) = 1

N

n1
∑

i=1

f1iI(X1i ≤ x) − 1

N

n2
∑

i=1

f2iI(X2i ≤ x), with

fli = N

nl

Yli − m̂(Xli)

f̂l(Xli)
,

for l = 1,2 and i = 1, . . . , nl , f̂l being the corresponding kernel density estimator for
the covariate (see Neumeyer and Dette 2003).

In more recent papers, there are more complex testing procedures, for instance,
comparing autoregressive time series models. Consider {Xt }, {Yt } two location-scale
time series:

Xt = m1(Xt−1, . . . ,Xt−k) + σ1(Xt−1, . . . ,Xt−k)εt , t = 1, . . . , n1,

Yt = m2(Yt−1, . . . , Yt−k) + σ2(Yt−1, . . . , Yt−k)ηt , t = 1, . . . , n2,

with εt and ηt zero-mean innovations. The testing problem H0 : m1 = m2 is studied
in Dette and Weissbach (2009).

Finally, the empirical distribution of the residuals can also be used for comparing
regression curves. Consider again a location-scale regression model

Yl = ml(Xl) + σl(Xl)εl, l = 1, . . . ,L

with a random sample {(Xli, Yli)}i=1,...,nl
, for l = 1, . . . ,L. Testing the equality of the

regression curves in the L groups can be done by comparing the empirical distribution
of the residuals

̂Fεl
(y) = 1

nl

nl
∑

i=1

I

(

Yli − m̂l(Xli)

σ̂l(Xli)
≤ y

)

with the corresponding estimators under the null hypothesis

̂Fεl0(y) = 1

nl

nl
∑

i=1

I

(

Yli − m̂(Xli)

σ̂l(Xli)
≤ y

)

,

with m̂l , σ̂l the Nadaraya–Watson estimators for the regression and variance functions
in each group and m̂ the estimator under H0 : m1 = · · · = mL, with the whole sample.
Based on the empirical process αl(y) = n

1/2
l (̂Fεl

(y) − ̂Fεl0(y)), l = 1, . . . ,L, the
Kolmogorov–Smirnov and Cramér–von Mises tests can be constructed as

TNKS =
L

∑

l=1

sup
y

∣

∣αl(y)
∣

∣, TNCM =
L

∑

l=1

∫

α2
l (y) d ̂Fεl0(y).
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See Pardo-Fernández et al. (2007b) for details on these tests. See also Pardo-
Fernández (2007) for tests on the equality of the error distributions, extending the
work by Mora (2005) for linear m and Pardo-Fernández and Van Keilegom (2006)
for the equality of regression curves with censored response. The use of the SiZer
exploratory tool is illustrated in Park and Kang (2008).

From any of the three previous testing approaches (based on smoothing methods,
on empirical processes or on the empirical distribution of the residuals), a resampling
calibration procedure is required. In Vilar-Fernández et al. (2007), a comparative re-
view of different bootstrap methods for fixed design and correlated errors is provided.

The problem of comparing nonparametric regression curves has been previously
considered by Hall and Hart (1990), who proposed a bootstrap test and by Härdle
and Marron (1990). A test for the equality of two regression curves has been pro-
posed by King et al. (1991) based on the difference between linear but nonparametric
estimators. Srihera and Stute (2010) based their approach on a weighted comparison
of nonparametric estimators. Nonparametric analysis of covariance has been initially
performed by Young and Bowman (1995). Dette and Neumeyer (2001) discussed dif-
ferent procedures for testing the equality of a collection of regression curves. Munk
and Dette (1998) develop exact and asymptotic theory for comparing regression func-
tions whereas Munk et al. (2007) extended the results for inhomogeneous and het-
eroskedastic errors. See also Neumeyer and Sperlich (2006) for an example where
calibration must be done via subsampling. The comparison of regression curves using
quasi-residuals was studied by Kulasekera (1995), who also considered the problem
of smoothing parameter selection for maximizing the power of the test (see Kulasek-
era and Wang 1997, 1998). The problem of unbalanced groups has been considered
by Munk and Dette (1998) and by Lavergne (2001). Munk and Dette (1998) and Hall
et al. (1997) have been also concerned with the implications of different regressors
designs and variation among covariates. More recently, Lin and Kulasekera (2010)
addressed the comparison of nonparametric regression curves for single index mod-
els.

The comparison of regression curves can be useful in other contexts such as time
series (see Dette and Paparoditis 2009) or spatio-temporal models, allowing for a
comparison of correlation structures from the spectral domain. Based on the peri-
odogram representation (36) Crujeiras et al. (2007, 2008) proceeded to the compari-
son of spatial spectral density by means of an L2 distance.

8 Some recent directions

Just to finish this survey, some advances in random effects models, quantile, and func-
tional regression will be presented. For each scenario, some of the current challenges
in the development of GoF tests will be briefly discussed.

8.1 Testing regression models with random effects

Consider a regression model

H
(

E(Yli |ul, Tli ,Xli)
) = m(Tli) + Xt

liβ + Zt
liul, where l = 1, . . . ,L (46)
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denotes the number of sample subgroups, nl is the sample size in each of them
(N = ∑L

l=1 nl) and {(Yli ,Xli,Zli , Tli)}nl

i=1 are the corresponding observations in
each group, with dimension (1 + p + r + q), Xli and Zli being observable with
Zli ⊆ (1,Xli)

t . In (46), {ul}Ll=1 represents the (independent) random effects, Yli

(i = 1, . . . , nl) are conditionally independent given (ul, Tli ,Xli) and Σu is the co-
variance matrix for the random effects. Finally, H denotes the link function, which is
usually unknown.

For instance, Pan and Lin (2005) considered the case m(T ) = 0 and test the hy-
pothesis (46) with empirical regression processes. In Henderson et al. (2008), testing
of the randomness of ud with kernel smoothing, for Zli = 1, was considered. See
also Lombardía and Sperlich (2008) for tests about m extending the works by Härdle
et al. (1998) and Müller (2001) to the random effects context. Sperlich and Lombardía
(2010) adapted the previous study to random effects in small areas, with local poly-
nomial smoothing. Based on the empirical distribution of the residuals, see Sánchez
et al. (2009) and Meintanis and Portnoy (2011) for a test on the random effect of ul

based on the characteristic function of the residuals.
Calibration of the test statistics distribution for random effects model poses some

challenges, given that in the resampling process, not only the error distribution must
be taken into account, but also the random effect involved in the model.

8.2 Testing about quantile functions

Until now, this review has considered a regression function as m(x) = E(Y |X = x)

with m(x) = â such that â = arg mina E((Y − a)2|X = x). However, the interest may
be focused on the quantile function

Qp(x) = inf
{

y|F(y|X = x) ≥ p
}

, p ∈ (0,1)

which results from minimizing E(ρp(y − a) − ρp(y)|X = x), with ρp(ε) = pε+ +
(1 − p)ε−, ε+ and ε− being the positive and negative parts of ε, respectively (see
Koenker and Basset 1978). Under continuity of the conditional distribution, it can be
seen that E(I(Y ≤ Qp(X))|X = x) = p, motivating the development of GoF tests for
the conditional p-quantile function. Setting the model under the null hypothesis as

H0 : Yi = Qp(Xi) + ui = m(Xi, θ0) + ui, i = 1, . . . , n (47)

for a random sample {(Xi, Yi)}ni=1 with θ0 ∈ R
q and with the conditional quantile

of ui given xi as Qp(xi) = mθ0(xi), it can be proved that (47) can be equivalently
written as H0 : E(I(Yi ≤ mθ0(Xi))|Xi) = p, for i = 1, . . . , n. Hence, taking ε̂i0 =
I(Yi ≤ m

̂θ (Xi))−p, Zheng (1998) extended the test statistic (7) to this context. Quite
recently, Wang (2008) adapted the procedure for censored response. An adaptative
optimal rate for p = 0.5 was given by Horowitz and Spokoiny (2002).

He and Zhu (2003) consider the alternative based on empirical processes, taking

α
p
n (t) = n−1/2

n
∑

j=1

Ψ (εi)Xj I(Xj ≤ t),
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as an empirical process generator for linearity tests on Qp(x), where Ψ (r) = pI(r >

0) + (p − 1)I(r < 0) and εi = (Yi − ̂θ tXi). More recently, based on the proposal in
Härdle and Mammen (1993) but applying Jackniffe bias reduction methods on the
local kernel estimator of the quantile function, Zhou (2010) extended the theory of
this type of tests to nonstationary time series. See also Escanciano and Velasco (2010)
for generalizations of the empirical process approach to dependent data for dynamic
quantile functions. Finally, for comparisons between quantile curves, see Sun (2006)
and Dette et al. (2011).

There is a quite extensive literature in quantile regression estimation, and more
contributions are expected briefly. There is still advantage to take from the extension
and adaptation of quantile regression to other settings, such as those dealing with
incomplete information or complex data.

8.3 Testing with functional data

Functional data analysis (FDA) has deserved an increasing attention in this last
decade, specially motivated by the practical needs derived from dealing with high-
dimensional data (see Ramsay and Silverman 2005 and Ferraty and Vieu 2006).
Among the techniques, both exploratory and inferential, gathered under the FDA
framework, regression models with functional regressors and (possibly) functional
response have been also introduced. Consider the functional regression model

Y(t) = m
(

t, η(Z)
) + ε(t),

where Y is a function response variable with t ∈ T an interval and η is a function of
the covariate Z that may also be functional, and

E
(

Y(t)
) = E

(

m
(

t, η(Z)
)) = μY (t), with E

(

ε(t)
) = 0.

Although there are several works on the estimation of this model (see Ferraty and
Romain 2010 for a recent handbook), the literature concerning GoF tests is scarce.
Cuesta-Albertos et al. (2007) obtained some results on GoF for the distribution of
functional variables and Chiou and Muller (2007) developed some tests based on
functional residuals, R(t) = Y(t) − ̂Y (t), t ∈ T , with the linear functional model
(with functional response) as a particular case:

Y(t) = μY (t) +
∫

J
β(s, t)

(

Z(s) − μZ(s)
)

ds,

J being the set of indices characterizing the functional data Z.
In Bücher et al. (2011), the authors state some tests for a fixed design model with

covariates in the unit interval, extending the tests developed by Dette (1999) for scalar
response.

Following some of the ideas of Ferraty and Vieu (2006), considering pseudomet-
rics for measuring distances between functional data, the test proposed by Härdle and
Mammen (1993) was adapted by Delsol et al. (2011a, 2011b) for the scalar response
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model Y = m(Z) + ε (Z being a functional covariate), taking as test statistic

Tn =
∫

(

n
∑

i=1

(

Yi − m̂H0(Zi)
)

K

(

d(z,Zi)

h

)

)2

ω(z)dPZ(z),

d being a pseudometric, K a kernel and PZ the probability measure over the func-
tional space of the covariate.

Some of the challenges in testing for FDA is the extension of empirical processes
based GoF tests given that, in this setting, empirical processes will be indexed on an
infinite-dimensional space.

This brief section is just an example of some of the ongoing GoF tests research in
different statistical areas. It can be clearly seen how the developments on GoF meth-
ods for regression have been adapted to other settings, deserving also attention in the
analysis of other characteristic curves, such as ROC curves, or with other data scenar-
ios, such as directional data. In addition, some advances on statistical inference for
GoF have been also made in order to obtain robustified tests. Although a complete
and detailed review of all the contributions on GoF literature, specially the most re-
cent ones, is beyond our means, we hope that this review will provide some insights
on GoF tests for regression and their adaptability to other contexts.
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