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1 Introduction

Since the seminal work of Hamilton (1989, Econometrica), Markov switching models have been

increasingly used in financial time-series econometrics because of their ability to capture some key

features, such as heavy tails, volatility clustering, and mean reversion in asset returns [see Cecchetti

and al. (1990), Pagan and Schwert (1990), Turner and al. (1989), Gray (1996), Hamilton (1988),

and Timmermann (2000), among others]. In this paper, we use these popular models to provide an

analytical approximation for multi-horizon conditional Value-at-Risk (hereafter VaR) and derive a

closed-form solution for Expected Shortfall (hereafter ES).

VaR has become the most widely used technique to measure and control market risk. It is a

quantile measure that quantifies risk for financial institutions and measures the worst expected loss

over a given horizon (typically a day or a week) at a given statistical confidence level (typically 1%

or 5%). Different methods exist to calculate VaR under different models of risk factors. Generally,

there is a trade-off between the simplicity of the calculation method and realism of the assumptions

in the risk factor model: As we allow the latter to capture more stylized effects, the calculation

method becomes more complex. Under the assumption that returns follow elliptical conditional

distribution, one can show that the VaR is given by a simple analytical formula [see for example

RiskMetrics (1995) and Bauer (2000)]. However, when we relax this assumption, the analytical

calculation of VaR becomes complicated and people tend to use computer intensive simulation based

methods. An alternative measure of financial risk is ES defined by the conditional expectation of

loss given that the loss is beyond the VaR level. This paper proposes an analytical approximation

for conditional Value-at-Risk and a closed-form solution for conditional Expected Shortfall under

more realistic assumptions using regime-switching.

The issue of VaR calculation under regime-switching has been considered at least by Billio

and Pelizzon (2000) and Guidolin and Timmermann (2006). Billio and Pelizzon (2000) use a

switching volatility model to forecast the distribution of returns and calculate the VaR of both

single assets and linear portfolios. Comparing the calculated VaR with the variance-covariance

approach and GARCH(1, 1) models, they find that VaR values under switching regime models

are preferable to both approaches. Guidolin and Timmermann (2006) examine the term structure

of VaR under different econometric approaches, including multivariate regime switching, and they

find that bootstrap and regime switching models are best overall for VaR levels of 5% and 1%,

respectively. However, to our knowledge, no analytical method has been proposed to calculate the

VaR and ES under regime-switching.

In this paper, we derive a closed-form solution for multi-horizon conditional ES under regime

switching model. We use the same approach as Cardenas et al. (1997), Rouvinez (1997), and Duffie

and Pan (2001) to provide an analytical approximation for multi-horizon conditional VaR. We first
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use Fourier inversion method to compute the probability distribution function of multi-horizon

portfolio returns. Thereafter, we use an efficient numerical integration step, designed by Davies

(1973, 1980), to approximate the infinite integral in the inversion formula and make the calculation

of VaR feasible. To account for conditional information and compute the conditional VaR and ES,

we use the Hamilton filter. However, our derivations of VaR and ES are made under the assumption

that the error terms in the Markov switching model are i.i.d. Consequently, the dependence in our

framework is due to the mean and volatility dependence, thus we ignore the dependence of high-

order moments. This could be a limitation relative to simulations based calculation of VaR and

ES, which may allow for non-i.i.d. errors.

By comparing the Value-at-Risks and Expected Shortfalls calculated analytically and using sim-

ulations, we find that the both approaches lead to almost the same results. Further, the analytical

approach is less time and computer intensive compared to simulations, which are typically used in

risk management.

The remainder of this paper is organized as follows. In Section 2, we introduce some notations

and define our model. In Section 3, we derive the multi-horizon conditional VaR and ES of linear

portfolio. In Section 4, we compare the simulation and analytical calculations of VaR and ES. We

conclude in Section 5.

2 Framework

We assume that there are n risky assets in the economy. We denote by rt = (r1t, r2t, ..., rnt)
> the

vector of risky assets returns. We consider the following notations:

ζt =





(1, 0, 0, ..., 0)> when st = 1
(0, 1, 0, ..., 0)> when st = 2
...
(0, 0, 0, ..., 1)> when st = N

where st is a stationary and homogenous Markov chain with N states, and we define the information

sets

Jt = σ(rτ , ζτ , τ ≤ t) = σ(rτ , sτ , τ ≤ t),

It = σ(rτ , τ ≤ t).

It is well known that [see, e.g., Hamilton (1994, page 679)]

E[ζt+h | Jt] = P hζt, h ≥ 1, (1)

where P is a transition probability matrix

P = [pij ]1≤i,j≤N , pij = Pr(st+1 = j | st = i),
N∑

j=1

pij = 1, ∀ i ∈ {1, ..., N} . (2)
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The probability pij of which regime is in operation at time t+1 depends on the past only through the

most recent value st.
1 We assume that the Markov chain is stationary with an ergodic distribution

Π, Π ∈ RN , i.e.

E[ζt] = Π = (π1, ..., πN )> . (3)

Observe that

P hΠ = Π, ∀h. (4)

In what follows, we suppose that rt follows a multivariate Markov switching model

rt+1 = µζt + Σ(ζt)εt+1, εt+1 i.i.d. ∼ N (0, In), (5)

E
[
(Σ(ζt)εt+1) (εt+1Σ(ζt))

> | Jt

]
= Σ(ζt)InΣ(ζt)> = Ω(ζt),

where In is an n× n identity matrix and

µ =




µ11 µ12 ... µ1N

µ21 µ22 ... µ2N

.

.

.

.

.

.

.

.

.

.

.

.
µn1 µn2 ... µnN




, Ω(ζt) =




ω>11ζt ω>12ζt ... ω>1nζt

ω>21ζt ω>22ζt ... ω>2nζt

.

.

.

.

.

.

.

.

.

.

.

.
ω>n1ζt ω>n2ζt ... ω>nnζt




,

µij , for i = 1, ..., n and j = 1, ..., N, is the mean return of an asset i at state j, and ωil, for

i, l = 1, ..., n, is the vector of covariances between assets i and l at the N states. The processes {st}
and {εt} are assumed jointly independent.

Finally, we adopt the notations, ∀ U = (u1, u2, ..., uN )> ∈ RN ,

A(U) = Diag (exp(u1), exp(u2), ..., exp(uN ))P. (6)

3 Value-at-Risk and Expected Shortfall under regime switching

In this section, we propose an analytical approximation for conditional VaR under regime switching.

We use the conditional characteristic function and a standard Fourier-inversion formula [see for ex-

ample Gil-Pelaez (1951)] to derive the conditional distribution function, from which the conditional

VaR is immediate. Further, we provide a closed-form solution for conditional ES.

3.1 Simple returns

We consider the portfolio allocation between the n risky assets. The portfolio’s return at time t+h

is given by:

rp,t+h =
n∑

i=1

αh
i rit+h = α>h rt+h, (7)

1The assumption of fixed transition probabilities pij could be relaxed. Many models with time-varying transition
probabilities have been considered [see Diebold, Rudebusch and Sichel (1993), Diebold, Ohanian and Berkowitz
(1994), Filardo (1994), Lahiri and Wang (1994), Durland and McCurdy (1994), among others].
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where rt+h follows multivariate Markov switching model (5) and αh =
(
αh

1 , αh
2 , ..., αh

n

)> is the vector

representing the weights attributed to each risky asset in the portfolio.

To compute the conditional VaR of the portfolio’s return rp,t+h we proceed in two steps. Firstly,

we derive the conditional distribution function of rp,t+h by inverting its conditional characteristic

function using a standard Fourier-inversion formula [see Gil-Pelaez (1951)]. Secondly, we compute

the conditional VaR of rp,t+h by inverting numerically its conditional distribution function using

an efficient numerical integration step designed by Davies (1980); for related work, see also Imhof

(1961), Bohmann (1961, 1970), and Davies (1973).

We can show [see Taamouti (2008)] that the conditional characteristic function of simple returns

rp,t+h is given by, ∀u ∈ R and h ≥ 2,

E [exp(iurp,t+h) | Jt] = e>A


iuµ>αh − u2

2

∑

1≤l1,l2≤n

αh
l1α

h
l2ωl1l2


P h−2ζt, (8)

where i =
√−1, the matrix A (.) is defined in (6), and e denotes the N×1 vector whose components

are all equal to one. The characteristic function (8) depends on the state variable ζt. In practice,

the current state variable ζt is not observable. Using the observable information set It, the law of

iterated expectations yields

E [exp(iurp,t+h) | It] = e>A


iuµ>αh − u2

2

∑

1≤l1,l2≤n

αh
l1α

h
l2ωl1l2


P h−2Πt, ∀u ∈ R (9)

where

Πt = (Pr (st = 1 | It) , ..., P r (st = N | It))
> .

Notice that, Equation (9) is a complex function and using Euler’s formula it can be written as

follows:

E [exp (iurp,t+h) | It] = e> [A1(u) + i A2(u)]P h−1Πt, ∀u ∈ R (10)

where, for any u ∈ R

A1(u) =




exp
(
−u2

2

(
α>h Ω1αh

))
cos

(
u

(
α>h µ1

))
0 ... 0

0 ... ...
... ... 0
0 ... 0 exp

(
−u2

2

(
α>h ΩNαh

))
cos

(
u

(
α>h µN

))




,

A2(u) =




exp
(
−u2

2

(
α>h Ω1αh

))
sin

(
u

(
α>h µ1

))
0 ... 0

0 ... ...
... ... 0
0 ... 0 exp

(
−u2

2

(
α>h ΩNαh

))
sin

(
u

(
α>h µN

))




.

(11)
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µj and Ωj , for j = 1, ..., N , are the vector of mean and variance-covariance matrix of returns at

state j, respectively.

Now, we derive the conditional probability distribution function of rp,t+h. Given the condi-

tional characteristic function of rp,t+h from (9), a standard Fourier-inversion formula [see Gil-Pelaez

(1951)] implies that, for rp ∈ R,

P r (rp,t+h < rp | It) =
1
2
− 1

π

∫ ∞

0

Im (E [exp (iurp,t+h) | It] exp (−iurp))
u

du, (12)

where Im(.) denotes the imaginary part of a complex number. Using equations (10)-(12), we can

show that the conditional distribution function of rp,t+h, evaluated at rp, for rp ∈ R, is given by:

Pr (rp,t+h < rp | It) =
1
2
− 1

π
e>

∫ ∞

0

Ā2(u, rp)
u

du P h−1Πt, (13)

where, for any u ∈ R

Ā2(u, rp) =




exp
(−u2

2
(
α>h Ω1αh

))
sin

(
u(α>h µ1 − rp)

)
0 ... 0

0 ... ...
... ... 0

0 ... 0 exp
(−u2

2
(
α>h ΩNαh

))
sin

(
u(α>h µN − rp)

)




.

(14)

VaR is a quantile measure that quantifies risk and measures the worst expected loss over a given

horizon h (typically a day or a week) at a given statistical confidence level α (typically 1% or 5%).

Considering that conditional Value-at-Risk, say V aRα
t (rp,t+h), is a positive quantity, we have

Pr (rp,t+h < −V aRα
t (rp,t+h) | It) =

1
2
− 1

π
e>

∫ ∞

0

Ā2 (u, V aRα
t (rp,t+h))

u
du P h−1Πt, (15)

where Ā2 (u, V aRα
t (rp,t+h)) is defined by the right-hand side of Equation (14) where we replace

the constant rp with −V aRα
t (rp,t+h). The conditional VaR of rp,t+h can be calculated by inverting

the conditional distribution function (15). However, inverting analytically (15) is not feasible, for

reasons explained below, and a numerical solution (hereafter analytical approximation) is required.

Proposition 1 The conditional VaR of a portfolio’s simple returns rp,t+h with coverage probability

α, denoted V aRα
t (rp,t+h), is the solution of the following equation:

e>
∫ ∞

0

Ā2 (u, V aRα
t (rp,t+h))

u
du P h−1Πt − (

1
2
− α)π = 0, (16)

where Ā2 (u, V aRα
t (rp,t+h)) is defined by the right-hand side of Equation (14) where we replace the

constant rp with −V aRα
t (rp,t+h).

6



Proposition 1 results from Equation (15). Thus, the conditional VaR of rp,t+h can be obtained by

solving numerically the equation:

f(V aRα
t (rp,t+h)) = e>

∫ ∞

0

Ā2 (u, V aRα
t (rp,t+h))

u
du P h−1Πt − (

1
2
− α)π = 0. (17)

The function f(V aRα
t (rp,t+h)) can be rewritten in the following form:

f (V aRα
t (rp,t+h)) = −π [Pr (rp,t+h < −V aRα

t (rp,t+h) | It)− α] . (18)

Using the properties of the probability distribution function [monotonically increasing, lim
x→−∞Pr (rp,t+h < x) =

0, and lim
x→+∞Pr (rp,t+h < x) = 1] we can show that (17) admits a unique solution. Another way to

calculate the conditional VaR of rp,t+h is to consider the following optimization problem:

̂V aRα
t (rp,t+h) = arg min

V aRα
t (rp,t+h)

[
e>

∫ ∞

0

Ā2 (u, V aRα
t (rp,t+h))

u
du P h−1Πt − (

1
2
− α)π

]2

. (19)

The following algorithm shows how to estimate the conditional portfolio’s VaR using Hamilton

filter:

1. Estimate the vector of unknown parameters

θ =
(
vec(µ)>, vech(Ω1)>, ..., vech(ΩN )>, vec(P )>

)>
(20)

using the maximum-likelihood method [see Hamilton (1994, pages 690-696)]. In Equation (20),

“vec” denotes the column stacking operator and “vech” is the column stacking operator that

stacks the elements on and below the diagonal only.

2. Estimate the conditional probabilities of regimes,

Πt = ξ̂t|t = (Pr(st = 1 | It), ..., P r(st = N | It))
> ,

by iterating on the following pair of equations [see Hamilton (1994)]:

ξ̂t|t =

(
ξ̂t|t−1 ¯ ηt

)

e>
(
ξ̂t|t−1 ¯ ηt

) , (21)

ξ̂t+1|t = P ξ̂t|t, (22)

where, for t = 1, ...., T,

ηt =




(2π)−
T
2 | Ω−1

1 | 12 exp
{

(rt − µ1)
>Ω−1

1 (rt − µ1)
}

(2π)−
T
2 | Ω−1

2 | 12 exp
{

(rt − µ2)
>Ω−1

2 (rt − µ2)
}

...

(2π)−
T
2 | Ω−1

N | 12 exp
{

(rt − µN )>Ω−1
N (rt − µN )

}




,
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T is the sample size and the symbol ¯ denotes element-by-element multiplication. Given a starting

value ξ̂1|0 and the estimator θ̂MV of the vector θ, one can iterate on (21) and (22) to compute the

values of ξ̂t|t and ξ̂t+1|t for each date t in the sample. Hamilton (1994, pages 693-694) suggests

several options for choosing the starting value ξ̂1|0. One approach is to set ξ̂1|0 equal to the vector

of unconditional probabilities of regimes Π. Another option is to set ξ̂1|0 = ρ, where ρ is a fixed

N × 1 vector of nonnegative constants summing to unity, such as ρ = N−1e. Alternatively, ρ can

be estimated by maximum likelihood, along with θ, subject to the constraint that e>ρ = 1 and

ρj ≥ 0 for j = 1, 2, ..., N .

3. Given θ̂MV and Πt, the portfolio’s conditional VaR with coverage probability α can be obtained

by solving the optimization problem in (19). Notice that, in practice an exact solution for (19)

is not feasible, since the integral
∫∞
0

Ā2(u,V aRα
t (rp,t+h))
u du is difficult to evaluate. The latter can

be approximated using the results from Imhof (1961), Bohmann (1961, 1970), and Davies (1973,

1980). These authors propose a numerical approximation for distribution function using charac-

teristic function. The proposed approximation introduces two types of errors: discretization and

truncation errors. Davies (1973), provides a criterion to control for discretization error, and Davies

(1980) suggests three different bounds to control for truncation error. More details about how to

approximate numerically the distribution function using the characteristic function can be found

in Duffie and Pan (2001).

An alternative measure to assess financial risk is Expected Shortfall, say ESα
t (rp,t+h), defined

by the conditional expectation of loss given that the loss is beyond the VaR level:

ESα
t (rp,t+h) = Et [rp,t+h | rp,t+h ≤ −V aRα

t (rp,t+h)] ,

where Et [.] defines the expectation conditional on It. The following proposition provides a closed-

form solution for the conditional ES of simple returns rp,t+h.

Proposition 2 The conditional ES of a portfolio’s simple returns rp,t+h with coverage probability

α, denoted ESα
t (rp,t+h), is given by:

ESα
t (rp,t+h) =

1
α

e>
[
R1 (V aRα

t (rp,t+h))− 1√
2π

R2 (V aRα
t (rp,t+h))

]
Ph−1Πt, (23)

where

R1 (V aRα
t (rp,t+h)) = Diag


α>h µ1Φ


−


V aRα

t (rp,t+h) + α>h µ1√
(α>h Ω1αh)





 , ...,α>h µNΦ


−


V aRα

t (rp,t+h) + α>h µN√
(α>h ΩNαh)








 ,

R2 (V aRα
t (rp,t+h))

= Diag

(√
(α>h Ω1αh)exp

(
−1

2

(
V aRα

t (rp,t+h) + α>h µ1

)2

(α>h Ω1αh)

)
, ...,

√
(α>h ΩNαh)exp

(
−1

2

(
V aRα

t (rp,t+h) + α>h µN

)2

(α>h ΩNαh)

))
,

Φ(.) is the standard normal distribution function. See proof in Appendix A.
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The calculation of conditional ES given by Equation (23) does not require any numerical approxi-

mation as in case of VaR. In practice, to compute the conditional ES we need to run steps 1 and

2 of the above algorithm. Once we get the estimates of θ and Πt and for a known V aRα
t (rp,t+h),

we evaluate the standard normal distribution functions Φ(.) and plug-in the formula (23) to get an

estimate of the conditional ES of rp,t+h.

3.2 Extension to aggregated returns

We extend the discussion on the analytical calculation of VaR to the case of aggregated returns.

To compute the VaR of aggregated returns we follow the same steps of Section 3.1 [see Paragraph

2 of Section 3.1]. Unfortunately, a closed-form solution for the ES of aggregated returns may not

be tractable for reasons explained below. Now, consider h periods ahead aggregated returns:

rt:t+h =
h∑

k=1

rt+k, (24)

where rt+k follows multivariate Markov switching model (5). The portfolio’s aggregated returns is

given by:

rp,t:t+h = ᾱ>h rt:t+h, (25)

where ᾱh =
(
ᾱh

1 , ᾱh
2 , ..., ᾱh

n

)> is the vector of weights attributed to each risky asset in the portfolio.

We can show [see Taamouti (2008)] that the conditional characteristic function of rp,t:t+h is

given by, ∀ u ∈ R and h ≥ 2,

E [exp(iurp,t:t+h) | Jt] = e>


A


iuµ>ᾱh−u2

2

∑

1≤l1,l2≤n

ᾱh
l1ᾱ

h
l2ωl1l2







h−1

× exp





iuµ>ᾱh−u2

2

∑

1≤l1,l2≤n

ᾱh
l1ᾱ

h
l2ωl1l2



>

ζt


 ζt,

where the matrix A (.) is defined in (6) and e denotes the N × 1 vector whose components are all

equal to one. The law of iterated expectations yields,

E [exp(iurp,t:t+h) | It] = e>


A


iuµ>ᾱh−u2

2

∑

1≤l1,l2≤n

ᾱh
l1ᾱ

h
l2ωl1l2







h−1

D(u)Πt, ∀u ∈ R (26)

where, for any u ∈ R

D(u) =Diag

(
exp

(
iuᾱh

>µ1−u2

2

(
ᾱ>h Ω1ᾱh

))
,...,exp

(
iuᾱ>h µN−

u2

2

(
ᾱ>h ΩN ᾱh

)))
.

The characteristic function (26) is expressed in terms of the observable information set It. Using

Euler’s formula, the function (26) can be written as follows:

E [exp(iurp,t:t+h) | It] = e> [D1(u) + i D2(u)] Πt, ∀u ∈ R
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where, for any u ∈ R

D1(u) =Re
((

A
(
iuµ>ᾱh−u2

2

∑
1≤l1,l2≤n ᾱh

l1
ᾱh

l2
ωl1l2

))h−1
D(u)

)
,

D2(u) =Im
((

A
(
iuµ>ᾱh−u2

2

∑
1≤l1,l2≤n ᾱh

l1
ᾱh

l2
ωl1l2

))h−1
D(u)

)
.

Re(.) and Im(.) denote the real and imaginary parts of a complex matrix, respectively.

Using Gil-Pelaez’s (1951) inversion formula, the conditional distribution function of rp,t:t+h,

evaluated at r̄p, for r̄p ∈ R, is given by:

Pr (rp,t:t+h < r̄p | It) =
1
2
− 1

π
e>

∫ ∞

0

D̄2(u, r̄p)
u

du Πt,

where, for any u ∈ R

D̄2(u, r̄p)=Im





exp (−iur̄p) A


iuµ>ᾱh−u2

2

∑

1≤l1,l2≤n

ᾱh
l1ᾱ

h
l2ωl1l2




h−1

D(u)





. (27)

An explicit expression for matrix D̄2(u, r̄p) is not easy to compute when the horizon h is large and

this makes it hard to get a closed-form solution for ES. However, for a given short horizon h, one

can calculate this expression and get an analytical formula for ES.

Proposition 3 The conditional VaR of a portfolio’s aggregated returns rp,t:t+h with coverage prob-

ability α, denoted V aRα
t (rp,t:t+h), is the solution of the following equation:

e>
∫ ∞

0

D̄2(u, V aRα
t (rp,t:t+h))

u
du Πt − (

1
2
− α)π = 0,

where D̄2(u, V aRα
t (rp,t:t+h)) is defined by the right-hand side of Equation (27) where we replace the

constant r̄p with −V aRα
t (rp,t:t+h).

In practice, to calculate the conditional VaR of rp,t:t+h, we follow the same algorithm described in

section (3.1). Given an estimator θ̂MV of the vector

θ =
(
vec(µ)>, vech(Ω1)>, ..., vech(ΩN )>, vec(P )>

)>
(28)

and the conditional probabilities of regimes Πt, the conditional VaR of rp,t:t+h with coverage prob-

ability α can be obtained by solving the following optimization problem:

̂V aRα
t (rp,t:t+h) = arg min

V aRα
t (rp,t:t+h)

[
e>

∫ ∞

0

D̄2(u, V aRα
t (rp,t:t+h))

u
du Πt − (

1
2
− α)π

]2

, (29)

where the integral
∫∞
0

D̄2(u,V aRα
t (rp,t:t+h))
u du can be approximated using the results from Imhof

(1961), Bohmann (1961, 1970), and Davies (1973, 1980) [see Section (3.1)].

In the next section, we compare the analytical and simulation calculations of VaR and ES using

a multivariate regime switching model estimated from a real data.
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4 Analytical versus simulation calculations of VaR and ES

In this section, we compare the analytical and simulation calculations of VaR and ES under regime

switching. Our comparison is based on the following multivariate regime switching model:2

State 1: rt+1=

(
0.0096
0.0010

)
+ Σ1εt+1 V ar [Σ1εt+1] = Ω1 =

(
0.0006 −0.0003
−0.0003 0.0009

)
,

State 2: rt+1=

( −0.005
−0.0003

)
+ Σ2εt+1 V ar [Σ2εt+1] = Ω2 =

(
0.0025 4.5265 10−5

4.5265 10−5 0.0029

)
,

(30)

where εt+1 ∼ N (0, I), and the transition probability matrix is given by:

P =
[

0.96 0.126
0.04 0.874

]
. (31)

The parameter values in the model (30)-(31) are obtained by estimating a two-regime Markov

switching model using a real data. The latter consists of monthly observations on S&P composite

index and 10-years Government Bond from January 1958 to December 2006 for a total of 588

observations. The returns are computed using the standard continuous compounding formula. We

applied the Hamilton filter to recuperate the conditional probabilities Πt [see Section 3.1] and

compute the conditional VaR and ES.

To compute analytically the conditional VaR, we apply the algorithm described in Section

3.1.3 We calculate the VaR and ES for different portfolios constructed by considering a number

of different investment strategies: (A) 100% stock; (B) 75% stock and 25% bond; (C) 50% stock

and 50% bond; (D) 25% stock and 75% bond; and (E) 100% bond. Using model (30)-(31), the

analytical and simulated values of VaR of aggregated returns (25) and ES of simple returns (7) at

horizons h = 1, 2, 3, 4, 5 are presented in Tables 1 and 2, respectively.

The second column of Table 1 shows the 1% VaR calculated using 100000 simulations and

the third and fourth columns present the 1% VaR calculated using an analytical approximation

under two different approximation errors 10−3 and 10−5, respectively. From this table we draw

the following conclusions. First, there is almost no difference between the analytical and simulated

values of 1% VaR at horizons under consideration; this is true for all the investment strategies that

we consider. Second, it seems that investing only in stock (100% stock) or bond (100% bond) is

more risky, since for these portfolios the VaRs are higher. Finally, the best investment strategy, in

terms of reducing risk, is the one that corresponds to 50% stock and 50% bond.
2We also consider other univariate models and our conclusion, that there is almost no difference between simulation

and analytical solutions of VaR, does not change. The results are available from the author upon request.
3The details about how to control for the discretization and truncation errors in the numerical approximation

of the integral
∫∞
0

D̄2(u,V aRα
t (rp,t:t+h))

u
du and a GAUSS code for calculation of ES and VaR are available from the

author upon request.
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Table 2 compares the analytical and simulation calculations of 1% ES for different investment

strategies that we discussed above. The second column shows the 1% ES calculated using 100000

simulations and the third column presents the 1% ES calculated using the analytical formula of

Proposition 2. From this table we draw the following conclusions. First, there is almost no difference

between the analytical and simulated values of 1% ES. Second, as we find for VaR, it is more risky

to invest only in stock or bond. Further, the best investment strategy, in terms of reducing risk, is

the one that corresponds to 50% stock and 50% bond.

Table 1: Simulation and analytical approximation of 1% VaR of a portfolio’s aggregated returns rp,t:t+h

Horizon
Simulation Analytical Approximation

Approx Error = 10−3 Approx Error = 10−5

(A) 100% Stock
1 0.1067 0.1071 0.1062
2 0.1517 0.1606 0.1521
3 0.1853 0.1861 0.1861
4 0.2137 0.2127 0.2138
5 0.2380 0.2370 0.2390

(B) 75% Stock 25% Bond
1 0.0858 0.0887 0.0851
2 0.1204 0.1220 0.1210
3 0.1476 0.1519 0.1480
4 0.1696 0.1669 0.1701
5 0.1882 0.1846 0.1892

(C) 50% Stock 50% Bond
1 0.0783 0.0821 0.0774
2 0.1099 0.1116 0.1112
3 0.1342 0.1386 0.1360
4 0.1535 0.1505 0.1541
5 0.1706 0.1663 0.1715

(D) 25% Stock 75% Bond
1 0.0883 0.0902 0.0889
2 0.1227 0.1242 0.1233
3 0.1490 0.1527 0.1501
4 0.1707 0.1692 0.1710
5 0.1889 0.1861 0.1901

(E) 100% Bond
1 0.1104 0.1109 0.1094
2 0.1542 0.1620 0.1549
3 0.1868 0.1877 0.1877
4 0.2135 0.2126 0.2138
5 0.2367 0.2359 0.2387

Note: This table presents the simulated and analytical approximation values of 1% VaR of aggregated returns
given by Equation (25) under model (30)-(31) and at horizons h = 1, 2, 3, 4, 5, where the horizon lengths are
in monthly units. The calculated 1% VaRs correspond to different portfolios constructed by considering a
number of different investment strategies: (A) 100% stock; (B) 75% stock and 25% bond; (C) 50% stock and
50% bond; (D) 25% stock and 75% bond; and (E) 100% bond. The number of simulations used to compute
the 1% VaRs is 100000.
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Table 2: Analytical and simulation calculations of 1% ES of a portfolio’s simple returns rp,t+h

Horizon Simulation Analytical
(A) 100% Stock

1 −0.1128 −0.1125
2 −0.1110 −0.1130
3 −0.1036 −0.0991
4 −0.1031 −0.1097
5 −0.1036 −0.0973

(B) 75% Stock 25% Bond
1 −0.0893 −0.0927
2 −0.0888 −0.0943
3 −0.0822 −0.0792
4 −0.0825 −0.0812
5 −0.0835 −0.0811

(C) 50% Stock 50% Bond
1 −0.0815 −0.0812
2 −0.0826 −0.0820
3 −0.0748 −0.0749
4 −0.0750 −0.0754
5 −0.0754 −0.0761

(D) 25% Stock 75% Bond
1 −0.0921 −0.0930
2 −0.0924 −0.0914
3 −0.0850 −0.0848
4 −0.0861 −0.0837
5 −0.0855 −0.0859

(E) 100% Bond
1 −0.1156 −0.1219
2 −0.1151 −0.1204
3 −0.1048 −0.1191
4 −0.1062 −0.1169
5 −0.1078 −0.1192

Note: This table presents the analytical and simulated values of 1% ES of simple returns given by
Equation (7) under model (30)-(31) and at horizons h = 1, 2, 3, 4, 5, where the horizon lengths are in
monthly units. The calculated 1% ES correspond to different portfolios constructed by considering
a number of different investment strategies: (A) 100% stock; (B) 75% stock and 25% bond; (C)
50% stock and 50% bond; (D) 25% stock and 75% bond; and (E) 100% bond. The number of
simulations used to compute the 1% ES is 100000.

In Figure 1, we calculate 100 values of 1% ES using the analytical formula in Proposition 2 and
10000 and 100000 simulations. In this figure, we assume that we are at time t and we compute
the 1% ES of simple returns given by Equation (7) at horizons t + 1, t + 2, ..., t + 100, where the
horizon lengths are in monthly units. To get a conditional ES we use the conditional probabilities
Πt [see Section 3.1]. The computational time of computing these values is presented in Table 3.4

4We use GAUSS for the analytical and simulation calculations of VaR and ES. Some characteristics of the computer
hardware employed are:

(1) Memory (RAM): 3582 MB;
(2) Processor: intel(R) Core (TM)2 Duo CPU T7500 @ 2.20GHz 2.20 GHz;
(3) System type: 32-bit Operating System.
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From the latter, we see that using the analytical formula requires less than 1 second, whereas if
we use 100000 simulations the computational time is about 3 hours, 32 minutes, and 7 seconds.
For 10000 simulations, the computational time decreases to 21 minutes and 18 seconds. However,
Figure 2 shows that using 10000 simulations may overestimate the values of the 1% ES.5 Thus, we
need a very large number of simulations in order to get a good approximation for the tails of the
distribution of returns and a large number of simulations requires several hours.
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Figure 1: This figure presents the analytical and simulated 100 values of 1% ES of simple returns
given by Equation (7) under model (30)-(31) and using the analytical formula in Proposition 2 and
different number of simulations (N). To compute these values, we assume that we are at time t
and we compute the 1% ES of simple returns at horizons t+1, t+2, . . . , t+100, where the horizon
lengths are in monthly units. The calculated values of 1% ES correspond to the investment strategy
50% stock and 50% bond.

Table 3: Computational time of 100 values of 1% ES using analytical and simulation methods

100 Analytical 1% ES
100 Simulated 1% ES

N = 10000 N = 100000
Computational Time Less than 1 sec 21 min 18 sec 3 h 32 min 7 sec

Note: This table presents the computational time of computing 100 values of 1% ES of simple
returns (7) under model (30)-(31) and using the analytical and simulation methods. The calculated
values of 1% ES correspond to the investment strategy 50% stock and 50% bond. N represents the
number of simulations.

5Similarly to Figure 1, in Figure 2 we calculate 5 values of 1% ES using the analytical formula in Proposition 2
and 10000, 50000, 100000, 500000, 1000000, and 3000000 simulations. In this figure, we assume that we are at time
t and we compute the 1% ES of simple returns given by Equation (7) at horizons t + 1, t + 2, ..., t + 5, where the
horizon lengths are in monthly units.
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Figure 2: This figure presents the analytical and simulated 5 values of 1% ES of simple returns
given by Equation (7) under model (30)-(31) and using the analytical formula in Proposition 2 and
different number of simulations (N). To compute these values, we assume that we are at time t
and we compute the 1% ES of simple returns at horizons t + 1, t + 2, ..., t + 5, where the horizon
lengths are in monthly units. The calculated values of 1% ES correspond to the investment strategy
50% stock and 50% bond.

5 Conclusion

We consider a regime switching model to capture important features such as heavy tails, persistence,
and nonlinear dynamics in returns. These features are crucial to assess financial risk. Using Fourier
inversion method, we propose an analytical approximation for multi-horizon Value-at-Risk and a
closed-form solution for Expected Shortfall under regime-switching. By comparing the Value-at-
Risks and Expected Shortfalls calculated analytically and using simulations, we find that the both
approaches lead to almost the same result. Further, the analytical approach is less time and
computer intensive compared to simulations, which are typically used in risk management.
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A Appendix: Proof of Propositions

Proof of Proposition 2.

ESα
t (rp,t+h) = Et [rp,t+h | rp,t+h ≤ −V aRα

t (rp,t+h)]

=
∫ −V aRα

t (rp,t+h)

−∞
rp ft (rp | rp ≤ −V aRα

t (rp,t+h)) drp

=
∫ −V aRα

t (rp,t+h)

−∞
rp

∑N
j=1 Pr (st+h−1 = j | It) 1√

2π(α>h Ωjαh)
exp

(
− 1

2

(rp−α>h µj)2

(α>h Ωjαh)

)

Pr (rp ≤ −V aRα
t (rp,t+h) | It)

drp.

17



Since Pr
(
rp≤ −V aRα

t (rp,t+h) | It

)
= α, we get

ESα
t (rp,t+h)

= 1
α
√

2π

∑N
j=1 Pr (st+h−1 = j | It)

∫ −V aRα
t (rp,t+h)

−∞
rp√

(α>h Ωjαh)
exp

(
− 1

2

(rp−α>h µj)2

(α>h Ωjαh)

)
drp

= −1
α
√

2π

∑N
j=1 Pr (st+h−1 = j | It)

[√
(α>h Ωjαh)

∫ −V aRα
t (rp,t+h)

−∞
−rp

(α>h Ωjαh)
exp

(
− 1

2

(rp−α>h µj)2

(α>h Ωjαh)

)
drp

]

− 1
α
√

2π

∑N
j=1 Pr (st+h−1 = j | It)

[√
(α>h Ωjαh)

∫ −V aRα
t (rp,t+h)

−∞
α>h µj

(α>h Ωjαh)
exp

(
− 1

2

(rp−α>h µj)2

(α>h Ωjαh)

)
drp

]

+ 1
α
√

2π

∑N
j=1 Pr (st+h−1 = j | It)

[√
(α>h Ωjαh)

∫ −V aRα
t (rp,t+h)

−∞
α>h µj

(α>h Ωjαh)
exp

(
− 1

2

(rp−α>h µj)2

(α>h Ωjαh)

)
drp

]

= −1
α
√

2π

∑N
j=1 Pr (st+h−1 = j | It)

√
(α>h Ωjαh)

[∫ −V aRα
t (rp,t+h)

−∞
(
−rp+α>h µj

(α>h Ωjαh)

)
exp

(
− 1

2

(rp−α>h µj)2

(α>h Ωjαh)

)
drp

]

+ 1
α

∑N
j=1 Pr (st+h−1 = j | It)

(
α>h µj

) [∫ −V aRα
t (rp,t+h)

−∞
1√

2π
√

(α>h Ωjαh)
exp

(
− 1

2

(rp−α>h µj)2

(α>h Ωjαh)

)
drp

]
.

Notice that
∫ −V aRα

t (rp,t+h)

−∞

(−rp + α>h µj

(α>h Ωjαh)

)
exp

(
−1

2

(
rp − α>h µj

)2

(α>h Ωjαh)

)
drp =exp

(
−1

2

(
V aRα

t (rp,t+h) + α>h µj

)2

(α>h Ωjαh)

)
(32)

and
∫ −V aRα

t (rp,t+h)

−∞

1
√

2π
√

(α>h Ωjαh)
exp

(
−1

2

(
rp − α>h µj

)2

(α>h Ωjαh)

)
drp = Φ


−


V aRα

t (rp,t+h) + α>h µj√
(α>h Ωjαh)





, (33)

where Φ(.) is the standard normal distribution function. Thus, given (32) and (33), we have

ESα
t (rp,t+h) =

−1
α
√

2π

N∑

j=1

Pr (st+h−1 = j | It)
√

(α>h Ωjαh) exp

(
−1

2

(
V aRα

t (rp,t+h) + α>h µj

)2

(α>h Ωjαh)

)

+
1
α

N∑

j=1

Pr (st+h−1 = j | It)
(
α>h µj

)
Φ


−


V aRα

t (rp,t+h) + α>h µj√
(α>h Ωjαh)





.

ESα
t (rp,t+h) can be written as follow

ESα
t (rp,t+h) =

1
α

e>
[
R1 (V aRα

t (rp,t+h))− 1√
2π

R2 (V aRα
t (rp,t+h))

]
Ph−1Πt,

where

R1 (V aRα
t (rp,t+h)) = Diag


α>h µ1Φ


−


V aRα

t (rp,t+h) + α>h µ1√
(α>h Ω1αh)





 , ...,α>h µNΦ


−


V aRα

t (rp,t+h) + α>h µN√
(α>h ΩNαh)








 ,

R2 (V aRα
t (rp,t+h))

= Diag

(√
(α>h Ω1αh)exp

(
−1

2

(
V aRα

t (rp,t+h) + α>h µ1

)2

(α>h Ω1αh)

)
, ...,

√
(α>h ΩNαh)exp

(
−1

2

(
V aRα

t (rp,t+h) + α>h µN

)2

(α>h ΩNαh)

))
,

Φ(.) is the standard normal distribution function. See proof in Appendix.
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