Public Economics
 Tax distorsions

I. Ortuño

2015

Distorsions

- AGZ 2.1. and Stiglitz. pg 488, and notes in Aula Global

Distorsions

- Why do taxes create inefficiencies?
- Competitive Equilibrium -> Eficient allocation of resources (FFTWE).
- Consumers and produces -> same prices
- Tax-> consumer's price diiferent from producer's price

Basic Model

- Consumption goods x and y. Leisure h.Labor $I=1-h$

Basic Model

- Consumption goods x and y. Leisure h.Labor $I=1-h$
- Utility: $U(x, y, h)$

Basic Model

- Consumption goods x and y. Leisure h.Labor $I=1-h$
- Utility: $U(x, y, h)$
- Prices (constant): p_{x}, p_{y}. Wage: w (Frontier of production possibilities-> linear function. In the notes we have a more general model)

Basic Model

- Consumption goods x and y. Leisure h.Labor $I=1-h$
- Utility: $U(x, y, h)$
- Prices (constant): p_{x}, p_{y}. Wage: w (Frontier of production possibilities- $>$ linear function. In the notes we have a more general model)
- Tax function: $T(x, y, I)$

Basic Model

- Consumption goods x and y. Leisure h.Labor $I=1-h$
- Utility: $U(x, y, h)$
- Prices (constant): p_{x}, p_{y}. Wage: w (Frontier of production possibilities- $>$ linear function. In the notes we have a more general model)
- Tax function: $T(x, y, I)$
- The agent solves:

$$
\begin{array}{cc}
& \operatorname{Max}_{x, y, I} \cup(x, y, 1-I) \\
\text { s.t. } & p_{x} I+p_{y} y=w l-T(x, y, l)
\end{array}
$$

Basic Model

- Consumption goods x and y. Leisure h.Labor $I=1-h$
- Utility: $U(x, y, h)$
- Prices (constant): p_{x}, p_{y}. Wage: w (Frontier of production possibilities- $>$ linear function. In the notes we have a more general model)
- Tax function: $T(x, y, I)$
- The agent solves:

$$
\begin{array}{cc}
& \operatorname{Max}_{x, y, l} U(x, y, 1-I) \\
\text { s.t. } & p_{x} I+p_{y} y=w l-T(x, y, l)
\end{array}
$$

- Comment: Where is the tax revenue?

Basic Model

- Consumption goods x and y. Leisure h.Labor $I=1-h$
- Utility: $U(x, y, h)$
- Prices (constant): p_{x}, p_{y}. Wage: w (Frontier of production possibilities- $>$ linear function. In the notes we have a more general model)
- Tax function: $T(x, y, I)$
- The agent solves:

$$
\begin{array}{cc}
& \operatorname{Max}_{x, y, l} U(x, y, 1-I) \\
\text { s.t. } & p_{x} I+p_{y} y=w I-T(x, y, l)
\end{array}
$$

- Comment: Where is the tax revenue?
- We obtain the same results if such revenue is included

Basic model

- FFTWE -> Pareto efficient conditions (draw a figure to see it)

$$
\begin{align*}
R M S_{x y} & =\frac{p_{x}}{p_{y}}=R M T_{x y} \tag{1}\\
R M S_{h x} & =\frac{w}{p_{x}}=R M T_{h x} \tag{2}\\
R M S_{h y} & =\frac{w}{p_{y}}=R M T_{h y} \tag{3}
\end{align*}
$$

Lump-sum tax

- A lump-sum tax is

$$
T(x, y, I)=T
$$

Lump-sum tax

- A lump-sum tax is

$$
T(x, y, I)=T
$$

- The above conditions are satisfied

Lump-sum tax

- A lump-sum tax is

$$
T(x, y, I)=T
$$

- The above conditions are satisfied
- This is an efficient tax.

Excise tax

- $T(x, y, l)=t_{x} p_{x} x$

Excise tax

- $T(x, y, l)=t_{x} p_{x} x$
- Budget constraint:

$$
\left(1+t_{x}\right) p_{x} x+p_{y} y=w l
$$

Excise tax

- $T(x, y, l)=t_{x} p_{x} x$
- Budget constraint:

$$
\left(1+t_{x}\right) p_{x} x+p_{y} y=w l
$$

- The new equiluibrium is given by:

$$
\begin{aligned}
R M S_{x y} & =\frac{p_{x}\left(1+t_{x}\right)}{p_{y}} \neq \frac{p_{x}}{p_{y}}=R M T_{x y} \\
R M S_{h x} & =\frac{w}{p_{x}\left(1+t_{x}\right)} \neq \frac{w}{p_{x}}=R M T_{h x}
\end{aligned}
$$

Excise tax

- It doesn't affect the marginal cost of production. It creates a distorsion on consumption
- The consumer will reduce x and increase y and h.

Tax on consumption

- $T(x, y, I)=t_{c}\left(p_{x} x+p_{y} y\right)$

Tax on consumption

- $T(x, y, l)=t_{c}\left(p_{x} x+p_{y} y\right)$
- The new budget constraint:

$$
\left(1+t_{c}\right)\left(p_{x} x+p_{y} y\right)=w l
$$

Tax on consumption

- $T(x, y, I)=t_{c}\left(p_{x} x+p_{y} y\right)$
- The new budget constraint:

$$
\left(1+t_{c}\right)\left(p_{x} x+p_{y} y\right)=w l
$$

- The equilibrium is given by (1) and

$$
\begin{aligned}
R M S_{h x} & =\frac{w}{\left(1+t_{c}\right) p_{x}} \neq \frac{w}{p_{x}}=R M T_{h x} \\
R M S_{h y} & =\frac{w}{\left(1+t_{c}\right) p_{y}} \neq \frac{w}{p_{y}}=R M T_{h y}
\end{aligned}
$$

Tax on consumption

- $T(x, y, I)=t_{c}\left(p_{x} x+p_{y} y\right)$
- The new budget constraint:

$$
\left(1+t_{c}\right)\left(p_{x} x+p_{y} y\right)=w l
$$

- The equilibrium is given by (1) and

$$
\begin{aligned}
R M S_{h x} & =\frac{w}{\left(1+t_{c}\right) p_{x}} \neq \frac{w}{p_{x}}=R M T_{h x} \\
R M S_{h y} & =\frac{w}{\left(1+t_{c}\right) p_{y}} \neq \frac{w}{p_{y}}=R M T_{h y}
\end{aligned}
$$

- Leisure is not taxed -> taxation creates a welfare inefficiency

A tax on labour income

- $T(x, y, l)=t_{w} w l$

A tax on labour income

- $T(x, y, l)=t_{w} w l$
- The budget constraint:

$$
p_{x} x+p_{y} y=\left(1-t_{w}\right) w l
$$

A tax on labour income

- $T(x, y, l)=t_{w} w l$
- The budget constraint:

$$
p_{x} x+p_{y} y=\left(1-t_{w}\right) w l
$$

- The new equilibrium is given by (1) and

$$
\begin{aligned}
R M S_{h x} & =\frac{w\left(1-t_{w}\right)}{p_{x}} \neq \frac{w}{p_{x}}=R M T_{h x} \\
R M S_{h y} & =\frac{w\left(1-t_{w}\right)}{p_{y}} \neq \frac{w}{p_{y}}=R M T_{h y}
\end{aligned}
$$

A tax on labour income

- $T(x, y, l)=t_{w} w l$
- The budget constraint:

$$
p_{x} x+p_{y} y=\left(1-t_{w}\right) w l
$$

- The new equilibrium is given by (1) and

$$
\begin{aligned}
R M S_{h x} & =\frac{w\left(1-t_{w}\right)}{p_{x}} \neq \frac{w}{p_{x}}=R M T_{h x} \\
R M S_{h y} & =\frac{w\left(1-t_{w}\right)}{p_{y}} \neq \frac{w}{p_{y}}=R M T_{h y}
\end{aligned}
$$

- This is equivalent to a general tax on consumption.

A tax on labour income

- $T(x, y, l)=t_{w} w l$
- The budget constraint:

$$
p_{x} x+p_{y} y=\left(1-t_{w}\right) w l
$$

- The new equilibrium is given by (1) and

$$
\begin{aligned}
R M S_{h x} & =\frac{w\left(1-t_{w}\right)}{p_{x}} \neq \frac{w}{p_{x}}=R M T_{h x} \\
R M S_{h y} & =\frac{w\left(1-t_{w}\right)}{p_{y}} \neq \frac{w}{p_{y}}=R M T_{h y}
\end{aligned}
$$

- This is equivalent to a general tax on consumption.
- Only labor income; no savings $->t_{c}$ is equivalent to $t_{w}=t_{c} /\left(1+t_{c}\right)$

Production inefficiencies

- Two production sectors x and y.

Production inefficiencies

- Two production sectors x and y.
- L_{i}, K_{i} : labor and capital in sector $i, i=x, y$.

Production inefficiencies

- Two production sectors x and y.
- L_{i}, K_{i} : labor and capital in sector $i, i=x, y$.
- Perfect competiton without taxation: factor price= marginal productivity

Production inefficiencies

- Two production sectors x and y.
- L_{i}, K_{i} : labor and capital in sector $i, i=x, y$.
- Perfect competiton without taxation: factor price= marginal productivity
- The equilibrium condition with efficient allocation of capital and labor:

$$
R M T S_{K L}^{x}=\frac{r}{w}=R M T S_{K L}^{y}
$$

Production inefficiencies

- Suppose a tax on wages on sector $x, t_{w x}$, (the tax is paid by the firms in sector x)

$$
R M T S_{K L}^{x}=\frac{r}{w\left(1+t_{w x}\right)} \neq \frac{r}{w}=R M T S_{K L}^{y}
$$

Production inefficiencies

- Suppose a tax on wages on sector $x, t_{w x}$, (the tax is paid by the firms in sector x)

$$
R M T S_{K L}^{x}=\frac{r}{w\left(1+t_{w x}\right)} \neq \frac{r}{w}=R M T S_{K L}^{y}
$$

- -> ineffecient allocation

Production inefficiencies

- Suppose a tax on wages on sector $x, t_{w x}$, (the tax is paid by the firms in sector x)

$$
R M T S_{K L}^{x}=\frac{r}{w\left(1+t_{w x}\right)} \neq \frac{r}{w}=R M T S_{K L}^{y}
$$

- -> ineffecient allocation
- What about a general tax on wages?

Production inefficiencies

- Suppose a tax on wages on sector $x, t_{w x}$, (the tax is paid by the firms in sector x)

$$
R M T S_{K L}^{x}=\frac{r}{w\left(1+t_{w x}\right)} \neq \frac{r}{w}=R M T S_{K L}^{y}
$$

- -> ineffecient allocation
- What about a general tax on wages?
- No inefficienies in production (make sure you see it).

Production inefficiencies

- Suppose a tax on wages on sector $x, t_{w x}$, (the tax is paid by the firms in sector x)

$$
R M T S_{K L}^{x}=\frac{r}{w\left(1+t_{w x}\right)} \neq \frac{r}{w}=R M T S_{K L}^{y}
$$

- -> ineffecient allocation
- What about a general tax on wages?
- No inefficienies in production (make sure you see it).
- But we still have distorsions in comsumption

Notes in "aula global"

- Two consumption goods, x and y.
- One production factor I.
- Two firms

$$
\begin{aligned}
& X^{s}=F_{k}\left(I_{x}\right) \\
& Y^{s}=F_{y}\left(I_{y}\right)
\end{aligned}
$$

- Fixed labor supplu I^{*}
- Consumer $U(x, y)$
- Frontier of possibilities of production: $y=T(x)$
- MRT (x, y)
- $\operatorname{MRS}(x, y)$

Notes in "aula global"

- One can prove the following

Theorem

If the allocation $\left\{\left(x^{D}, y^{D}\right),\left(x^{S}, I_{x}\right),\left(y^{S}, I_{y}\right)\right\}$ is effcient, then

$$
\begin{aligned}
I_{x}+I_{y} & =I^{*} \\
x^{D} & =x^{S} \\
y^{D} & =y^{S}
\end{aligned}
$$

$\operatorname{MRS}_{x, y}\left(x^{D}, y^{D}\right)=M R T_{x, y}\left(x^{S}, y^{S}\right)$

Theorem

If $\left[\left(p_{x}, p_{y}, w\right),\left\{\left(x^{D}, y^{D}\right),\left(x^{S}, I_{x}\right),\left(y^{S}, I_{y}\right)\right\}\right]$ is a competitive equilibrium, then the allocation $\left\{\left(x^{D}, y^{D}\right),\left(x^{S}, I_{x}\right),\left(y^{S}, I_{y}\right)\right\}$ is effcient.

