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ABSTRACT. – We propose two classes of consistent tests in parametric 
econometric models defi ned through multiple conditional moment 
restrictions. The fi rst type of tests relies on nonparametric estimation, 
while the second relies on a functional of a marked empirical process. For 
both tests, a simulation procedure for obtaining critical values is shown 
to be asymptotically valid. Finite sample performances of the tests are 
investigated by means of several Monte-Carlo experiments. 2 3 4

Tests convergents de restrictions de moments 
conditionnels

RÉSUMÉ. – Nous proposons deux classes de tests convergents de 
la spécifi cation paramétrique de modèles économétriques défi nis par 
des restrictions de moments conditionnels. La première est basée sur 
l’estimation non-paramétrique, la seconde sur une fonctionnelle d’un 
processus empirique marqué. Pour les deux types de tests, une procédure 
de simulation permet d’obtenir des valeurs critiques asymptotiquement 
valides. Le comportement en petits échantillons de ces tests est étudié 
par des simulations. 
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1  Introduction

Econometric models are frequently defi ned through conditional moment restric-
tions. This is the case for models simultaneously parameterizing different con-
ditional moments (e.g. conditional mean and conditional variance) without spe-
cifi c distributional assumptions, transformation models, models identifi ed by 
means of instrumental variables, and nonlinear-in-variables simultaneous equa-
tion models. Estimation under conditional moment restrictions is considered 
by CHAMBERLAIN [1987], NEWEY [1990], ROBINSON [1991], and DOMINGUEZ and 
LOBATO [2004] among others. Checking the validity of these moment restrictions 
is a central issue. Among the most popular specifi cation tests, M-tests, as proposed 
by NEWEY [1985a, 1985b], TAUCHEN [1985] and WOOLDRIDGE [1990], aim at test-
ing a fi nite number of arbitrary unconditional moment restrictions implied by the 
conditional moment restrictions. These tests are “directional” in the sense that they 
are unable to detect some misspecifi cations, though they may be optimal in the 
direction of precisely specifi ed alternatives. Omnibus specifi cation tests, which are 
consistent against any misspecifi cation, are useful when the econometrician has no 
specifi c alternative in mind.

Two approaches have been developed in the recent literature to derive omnibus 
specifi cation tests of a parametric regression function. The fi rst approach compares 
the fi tted parametric regression function with a nonparametric function estimated 
using smoothers, see EUBANK and SPIEGELMAN [1990], KOZEK [1991], HÄRDLE and 
MAMMEN [1993], HONG and WHITE [1995], FAN and LI [1996], ZHENG [1996], and 
ELLISON and ELLISON [2000] among others. HART’s monograph [1997] surveys part 
of the statistical literature on the topic. The second approach compares integral 
transforms of the competing regression curves rather than the curves themselves. 
Indeed, a function can be uniquely characterized by an integral transform, see 
APOSTOL [1957, Chap 11]. For instance, there is a one-to-one relationship between 
the density and integral transforms such as the probability distribution function or 
the characteristic function. The integral regression function generalizes the distribu-
tion function concept to the regression case, see PRAKASA RAO [1983 pp. 256-258], 
and is used for testing purposes by BUCKLEY [1991], HONG-ZHY and BIN [1991], 
DELGADO [1993], STUTE [1997], KOUL and STUTE [1999], and WHANG [2000] to 
mention just a few. Bierens and coauthors use the generalization of the character-
istic function to the regression case to build a specifi cation test, see BIERENS [1982, 
1990], DE JONG and BIERENS [1994] and BIERENS and PLOBERGER [1997]. The smooth 
test approach leads to asymptotically pivotal tests statistics but that depends on a 
smoothing parameter, while the integral-transform approach yields test statistics 
that have case-dependent limiting distributions but do not depend on the choice of 
a smoothing parameter. The two approaches can be interpreted as M-tests with an 
infi nite number of moment restrictions.

Most work has focused on distribution and regression models, with few excep-
tions. ZHENG [1998] and BIERENS and GINTHER [2001] deal with quantile regres-
sion models. STINCHCOMBE and WHITE [1998], KOUL and STUTE [1999], and 
WHANG [2001] propose tests for an univariate conditional moment restriction. CHEN

and FAN [1999] and DeLGADO and GONZÁLEZ–MANTEIGA [2001] provide consistent 
procedures for testing some conditional moment restrictions in semiparametric and 
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nonparametric models, e.g. testing for omitted variables, but do not allow the null 
hypothesis to depend on unknown parameters.

Our aim is to propose tests for multiple conditional moment restrictions with 
unknown parameters and thus to provide useful procedures for econometric mod-
eling. The innovative feature of our study with respect to previous work is to 
simultaneously follow and generalize the two approaches developed for specifi -
cation testing of regression models. We restrict to an iid context. Extension to a 
time-series context should follow along the lines of DE JONG [1996], who considers 
BIERENS’ [1990] test under data dependence, see also DOMINGUEZ and LOBATO [2003], 
and LI [1999], who generalizes FAN and LI’s [1996] results. Here, we focus on the 
particular features arising when the conditional moment restrictions are multidi-
mensional and possibly nonlinear in the endogenous variables. This allows us to 
point out the inherent problems of the generalization and to raise some open ques-
tions. From a practical viewpoint, we look throughout our paper at some examples 
of applications and we explain how to implement each type of tests in practice. 
Finally, we compare the behavior of the two types of tests by means of several 
Monte-Carlo experiments, as there is little evidence in the econometric literature 
on the comparative small sample performances of the competing approaches.

The paper is organized as follows. In Section 2, we detail our general testing 
framework and we discuss examples of applications. In Section 3, we explain how 
the two testing approaches can be generalized and we study the asymptotics of 
some tests statistics based upon either nonparametric kernel estimation or integral-
transform regression estimation. In Section 4, we explain the diffi culties in apply-
ing known bootstrap methods in our general framework and we propose instead a 
simulation procedure to approximate critical values of each type of test. Section 5 
reports the results of our Monte-Carlo study. Section 6 gives some directions for 
further research. Technical proofs are confi ned to Section 7.

2  Testing Framework

Let Zn = {Zi, i = 1,..., n} be a random sample drawn from a random vector 
Z s, and let X q be a subvector of Z. Following NEWEY [1985a, 1985b], 
CHAMBERLAIN [1987], WOOLDRIDGE [1990] and WHITE [1994], we consider a par-
ticular parametric model indexed by p, defi ned through conditional 
moment restrictions of the form

(1)

where  ( , ) : s × p m is a vector of known functions and 0 is the null vec-
tor of m. We call  ( , ) a generalized residual vector, as WOOLDRIDGE [1990] does 
by analogy with regression models, because the null hypothesis specifi es that its 
conditional expectation given X is zero. Our general framework allows to deal with 
a wide range of models considered in the econometric literature.
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 EXAMPLE 1: Our framework includes specifi cation testing of models that jointly 
parameterize the conditional mean and the conditional variance of a dependent 
variable. Such models are defi ned as

 where μ ( , ) and 2 ( , ) are known functions up to the value of 0 , see e.g. 
WOOLDRIDGE [1990]. The parametric model is completely defi ned through restric-
tions (1) where Z = (Y, X )  and

 Testing H0 allows to check the full specifi cation of the model. We may also 
be interested in testing only a subset of these restrictions. If we consider only 
restrictions relative to the conditional mean, we deal with specifi cation testing 
of a standard regression model, as studied by many authors. If we consider only 
the second set of restrictions, e.g. if we are sure about the functional form of the 
conditional mean, we entertain a test about the functional form of the conditional 
variance, as studied by HONG [1993]. Finally, a particular application of our 
framework allows to test the null hypothesis of homoskedasticity by considering 
the specifi c restriction

 where is included in 0.

 EXAMPLE 2: Consider the model

 where μ ( , ) and  ( , ) are known functions. When 0 is unknown and  ( , ) is a 
nonlinear transform, this model is not a regression model. Choices for  ( , ) include 
the popular Box-Cox transformation and the family of transformations defi ned by

 where denotes the fi rst derivative of  ( ), see MACKINNON and MAGEE [1990]. 
Simple instances of such transformations are (y) = y2 + y and (y) = arcsinh (y),
which have several advantages over the Box-Cox transform, see e.g. BURBIDGE,
MAGEE and ROBB [1988]. When the distribution of U is unknown, the parametric 
model is simply defi ned through

 that is through restrictions of the type (1). This allows to use any function of X
as an instrumental variable (IV) for estimation purposes. Rejecting the validity 
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of the conditional moment restrictions indicates that the functional form of the 
model is inadequate and then invalidates the IV estimation method.

 EXAMPLE 3: Our framework further includes models defi ned through conditional 
moment restrictions given a set of instrumental variables, as considered by 
NEWEY [1990]. An important example of such a model is one where  ( , ) is
a vector (or subvector) of residuals from a (possibly nonlinear) simultaneous 
equations system. As a benchmark, consider the simple equilibrium model

 where Q and P respectively denote quantity and price, I and W are exogenous 
variables, and U and V are the error terms. Here Z = (Q, P, I, W)  is the vector 
of all variables entering the model and X = (I, W)  is the vector of exogenous 
variables. The model assumes that the error terms are unpredictable given the 
exogenous variables, i.e.

 These restrictions ensure identifi cation of the coeffi cients and constitute the 
basis of IV estimation methods either in a parametric context, see e.g. DAVIDSON
and MACKINNON [1993] or in a nonparametric setup, see DAROLLES, FLORENS and 
RENAULT [1999]. Under the assumption that X is exogenous, rejecting these con-
ditional moment restrictions means that the postulated functional forms of the 
demand and supply curves are incorrect.

As seen from the above examples, our framework goes far beyond testing the 
parametric specifi cation of an univariate regression function and applies to test-
ing econometric models defi ned by several conditional moment restrictions, which 
can be tested simultaneously or separately. Other examples can be considered. 
STINCHCOMBE and WHITE [1998] proposed detecting misspecifi cation of a condi-
tional probability model by testing that the conditional score function is identically 
zero or that the information matrix equality holds conditionally upon the indepen-
dent variables. Alternatively, for a correctly specifi ed model, the latter restriction 
can be used to check whether a root of the likelihood equations is a global maxi-
mizer of the likelihood function, see GAN and JIANG [1999].

We now introduce some conditions upon the considered econometric model. 
To keep a great level of applicability, we formulate general assumptions that can 
accommodate various models and estimation methods. For the sake of simplicity, 
we focus on the case of cross-section data.

2.1 Zn is an iid sample from a random variable Z with support on Rs. The subvector 
X has a distribution F ( ) which admits an absolutely continuous density func-
tion ƒ ( ) with respect to the Lebesgue measure.

2.2   There is a -consistent estimator n of the pseudo-parameter *, where * is 
a unique interior point of . Under H0,

* = 0.
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2.3   (i)  For each component (k) ( , ) of  ( , ), k = 1,..., m,

 and  exist almost 
surely in an open neighborhood N ( *) of *,  and 

 with E [S (Z)] < , where  denotes 

either a vector or matrix norm. (ii) For each k = 1,..., m,  are continu-
ous in  for N ( *) and uniformly in Z almost everywhere.

Assumption 2.1 restricts our analysis to an iid context where the conditioning 
variables are continuous. Allowing some discrete components in X is not diffi cult, 
but would involve a more cumbersome notation1. Assumption 2.2 says that we 
have at hand an estimator n that is -consistent for some uniquely defi ned *

which is 0 under H0. Since we are in a testing problem, the uniqueness of * could 
be dropped at the price of introducing other technicalities, see e.g. GUERRE and 
LAVERGNE [2005]. Our assumption allows for several estimation methods, such as 
nonlinear least-squares, instrumental variables, generalized method of moments, or 
pseudo-maximum likelihood, see e.g. WHITE [1994]. Consider for instance an IV 
estimator n solution to

(2)

where M (X) is a suitable vector of instruments. Then * is defi ned as the unique 
solution to

Assumption 2.3 imposes some regularity on the functions entering the restrictions, 
see e.g. NEWEY [1985b] or ROBINSON [1991] for similar conditions.

3  The Two Approaches: 
Rationale and Asymptotics

3.1  Smooth Tests

The fi rst step consists in formulating the conditional moment restrictions as a com-
pletely equivalent (not arbitrary) unconditional moment restriction. Specifi cally, 
H0 is equivalent to

(3)

1. See ZHENG [1996] or STUTE [1997] for details.
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for a suitable weight function ws ( ) which is strictly positive almost surely onto the 
support of ƒ ( ). The null hypothesis thus states the orthogonality between the gen-
eralized residuals  ( , 0) and their conditional expectation E (  (Z, 0) | X = ).
Alternatively, one could weight each of the generalized residuals differently but 
we here focus on the main arguments and delay our discussion on weighting until 
Section 3.3. A possible and convenient choice for ws ( ) is the density ƒ ( ) itself, 
see e.g. POWELL, STOCK and STOKER [1989], FAN and LI [1996], ZHENG [1996] and 
LAVERGNE and VUONG [2000] for an analogous device, and we thereafter concen-
trate on this choice. Defi ne

A test can then be built by checking whether an estimator of the latter quantity is 
signifi cantly different from 0. The sample analog of T ( 0) is

A feasible estimator thus requires on the one hand a consistent estimator for 0
and on the other hand a consistent estimator for E (  (Z, ) | X) ƒ (X). Substituting 

n for 0 and the kernel estimator of E (  (Z, ) | X = ) ƒ ( ) into the last equation 
yields the estimator of T ( 0) defi ned as

where Kij = K ((Xi – Xj) / h), K ( ) : q  is a kernel function and h = h (n) is a 
positive bandwidth number. This statistic is easily computed from the estimated 
generalized residuals (Zi, n). It resembles the statistic proposed in FAN and 
LI [1996] and ZHENG [1996] for testing the specifi cation of regression functions 
and is constructed similarly, with the generalized residual vector (Zi, n) in place 
of standard regression residuals.

The statistic Tn is a U-statistic. Its asymptotic behavior is determined through its 
Hoeffding decomposition and depends on whether H0 holds, see SERFLING [1980]. 
Under misspecifi cation, the fi rst term of its Hoeffding decomposition determines 
the behavior of Tn, which is asymptotically -consistent for the unconditional 
moment in (3). Under H0 however, the fi rst term in the Hoeffding decomposition 
vanishes and higher order terms determine its asymptotic behavior. To state our 
formal result, we introduce some standard assumptions on the kernel function and 
the bandwidth parameter. We also impose some smoothness restrictions using the 
following defi nitions.

 DEFINITION 1: G , > 0 is the class of functions g ( ) : q such that > 0
with for all z q sup y - z g (y) – g (z)  / y - z G (z), where g ( )
and G ( ) have fi nite -th moments (or are bounded if  = + ).
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Let k (X) = E [ (k) (Z, *)  | X],

kl (X) = E [ (k) (Z, *) (l) (Z, *) | X] for k, l = 1, ..., m,

and let  (X) = E [S (Z) | X].

2.4 K ( ) is even and bounded, integrates to one and lim u
u q K (u)  = 0

2.5

2.6 ƒ ( ) G . For all k, l = 1, ..., m, kl ( ) G4, each element of k ( ) belong to 

G 8/3, k ( ) and  ( ) belong to G2 and 

 THEOREM 1: Under H0 and Assumptions 2.1 to 2.6,

To build an estimator for V, we note that

Hence, using a reasoning similar to the one leading to Tn, we can propose an esti-
mator for V as

One could alternatively use Kij K2 (u) du rather than  in Vn. The key reason 
for our choice is that the selected form of the estimator gives better small sample 
properties for the test in preliminary simulations. Thus our test statistic is defi ned 
as tn = nhq / 2 Tn / Vn

1/2.

 COROLLARY 2: Under Assumptions 2.1 to 2.6, tn d N (0, 1) under H0 and other-

wise

The resulting test is therefore a one-sided normal test and is asymptotically able 
to detect any violation of H0.



 CONSISTENT TESTS OF CONDITIONAL MOMENT RESTRICTIONS 41

 EXAMPLE 1 (continued): Given a consistent estimator n of *, e.g. a generalized 
nonlinear least-squares estimator, the generalized residuals are

 The statistic Tn can be written as

 Testing only the specifi cation of the conditional mean is based upon T1n, as pro-
posed by ZHENG [1996] and LI and WANG [1998]. Testing only the specifi cation 
of the conditional variance can be based upon T2n. Our joint specifi cation test 
of conditional mean and variance simply relies on the addition of the latter two 
statistics. The asymptotic variance estimator is computed as

Among the problems related to the practical implementation of our test is the 
choice of the bandwidth parameter. First, though our general theory is developed 
for a generic bandwidth, our test can be readily extended to vanishing individual 
bandwidths hj for each conditioning variable X(j). The rate of convergence of Tn is 
then  Second, a data-dependent bandwidth is often used in practice. 
This allows to adapt smoothing to the variability of X(j), by considering for instance 
hj = h × sj where  is the empirical variance of X(j). The following theorem shows 
that this can be done without affecting the properties of our asymptotic test.

 THEOREM 3: If K ( ) is differentiable, with bounded partial derivatives on its sup-
port, Corollary 2 extends to the case of a random  if there exists a deterministic 
h that fulfi lls the assumptions of Corollary 2 and such that 

3.2  Integral-Transform Tests

The null hypothesis of interest H0 is equivalent to the statement that 
E [  (Z, 0) w (X)] = 0 for all real-valued w ( ) such that this expectation exists. 
Checking such a statement is clearly diffi cult. Fortunately, as shown by STINCHCOMBE
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and WHITE [1998], one can restrict to some particular class of functions. Therefore 
a possible alternative equivalent way to write H0 is

(4)

where wP ( , x) is a well-chosen function depending on a nuisance param-
eter x. STINCHCOMBE and WHITE [1998] show that there exists different choices 
that yield consistent tests, for instance wP (X, x) = G (X  x) with G ( ) the 
logistic cumulative distribution function or the exponential employed by 
BIERENS [1982]. Here we use the computationally convenient step function 

 where 1 ( ) is the indicator function. 

Hence we consider the integral-transform function R (x, ) = E [  (Z, ) 1 (X x)],

which is analogous to the distribution function F (x) = E [1 (X x)]. Previous work 

where a similar choice is made includes STUTE [1997], ANDREWS [1997], KOUL and 
STUTE [1999], and WHANG [2000]. This is convenient because the expectations in 
(4) are easily estimated by sample analogs of the form

To get a feasible estimator, we replace 0 by n and come up with

which is an empirical process of dimension m marked by the generalized residuals 
 (Zi, n). A test statistic for (4) can then be any well-chosen continuous functional 

of Rn ( ). For instance, one may consider a statistic of the form

where  ( ) is an arbitrary probability measure, as done by BIERENS and 
PLOBERGER [1997]. In our formal analysis, we specifi cally choose a simple and 
natural measure as the empirical distribution function of the Xi and we consider the 
Cramer-von-Mises type statistic2

where Fn ( ) is the empirical distribution function of X. A Kolmogorov-Smirnov 
type test can also be constructed, but we focus on the Cramer-von-Mises type test 

2. This terminology is used by STUTE [1997].
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as WHANG [2000] reports better performances for this type of test in a regression 
context. Hence, our implicit null hypothesis is

an unconditional moment restriction equivalent to the original conditional moment 
restrictions. We hereafter provide a functional central limit theorem for Rn ( ) under 
the following assumption.

2.7   There is an estimator n that admits the asymptotic expansion 

 for some unique interior point *

of , where the function  ( , ) is such that E [  (Z, *)] = 0 and E [  (Z, *)

 (Z, *)]exist. Under H0, 0 = *.

For instance, if n is solution to (2), 

 where  We need Assumption 2.7 as the 

substitution of 0 by n has a fi rst-order effect on the behavior of Rn (x). Indeed 
under H0,  is, as a process indexed by x, asymptotically equivalent to

(5)

It is apparent that the second term of ri (x, ) comes from the estimation error 
n

*.

 THEOREM 4: Under H0 and Assumptions 2.1, 2.3(i), and 2.7,

 where denotes weak convergence in the Skorohod space 
and R is a Gaussian process centered at zero with covariance structure 
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The following corollary gives the asymptotic behavior of our statistic cn.

 COROLLARY 5: Under Assumptions 2.1, 2.3(i) and 2.7,

An asymptotic test can be based on the statistic cn as soon as one can compute 
critical values. However the asymptotic distribution of cn under H0 is known only 
in special cases, see e.g. DELGADO [1993]. Hence, we propose in Section 4 a simu-
lation method to approximate critical values. The resulting test is thus one-sided 
and consistent against any alternative to H0.

 EXAMPLE 1 (continued): Recall that Uni = Yi – μ (Xi, n). The statistic cn is then 
equal to

 Testing only the specifi cation of the conditional mean leads to consider c1n, which is 
exactly the statistic proposed by STUTE [1997] for univariate regression models 
and extended by WHANG [2000] to a multivariate context. Testing only the spe-
cifi cation of the conditional variance is based upon c2n. Our test statistic for 
testing the specifi cation of both conditional mean and variance is the sum of the 
two latter statistics.

3.3  Variations on Two Themes

It should be noted that a number of different valid test statistics can be built. 
First, many alternative equivalent formulations of the null hypothesis could be con-
sidered by replacing the generalized residuals  ( , ) by A (X)  ( , ), where A (x)
is a known m × m nonsingular matrix for almost all x. For the smooth test, when 
A (X) = A* (X) ƒ1/2 (X), the null hypothesis (3) writes
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where  which is positive defi nite for 
almost all x. The asymptotic variance of the corresponding smooth test statistic 
would be

where A (X) = A (X)  (X) A  (X) and  (X) is the m × m matrix with generic ele-
ment kl (X). Our weighting choice of Section 2.1 corresponds to an A* (X) equal to 
the identity matrix. For the integral-transform test, the null hypothesis writes

( ) ( ) ( ) ( ) ( )0 0 0: , ( ) ( ) , 0AH E Z A X X x E A X Z X x dF x =1 1

0for some ,

and the covariance structure of the corresponding limiting process RA  would be

Such expressions might be a starting point for investigating the optimality of the 
weighting matrix A (X), but this is outside the scope of this paper3.

Second, as easily seen from our Example 1, one could consider testing (3) by 
smooth tests by standardizing fi rst each of the components of Tn, T1n and T2n in our 
example, and then determining the asymptotically pivotal distribution of the sum 
of the standardized individual statistics. Yet another possibility could be to show 
that the joint distribution of (T1n, T2n) is asymptotically normal and to construct a 
normalized statistic with an asymptotic 2 distribution. This approach is adopted 
in LI [1999] when testing portfolio mean-variance effi ciency. However, such a test 
ignores the one-sided nature of the testing problem. Indeed, it can reject the null 
hypothesis for negative values of T1n and T2n, which asymptotically arise under H0
only, so that the level of the test is more diffi cult to control.

4  Simulated Critical Values

For both the smooth test and the integral-transform test, obtaining accurate small 
sample critical values is crucial. On the one hand, the practical implementation of 
the asymptotic smooth test involves some diffi culties, as the asymptotic approx-
imation of the null distribution can be slow, depending upon the chosen band-
width and the number of exogenous variables in the model, see e.g. HÄRDLE and 
MAMMEN [1993]. On the other hand, the integral-transform statistic has a limiting 

3. The results in this section can be easily derived using our Theorems 1 and 4.
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distribution under the null hypothesis that depends on the unknown data-generating 
process and therefore cannot be tabulated in general. One way of solving the latter 
problem is to derive case-independent upper-bounds of the asymptotic critical val-
ues as proposed by BIERENS and PLOBERGER [1997], but these are not sharp. Another 
possibility consists of applying a martingale transformation to Rn ( ) that yields 
an asymptotically pivotal distribution under H0, as studied by KHMALADZE [1993], 
STUTE, THIES and ZHU [1998], KOUL and STUTE [1999] among others. However, the 
martingale transformation relies on some smoothing and trimming parameters, 
thus weakening the main advantage of the integral-transform test compared to the 
smooth test.

In what follows, we fi rst briefl y review bootstrap methods that has been pro-
posed for computing critical values for specifi cation tests of regression functions 
and explain the diffi culties that arise for extending these methods to testing general 
conditional moment restrictions. We then propose a simple simulation approach 
that yields asymptotically valid critical values for our tests.

4.1  Bootstrap Methods for Approximating Critical 
Values

For smooth specifi cation tests of regression models, wild bootstrap procedures 
have been proposed to compute accurate small sample critical values. When 

 (Z, ) = Y – μ (X, ) with Y scalar, HÄRDLE and MAMMEN [1993] propose to gen-
erate bootstrap resamples as  where 
with  and

B1  The i are iid, independent of Zn, with zero mean and unit variance.

The zero mean condition ensures that  has zero mean conditional 
on the original sample. This condition yields resampled observations that fulfi ll the 
null hypothesis. The unit variance condition ensures that  has the 
same conditional variance as Yi – μ (Xi, n). Both conditions are crucial to obtain 
asymptotically valid critical values. These are then obtained in three steps: (i) gen-
erate several resamples (ii) for each resample, compute the corresponding estimate 

 and test statistic  (iii) compute the empirical quantile of order (1 – ) of 
the statistics  This provides a critical value to be compared to the original test 
statistic tn. For given  the estimation accuracy of the critical value increases with 
the number of resamples. Such a wild bootstrap procedure is also applicable to sta-
tistics based on integral transforms of a regression, see STUTE, GONZÁLEZ-MANTEIGA

and PRESEDO [1998] and WHANG [2000].
To apply such a wild bootstrap procedure in our framework, we should fi rst fi gure 

out how to generate resamples with the same observations for the exogenous vari-
ables, but new observations for the endogenous variables. The above presentation 
of the bootstrap suggests to generate an artifi cial sample of generalized residuals as 

 and to fi nd the values  such that 

From such resamples, one could then proceed as in Steps (ii) and (iii) above. 
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However, in some cases such a resampling method may be infeasible or diffi cult to 
implement from a practical point of view. First, practical diffi culties arise when the 
model is nonlinear in the endogenous variable as in the transformation model of 
Example 2, so that resampling and subsequent computations can be time-consum-
ing. Moreover, a reduced form for the endogenous variables may not be available, 
as in a nonlinear simultaneous equation model. Second, when one considers testing 
the specifi cation of a single equation from a simultaneous equation system, say 
the demand equation from Example 3, we confront the issue of how to generate 
price observations: if we relied on the parametric supply equation, then we would 
actually test the whole specifi cation of the system. LAVERGNE and THOMAS [2005] 
noted the same type of diffi culty when testing the null hypothesis E [Y | X] = 0 in 
the partially linear model

where it is unclear how to generate observations for the variable Z. Third, a theo-
retical problem arises as the equation  may not have a unique 
solution in y almost surely. It is easily seen that such a solution does not exist in 
Example 1, where there are two generalized residuals for only one endogenous 
variable. In other instances, the solution may not be unique.

It may well be that a suitable resampling method can be tailored in some particu-
lar cases. Such an issue has been dealt with in some specifi c contexts, as in para-
metric tests based on Generalized Method of Moments estimators, see HALL and 
HOROWITZ [1996]. In each situation, it would remain to determine the conditions 
analogous to B1 necessary to obtain asymptotically valid critical values. Since we 
aim at a general method for determining critical values, we use a simulation tech-
nique, the conditional Monte-Carlo approach, proposed by SU and WEI [1991] and 
HANSEN [1996] and used by DE JONG [1996] and CHEN and FAN [1999] for integral-
transform type statistics. This technique is simple and generally applicable but is 
not likely to be as good as one tailored for a specifi c model.

4.2  Smooth Tests

Because the statistic Tn is a function of Yn = {  (Zi, n), Xi), i = 1,..., n}, we directly 

simulate resamples as  where  and 

the i satisfy Assumption B1. This gives us statistics of the form

The simulated version of the test statistic is then
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Alternatively,  could be computed using as a variance estimator

However, we keep the original variance estimator Vn for simplicity, since the 
asymptotic analysis is similar and unreported simulations results reveal that there 
seems to be no substantial change in the fi nite sample behavior of the test.

Critical values are computed as the corresponding empirical quantiles for the set 
of simulated statistics. This gives a critical value to be compared to the original test 
statistic tn. The next theorem shows that such a simulated critical value is asymp-
totically valid.

 THEOREM 6: Under the assumptions of Theorem 1 and Assumption B1,

 where  ( ) is the standard normal distribution.

In the next section, we provide some evidence on the properties of the simulation 
technique in different setups. Our theoretical result does not ensure that the simula-
tion method yields more accurate critical values than the asymptotic approxima-
tion. Such a study is outside the scope of our paper. Finer theoretical properties 
of simulation or bootstrap methods have been established only for testing a lin-
ear regression model. LI and WANG [1998] showed that moments up to order four 
are accurately matched by the wild bootstrap under the supplementary condition 

 FAN and LINTON [1999] further provide Edgeworth’s expansions for the 

distribution of a similar test statistic in a regression model with symmetric errors.

4.3  Integral-Transform Tests

The procedure used for the smooth test cannot be directly applied to the statistic 
cn. This is because a version of Rn ( ) based upon  would not mimic its covariance 
structure under the null hypothesis. However,  has a fi rst-order asymptotic 
expansion that depends on ri (x, 0) only. This suggests to consider the statistic



 CONSISTENT TESTS OF CONDITIONAL MOMENT RESTRICTIONS 49

It is easy to see that conditional on Zn,  is centered at zero and with 
covariance structure  Critical values for 
testing H0 at level  are obtained as for the smooth test. In practice, computa-
tion of ri (x, n) requires to evaluate  (Zi, n), which is unknown in general but 
can be adequately approximated for usual estimators. For instance, if n is solu-
tion to (2) then  (Zi, n) can be replaced by  where 

 When  (Z, ) = Y – X  and n is the OLS esti-

mator,  and

This is the wild bootstrap statistic proposed by STUTE, GONZÁLEZ-MANTEIGA and 
PRESEDO [1998].

2.8 The function  ( , ) is such that E [  (Z, *)] = 0 and E [  (Z, *)  (Z, *) ].
 exists almost surely in an open neighborhood N ( *) of *

and  with E [L (Z)] < .

 THEOREM 7: Under the assumptions of Corollary 5 and Assumption 2.8, if 
1 c with probability 1 for some c <

 where c  is as in Corollary 5 with * in place of 0.

5  Monte-Carlo Results

Even in the simplest case of testing a regression function, there is little evidence 
in the econometric literature on the comparative small sample performances of 
the different approaches. A notable exception is WHANG [2000] who compares 
KOLMOGOROV-SMIRNOV and CRAMER-VON-MISES type tests to the tests of HÄRDLE and 
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MAMMEN [1993] and BIERENS and PLOBERGER [1997]. In this section, we investigate 
the small sample behavior of the tests considered in this paper within the setup of 
our Examples 1 to 3.
Testing for linearity of a regression function. We fi rst consider testing the linear 
specifi cation of a regression function. In this case, the smooth test is identical to the 
test proposed by ZHENG [1996] and LI and WANG [1996], while the integral-trans-
form test is the one studied by STUTE [1997]. The null hypothesis of interest is

The data generating process is chosen as

where the Ui and Xi are independent identically distributed N (0, 1). The null 
hypothesis corresponds to  = 0 and is denoted by DGP0. We investigate three 
alternatives denoted as DGP  for  = 1, 2 and 3. By increasing  we obtain higher 
frequency alternatives that are more diffi cult to distinguish from pure noise. This 
allows us to observe large variations in the tests’ behavior.

In each case two sample sizes, n = 50 and 100, are considered. For each experi-
ment, i.e. each data generating process and sample size, we run 2000 simulations. 
For each simulation, the critical value is estimated using 500 bootstrap replica-
tions, where the i have a two-point distribution as in STUTE and alii [1998]. The 
parameter vector ( 0, 0) is estimated by ordinary least-squares. For the test based 
on smoothers, we choose the bandwidth following the rule-of-thumb h = dn- 1/5,
with d varying in the grid {0.025, 0.05, 0.1, 0.5, 1, 1.5, 2}. The kernel is the stan-
dard Gaussian density function. The results of each experiment are reported on a 
graph that shows the empirical rejection probabilities for the three tests at nominal 
level 5% with respect to d. The solid line corresponds to the rejection probability 
for the test based upon cn (which does not depend upon d), the grey solid line is 
the rejection probability for the smooth test based upon tn using simulated criti-
cal values, and the dash line is the rejection probability for the smooth test using 
asymptotic critical values.

Figures 1 and 2 report results for DGP0 and sample sizes n = 50 and 100 respec-
tively. In both cases, the test based on nonparametric estimation is too conservative. 
This is because the test statistic is negatively biased in small samples, as already 
noted by LI and WANG [1998]. We also note that large bandwidths lead to large size 
distortions, a conclusion also reached by FAN and LINTON [2003]. However, the 
empirical size of the test becomes closer to its nominal size when the sample size 
increases. Using simulated critical values improves upon the asymptotic critical 
values but generally not as much as required. The empirical level for Stute’s test is 
very close to its nominal level even for a small sample size of n = 50.

Results for alternative hypotheses DGP1 to DGP3 are reported in Figures 3 to 
8. For the low frequency alternative DGP1, Stute’s test has high power even for a 
sample size of 50 observations, and its power is very close to one when n = 100. 
When the frequency of the alternative increases, the rejection probability for Stute’s 
test decreases. For DGP2 it is less than 20% when n = 50 but increases to nearly 
40% when n = 100. A sample size of 500 is required to get a power over 95%. As 
expected, power of the smooth test varies with the bandwidth and the frequency of 
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FIGURE 7
DGP3, n = 50

FIGURE 8
DGP3, n = 100

FIGURE 5
DGP2, n = 50

FIGURE 6
DGP2, n = 100

FIGURE 3
DGP1, n = 50

FIGURE 4
DGP1, n = 100

FIGURE 1
DGP0, n = 50

FIGURE 2
DGP0, n = 100
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the alternative. These phenomena have already been noted in other contexts, see 
e.g. LAVERGNE and VUONG [2000]. Small bandwidths correspond to low rejection 
frequencies, as also found by FAN and LINTON [2003], while large ones may yield 
low or high power depending upon the alternatives. The smooth test has reasonably 
high power for a range of bandwidths that narrows as  increases. As was the case 
under the null hypothesis, using bootstrap critical values leads to some but limited 
improvement in most cases.
Testing jointly for linearity of the regression function and for homoskedastic-
ity. We now consider a similar regression model, where one aims to test jointly for 
the specifi cation of the regression function and homoskedasticity. The null hypoth-
esis writes

We consider the design

where the Ui and Xi are generated as before. The null hypothesis  corre-
sponds to  = 0 and the alternative  corresponds to  = 1. Two sample sizes 
are considered, n = 100 and 250. Other details are otherwise similar than in the pre-
vious experiment. Results are reported in Figures 9 to 12. Under the null hypoth-
esis, the tests essentially exhibits the same features as when testing for a linear 
regression only. That is, the smooth test is undersized and it makes little difference 
to use bootstrap critical values, while the test based upon cn has an empirical level 
close to the nominal one. Under the alternative hypothesis, there is much more dif-
ference between the two tests. The smooth test is more powerful than the integral-
transform test except for a very small bandwidth, but power of the latter is larger 
than 70% when n = 250 and larger than 95% for n = 350.
Testing the transformation model. We now consider a model with a well-known 
nonlinear transformation in the endogenous variable, namely the arcsinh transfor-
mation. The hypothesis of interest here can be written as

We consider the design

where the Ui and Xi are generated as before, but the variance of the error term is 
0.5. The parameters are estimated by one-step GMM with vector of instruments (1, 
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X, X2) . Two sample sizes are considered, n = 100 and 250. The notation 
denotes the model with  = 0, 1, 2, 3. Other details are otherwise similar than in 
previous experiments. Results are reported in Figures 13 to 20.
Under the null hypothesis (Figures 13 and 14), the only novel feature compared 
to the previous cases is that the integral-transform test is now undersized for the 
smaller sample size. Under the alternative hypothesis  (Figures 15 and 16), 
the power of the smooth test is essentially one over the whole range of consi-
dered bandwidths, while the power of its competitor is around 20% for n = 100 
and increases to 50% when n = 250. Under the alternative hypothesis 
(Figures 17 and 18), the power function of the smooth test decreases sharply as 
the bandwidth increases for n = 100 but when n = 250, the power is essentially 
one over the whole range of considered bandwidths. Concerning the test based on 
cn, it has low power for n = 100 but this power increases up to 95% when n = 250. 
For the higher frequency alternative  (Figures 19 and 20), the power of the 
smooth test is more dependent of the value of the smoothing parameter for both 
sample sizes, going from 1 to 0 for small and large bandwidths respectively. The 
test based on cn has essentially no power for n = 100, but its rejection probability 
reaches 70% when n = 250.

FIGURE 9

DGP0, n = 100

FIGURE 10

DGP0, n = 250

FIGURE 11

DGP1, n = 100

FIGURE 12

DGP1, n = 250
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FIGURE 19

DGP 3, n = 100

FIGURE 20

DGP 3, n = 250

FIGURE 17

DGP 2, n = 100

FIGURE 18

DGP 2, n = 250

FIGURE 15

DGP 1, n = 100

FIGURE 16

DGP 1, n = 250

FIGURE 13

DGP 0, n = 100

FIGURE 14

DGP 0, n = 250
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Testing the simultaneous equation model. We fi nally consider the classic exactly 
identifi ed linear simultaneous equation model of Example 3

We generate the data according to

where Ii and Wi are independent standard Gaussian random variables while V1i
and V2i are correlated standard Gaussian random variables with 2-1/2 covariance 
and independent of (Ii, Wi). Parameters are estimated using Indirect Least Squares, 
which is equivalent to a Two-Stage Least Squares procedure in this context. The 
null hypothesis corresponds to  = 0 and is denoted , while  denotes 
the alternative. Other details are otherwise unchanged.

Results are reported in Figures 21 to 24. The graphs show that under 
the empirical level of the smooth test is very close to the nominal one for all band-
widths even when the sample size is as small as 100. On the other hand, the inte-

FIGURE 23
DGP 1, n = 100

FIGURE 24
DGP 1, n = 250

FIGURE 21
DGP 0, n = 100

FIGURE 22
DGP 0, n = 250
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gral-transform test underrejects for n = 100 but the level is fairly close to its nomi-
nal value for n = 250. Under the alternative hypothesis, we keep the sample size 
fi xed at n = 100 and allow  to vary. The power of the smooth test increases with 
the bandwidth, but the integral-transform test dominates its competitor under both 
alternatives with a power as high as 95%.

Our results sheds light on the comparative behavior of the tests in varied situa-
tions. For the smooth test, the choice of the smoothing parameter is revealed cru-
cial. Moreover, use of simulated critical values yields limited improvement for 
both size and power. Finally, no clear ranking emerges between the two tests. The 
overall performances of the tests depend on the particular experiment’s features.

6  Conclusion

We have shown in this paper how the two approaches used for testing the spe-
cifi cation of regression function can be extended to testing a general set of condi-
tional moment restrictions, which can prove useful for many econometric models. 
Clearly, several problems warrant further research. First, it seems important to 
determine whether there is some optimal and feasible way to combine the conditio-
nal moment restrictions, as discussed in Section 3.3. Second, for the smooth test, 
it would be helpful to have some data-driven methods of bandwidths’ choice, as 
investigated by HOROWITZ and SPOKOINY [2001] and GUERRE and LAVERGNE [2005] 
for the regression model. Third, bootstrap procedures for computing critical values 
should be investigated. We have explained the diffi culties related to resampling in 
a general context and we have subsequently proposed a simulation technique for 
computing critical values in small samples. Our experiments results illustrate that 
some limited improvement is expected using simulated critical values instead of 
asymptotic ones for the smooth test. Unreported simulations results suggest that 
more sophisticated methods can substantially improve upon our simulation tech-
nique, but the resampling scheme heavily depends on the model at hand. In this 
respect, a general accurate resampling method is still required.

7  Proofs

PROOF OF THEOREM 1 : Henceforth, for i = 1, 2, ..., n and k = 1,..., m,

and i j stand for  We have
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with

We prove in a fi rst step that  and  for all k = 1,..., m.

Using a mean value theorem argument,

   

To study S1n, we use the following lemma.

 LEMMA 8 (POWELL, STOCK and STOKER, [1989]): Let 

 be a U-statistic with symmetric kernel Hn (Zi, Zj) and let the Zi be 

iid. Let qn (Zi) = E [Hn (Zi, Zj) | Zi], . If E ( Hn (Z1, Z2)
2) = o (n),

then

The quantity S1n is a U-statistic with kernel 

 and
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by Assumptions 2.4 to 2.6 together with Hölder’s inequality. As E [Hn (Zi, Zj)] = 0, 

Lemma 8 implies that  where qn (Zi) = E [Hn (Zi, Zj) | Zi].

Moreover

so that S1n = Op (n-1/2). For S2n, we have

Hence, S2n = Op (1). Similarly, one can show that S3n = Op (1). These results imply 
that  and  are both Op (n-1), as n – * = Op (n-1/2) by Assumption 2.2.

We now determine the asymptotic distribution of the fi rst term in (6). We use of 
the following result for degenerate U-statistics.

 LEMMA 9 (HALL [1984]): Let Un be as in Lemma 8, with E [Hn (Zi, Zj) | Zi] = 0 a.s.
Let Gn (Z1, Z2) = E [Hn (Z3, Z1) Hn (Z3, Z2) | Z1, Z2].

The fi rst term of (6) is a degenerate U-statistic with kernel Dn ( , ), and the corre-
sponding Gn ( , ) is such that , where
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by Assumptions 2.4-2.6. Moreover,

Assumption 2.5 ensures that the conditions of Lemma 9 are fulfi lled, and Theorem 
1 follows.
PROOF OF COROLLARY 2: Let us fi rst consider the properties of Tn when H0 does not 
hold. Notice that (6) holds with * in place of 0. By a weak law of large numbers, 
it is straightforward to check that the corresponding S1n, S2n and S3n are all Op (1), 
so that  and  for all k = 1,..., m using Assumption 
2.2. Similarly,

and Tn converges to a strictly positive limit when H0 does not hold. A similar rea-
soning shows that Vn p V whether H0 holds or not.
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PROOF OF THEOREM 3: Under the null hypothesis, we shall show that 
 where the dependence of Tn on the bandwidth is made explicit. 

For this equality to hold, we need to show tightness of the process n ( h)q/2 Tn ( h)
for  [B1, B2] with 0 < B1 < 1 < B2 < . It can be seen that the second and third 
term in (6) are both Op (n-1) uniformly for  [B1, B2]. Let  be the fi rst term 
in (6). It is asymptotically normal at a fi xed point and converges to the same limit 
for any . Moreover for 1, 2  [B1, B2],

is  by a Taylor expansion of  around 1, using 

Assumption 2.6 and Hölder’s inequality. Hence  is tight for 

 [B1, B2], see BILLINGSLEY [1968]. Under the alternative hypothesis, it is suf-

fi cient to show that Tn ( h) is tight for 1, 2  [B1, B2], which is shown similarly. 
An analogous result for Vn then implies the desired result.

PROOF OF THEOREM 4: We have uniformly in x

where . The limit process is identifi ed by the con-
vergence of the fi nite dimensional distributions. Choose (x1,..., xp)

q and normal-
ized vectors (a1,..., ap)

m. Then apply a Central Limit Theorem to obtain that

We now show tightness of the process. Note that the index parameter in  is 
included in a deterministic continuous bounded function. Therefore,  is tight. 
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For  tightness will be proved when the marginal distributions of each compo-
nent of X are uniform in [0, 1]. The general case is dealt with applying the usual 
quantile transformation coordinate by coordinate. When the marginal distributions 
of X are uniform in the interval [0, 1],  takes its values in  Let 

 Since we endow  with the prod-

uct topology (generated by the metric dm (f, g) = max{d (fk, gk) : k = 1,..., m},
where fk , gk are the k-th coordinate of f, g respectively and d is the metric in the 
Skorohod Space D [0, 1]q), tightness follows if each coordinate is tight. The incre-
ment of the process  around  is defi ned in BICKEL and 
WICHURA [1971] as

Then it suffi ces to check the tightness condition in BICKEL and WICHURA [1971]. 
That is, we have to show that for any two neighbor intervals B and B  = (s , t ], i.e. 
they abut and for some j  {1, ..., q} they have the same j-th face 

for all k = 1, ..., m, where μ is an arbitrary measure. Applying STUTE’s [1997] 
Lemma 1,

with  and  with 

 Since i i = 0,

PROOF OF COROLLARY 5: By Lemma in KIEFFER [1959, p. 424], 
 The result is then an immediate con-

sequence of the continuous mapping theorem.
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PROOF OF THEOREM 6: Henceforth, for i = 1, 2,..., n and k = 1,..., m,

,  and E* [.] 

E [.|Zn]. We have a decomposition similar to (6), that is,

(7)

where  and  are defi ned similarly to  and  in (6), 

with  and  in place of  and  We now show that  and 

are both op (n-1 h-q/2) for all k = 1,..., m. Using a mean value theorem argument,

and . Since E* ( i j) = 0 for j i,  and  are degen-
erate U-statistics. Hence,  and as E* ( i)

2 = 1 for all i,

Using similar arguments as in the proof of Theorem 1,

Similarly, . As ( n – *) = Op (n-1/2), we get that 

 and . These terms are then negligible condi-

tional upon the initial sample.
Let us now determine the asymptotic distribution of the fi rst term in (7). For the 

sake of simplicity, we treat the case where m = 1. We then consider
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where  for all i. By Proposition 3.2 in DE JONG [1987], 

 converges in distribution to a N (0, 1) in probability conditional upon Zn if 

G1, G2, and G3 are of lower order in probability than , where

Now, G1, G2, and  are positive and it is easily checked as in the proof of 
Theorem 1 that

and that similarly E [G1] = O (n-6 h-3q), E [G2] = O (n-5 h-2q) and E [G3] = O (n-4 h-q).
The convergence of the distribution function is then uniform by Polya’s theorem.
PROOF OF THEOREM 7: It is immediate that supx, s n (x, s) –  (x, s)  = Op (1) 

and  with 

where ri (x, ) is defi ned by (5). Fix some (x1,..., xp)
q, and normalized vectors 

(a1,..., ap)
m, and defi ne  with i =  (Zi,

*). By the Cràmer-Wold 

device, the convergence of the fi nite distributions follows from the convergence of
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Asymptotic normality is proved by showing the Lindeberg-Lévy condition, i.e., 
for each > 0,

Since i c for all i and some c > 0,

using the fact that the  are iid with fi nite fi rst moment. Then Theorem 7 follows 
from the tightness of  As in the proof of Theorem 3, assume without loss 
of generality that each coordinate in X is uniform in the interval [0, 1]. We have

The tightness of  follows from the continuity of G ( , ) and applying a Central 
Limit Theorem to the random sum, which does not depend on x. Consider the incre-
ment  around the interval B, as in Theorem 2. BICKEL and WICHURA’s [1971] 
tightness condition is satisfi ed, since for two neighbor intervals B  and B ,

where  Applying the uniform law of large num-
bers,

where  is a continuous measure. ■
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