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Conditional Stochastic Dominance Testing
Miguel A. DELGADO

Universidad Carlos III de Madrid, Getafe-28903, Spain (miguelangel.delgado@uc3m.es)

Juan Carlos ESCANCIANO
Indiana University, Bloomington, IN 47405 ( jescanci@indiana.edu)

This article proposes bootstrap-based stochastic dominance tests for nonparametric conditional distribu-
tions and their moments. We exploit the fact that a conditional distribution dominates the other if and only
if the difference between the marginal joint distributions is monotonic in the explanatory variable at each
value of the dependent variable. The proposed test statistic compares restricted and unrestricted estimators
of the difference between the joint distributions, and it can be implemented under minimal smoothness re-
quirements on the underlying nonparametric curves and without resorting to smooth estimation. The finite
sample properties of the proposed test are examined by means of a Monte Carlo study. We illustrate the
test by studying the impact on postintervention earnings of the National Supported Work Demonstration,
a randomized labor training program carried out in the 1970s.

KEY WORDS: Conditional inequality restrictions; Least concave majorant; Nonparametric testing;
Treatment effects.

1. INTRODUCTION

Stochastic dominance plays a major role in applied research,
particularly in economics. It has been used to rank investment
strategies, to measure income and poverty inequality, or to assess
treatment effects, social programs, or policies. The earliest pro-
posal of Smirnov (1939) in the classical two-sample problem
has been followed by numerous extensions to different con-
cepts of stochastic dominance under alternative data-generating
process assumptions; see, for example, McFadden (1989),
Anderson (1996), Davidson and Duclos (2000), Barrett and
Donald (2003), Linton, Maasoumi, and Whang (2005), or
Scaillet and Topaloglou (2010), among others. This literature
has been confined, however, to unconditional stochastic domi-
nance testing, and although there are some proposals that can
accommodate covariate heterogeneity, these tests are only con-
sistent under rather strong independence assumptions between
regression errors and covariates. This article proposes consis-
tent tests for conditional stochastic dominance and other condi-
tional moment inequalities under mild regularity conditions on
the underlying data-generating process and without requiring
smoothed estimates.

Related to testing conditional stochastic dominance is a great
deal of literature on two-sided tests for the equality of non-
parametric regression curves. Some of these tests compare
smooth estimators of the nonparametric curves, like Härdle and
Marron (1990), Hall and Hart (1990), or King, Hart, and Wehrly
(1991). Others avoid smooth estimation of conditional moments
by comparing estimates of their integrals, like Delgado (1993)
or Ferreira and Stute (2004). The literature on one-sided tests
of conditional moment restrictions is by contrast rather scarce,
and more recent. Tests for nonpositiveness of conditional mo-
ments can be based on the positive part of a smoothed estimator,
as suggested by Hall and Yatchew (2005) or Lee and Whang
(2009). A related idea was implemented by Linton, Song,
and Whang (2010), who used the positive part of the differ-
ence between sample distributions to test stochastic dominance.
One can avoid using smoothers by noticing that a conditional

moment is nonpositive if and only if its integral is monotoni-
cally nonincreasing. This fact was exploited by Kim (2008) and
Andrews and Shi (2010) for constructing confidence intervals of
parameters partially identified by means of conditional moment
inequalities. See also Khan and Tamer (2009) for an application
to censored regression. So, as Andrews and Shi (2010) sug-
gested, a test of monotonicity on the integrated curve can be
used for testing the inequality restrictions.

Our approach is also based on integrated moments but relies
on a different methodology to that of the aforementioned works.
We first characterize the problem of testing for monotonicity of
the integrated moment as one of testing for concavity, by inte-
grating one more time. Then, instead of a Wald-type test statis-
tic, as in Kim (2008) or Andrews and Shi (2010), we consider
a likelihood ratio (LR)-type approach, comparing restricted and
unrestricted estimates of the double-integrated conditional mo-
ment. Our approach is then more related to classical LR tests
for parameter inequality restrictions, see Dykstra and Robertson
(1982, 1983), Robertson, Wright, and Dykstra (1988), Wolak
(1989), or Kodde and Palm (1986). However, unlike in this
classical literature, our null hypothesis is nonparametric, that is,
involves infinite restrictions. The restricted estimator of the inte-
grated conditional moment is in fact an isotonic estimator, which
does not use smoothers. See Barlow et al. (1972) for a compre-
hensive account of results on isotonic estimation, and see Durot
(2003) and Delgado and Escanciano (2012) for applications of
the isotonic regression principles to conditional moment mono-
tonicity testing. The proposed conditional stochastic dominance
test is easy to implement using available algorithms for nonpara-
metric isotonic estimation. Also, it can be implemented under
fairly weak assumptions on the underlying data-generating pro-
cess, and it is fully data-driven, without requiring user-chosen
parameters such as bandwidths.
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In this article, we focus on the first-order conditional stochas-
tic dominance testing problem in a one-sample setting. Under
the null, the difference between the two conditional distribu-
tions, or their moments, is nonpositive/nonnegative. The null
hypothesis is satisfied if and only if the difference between
the corresponding unconditional joint distribution functions is
monotonic with respect to the explanatory variable. Thus, our
tests consist of comparing restricted and unrestricted estimates
of the difference between the joint distribution functions. The
limiting distribution of the test statistic is nonpivotal in the least
favorable case (l.f.c.), that is, the case under the null closest to
the alternative, but critical values can be consistently estimated
with the assistance of a bootstrap procedure as shown below.

The test statistic designed for testing conditional stochastic
dominance is easily adapted to testing inequality restrictions on
other conditional moments, possibly indexed by unknown pa-
rameters that must be estimated. Likewise, higher-order stochas-
tic dominance can be easily accommodated. Our testing proce-
dure is particularly well suited for the evaluation of treatment
programs. We apply the testing method to the National Sup-
ported Work (NSW) Demonstration program, a randomized la-
bor training program carried out in the 1970s, which has been
employed for illustrating different proposals for treatment effect
evaluation ever since the landmark article by Lalonde (1986). In
this application, we find evidence against a nonnegative average
treatment effect conditional on age when the whole age distri-
bution is included, and we show that this rejection is mainly
due to young individuals between 17 and 21 years old. For
these young individuals, the job training program was not ben-
eficial. Unconditional methods are unable to uncover this age
heterogeneity in treatment effects. This feature of the data is
also missed by methods using smoothers, because of their lack
of precision in the tails of the age distribution, where there are
few observations. Hence, this application highlights the merits
of the proposed methodology—the conditional aspect and the
gains in precision derived from estimating integrals rather than
derivatives.

We have organized the article as follows. In the next section,
we present the testing procedure. Section 3 is devoted to applica-
tions of the basic framework to situations of particular practical
relevance. We consider testing inequality restrictions on con-
ditional moments, possibly indexed by unknown parameters,
which are illustrated with an application to testing conditional
treatment effects in social programs. We also discuss the appli-
cation of the testing procedure when conditioning on a vector
of covariates. A Monte Carlo study in Section 4 investigates the
finite sample properties of the proposal. We also report in this
section an application of the procedure to the NSW study. In
Section 5, we conclude and suggest extensions for future re-
search. Mathematical proofs are gathered in an Appendix at the
end of the article.

2. CONDITIONAL STOCHASTIC DOMINANCE
TESTING

Henceforth, all the random variables are defined on a proba-
bility space (!,A, P). Any generic random vector ξ takes values
in Xξ , Fξ denotes its cumulative distribution function (cdf), and
for each pair of random vectors (ξ 1, ξ 2) on (!,A, P), Fξ 1|ξ 2

denotes the conditional cdf of ξ 1 given ξ 2, that is,

F(ξ 1,ξ 2) (t1, t2) =
∫ t2

−∞
F ξ 1|ξ 2

(t1, t̄2) Fξ 2
(dt̄2) .

Given an R3-valued random vector (Y1, Y2, X) and sets
WY ⊆ XY1 ∩ XY2 andWX ⊆ XX, such thatWY × WY × WX ⊆
X(Y1,Y2,X), we consider the hypothesis

H0 : FY1|X ≤ FY2|X a.s. in the set WY × WX. (1)

The alternative hypothesis H1 is the negation of H0. We allow,
but do not require, that WY × WY × WX ≡ X(Y1,Y2,X). The dis-
cussion is centered on the case where X is univariate and FX is
continuous. When X is discrete, the conditional distribution can
be estimated

√
n-consistently, and H0 can be tested using simple

modifications of existing unconditional methods. In Section 4,
we consider the implementation when X is multivariate, where
some of the components, but not all, can be discrete.

Note that H0 is satisfied if and only if the difference between
the joint distributions,

D (y, x) ≡ (F(Y1,X) − F(Y2,X)) (y, x)

=
∫ x

−∞
(FY1|X − FY2|X) (y, x̄) FX (dx̄) ,

is nonincreasing in x ∈ WX, for each y ∈ WY . In turn, since
the quantile function F−1

X is nondecreasing, a necessary and
sufficient condition for (1) is that

C (y, u) ≡
∫ u

0
D
(
y, F−1

X (ū)
)
dū

is concave in u ∈ UX ≡ FX(WX), for each y ∈ WY . That is, the
null hypothesis is satisfied if and only if the integrated curve
D is monotonically nonincreasing in x ∈ WX, for each y ∈
WY . Then, the monotonicity of D is satisfied if and only if
its integrated curve, C, is concave with respect to its second
argument.

Therefore, H0 can be characterized by the least concave ma-
jorant (l.c.m.) operator T , which is defined as follows in this
bivariate context. Let C be the space of concave functions on
[0, 1]. For any generic measurable function g : WY × UX → R,
T g(y, ·) is the function satisfying the following two properties
for each y ∈ WY : (1) T g(y, ·) ∈ C and (2) if there exists h ∈ C
with h ≥ g(y, ·), then h ≥ T g(y, ·). Henceforth, T g denotes
the function resulting from applying the operator T to the func-
tion g(y, ·) for each y ∈ WY . Obviously, for a concave function
g on [0, 1], T g = g. Thus, H0 can be rewritten as an equality
restriction,

H0 : T C − C = 0, a.s. in the set WY × UX.

This suggests, using as test statistic, some functional of an esti-
mator of T C − C. Let Zn ≡ {(Y1i , Y2i , Xi)}ni=1 be independent
and identically distributed (iid) observations of Z ≡ (Y1, Y2, X).
Henceforth, for a given generic sample {ξ i}ni=1 of a possibly
multivariate random vector ξ , let Fξn denote its corresponding
empirical cdf and F−1

ξn its corresponding empirical quantile. A
natural estimator of C is

Cn (y, u) ≡
∫ u

0
Dn

(
y, F−1

Xn (ū)
)
dū, (y, u) ∈ WY × UX,
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where

Dn (y, x) ≡ (F(Y1,X)n − F(Y2,X)n) (y, x) , (y, x) ∈ WY × WX.

Notice that Dn(F−1
Yn (v), F−1

Xn (u)), (v, u) ∈ [0, 1]2 is the sample
analog of the difference between the copula functions of (Y1, X)
and (Y2, X), D(F−1

Y (v), F−1
X (u)), which has been considered by

Rémillard and Scaillet (2009) and Bücher and Dette (2010) for
copula equality testing among others.

The test statistic is the sup-distance between T Cn and Cn,

that is,

ηn ≡
√

n sup
(y,u)∈WY ×UXn

(T Cn − Cn) (y, u) , (2)

where UXn ≡ FXn(WX) is the sample analog of UX. Of course,
other distances could be used. Notice that

η̂n =
√

n sup
(y,u)∈WY ×UXn

∫ u

0

(
D0

n − Dn

) (
y, F−1

Xn (ū)
)
dū,

where D0
n(y, F−1

Xn (u)) is the slope of T Cn(y, u) for y fixed. Thus,
η̂n is in fact a distance between a restricted and an unrestricted
estimator of the difference between the joint distribution func-
tions.

2.1 Computation of the Test Statistic

Note that, for (y, u) ∈ WY × UXn,

Cn (y, u) = 1
n

n∑

i=1

(1{Y1i≤y} − 1{Y2i≤y}) (u − FXn (Xi))

× 1{FXn(Xi )≤u}. (3)

Therefore, it is evident from (3) that Cn(y, ·) is, for each y ∈
WY , piecewise linear with knots in UXn, as is T Cn(y, ·). For
each y ∈ WY , we can always write

Cn

(
y,

l

n

)
= 1

n

l∑

j=1

rnj (y) , l = 1, . . . , n,

for a suitable sequence {rnj (y)}nj=1 of increments of Cn(y, ·),
with rn1(y) ≡ 0. In particular, when there are no ties in {Xi}ni=1,
the function rnj (y) is given by

rnj (y) ≡ 1
n

j−1∑

i=1

(1{Y1[i:n]≤y} − 1{Y2[i:n]≤y}), j = 2, . . . , n, (4)

where {Yj [i:n]}ni=1, j = 1, 2, are the Yj -concomitants of the order
statistics {Xi:n}ni=1, that is, Yj [i:n] = Yjk if Xi:n = Xk, j = 1, 2,

with X1:n < X2:n < · · · < Xn:n.

The knots of T Cn(y, .), for each y ∈ WY , are easily located
applying the Pooled Adjacent Violators Algorithm (PAVA) pro-
posed by Barlow et al. (1972). The input for the algorithm must
be {rni(y)}ni=1, which can be easily computed recursively ac-
cording to (4) when there are no X ties, or simply by computing
the increments of Cn(y, ·) in the general case. See Cran (1980)
and Bril et al. (1984) for FORTRAN implementations and de
Leeuw, Hornik, and Mair (2009) for R routines. Moreover, the
maximum difference of (T Cn − Cn)(y, ·), with y ∈ WY fixed,
is attained at one of the points in UXn, restricting the supremum
to a maximum on a finite number of points for each n ≥ 1.
Furthermore, Cn(y, ·), and hence T Cn(y, ·), takes on the same

values when y is between consecutive order statistics of the
pooled sample {Y1i , Y2i}ni=1, which shows that supy∈WY

can also
be computed as a maximum. Hence, we can simply write

ηn =
√

n max
(y,u)∈(UYn,UXn)

(T Cn − Cn) (y, u) , (5)

where UYn ≡ {Yki : Yki ∈ WY , 1 ≤ i ≤ n, k = 1, 2}. Matlab
subroutines for computing ηn are available from the authors
upon request.

2.2 Asymptotic Distribution

We discuss now the asymptotic distribution of ηn under the
l.f.c., which corresponds to (1) under equality. The limiting
distribution follows from the functional central limit theorem
applied to

√
nCn and the continuous mapping theorem. But it

must be proved first that considering the empirical distribution
function FXn in Cn and in the estimated set UXn, rather than
the genuine FX, does not have any effect on the asymptotic
distribution of the test statistic under the l.f.c. In the Appendix,
we characterize the limiting distribution of ηn and prove that,
under H0,

lim
n→∞

P {ηn > cα} ≤ α,

where

cα = inf
{
c ∈ [0,∞) : lim

n→∞
P{ηn > c} ≤ α in the l.f.c.

}
.

However, cα is hard to estimate directly from the sample. We
propose estimating cα by means of a multiplier-type bootstrap.
See Chapter 2.9 in van der Vaart and Wellner (1996). The asymp-
totic critical value cα is estimated by

c∗
nα ≡ inf{c ∈ [0,∞) : P∗

n(η∗
n > c) ≤ α},

where P∗
n means bootstrap probability, that is, conditional on the

sample Zn,

η∗
n ≡

√
n max

(y,u)∈(Uyn,UXn)
(T C∗

n − C∗
n) (y, u)

and, for each (y, u) ∈ WY × UXn,

C∗
n (y, u) ≡ 1

n

n∑

i=1

(1{Y1i≤y} − 1{Y2i≤y}) (u − FXn (Xi))

× 1{FXn(Xi )≤u}Vi.

The random variables Vn ≡ {Vi}ni=1 are iid, independently gen-
erated from the sample Zn, according to a random variable V
with bounded support, mean zero, and variance one. This type of
multiplicative bootstrap has been used in many problems involv-
ing empirical processes with a nonpivotal asymptotic distribu-
tion. See, for instance, Delgado and González-Manteiga (2001)
or Scaillet (2005). In practice, c∗

nα is approximated as accurately
as desired by η∗

n[B(1−α)], the [B(1 − α)]th order statistic com-
puted from B replicates {η∗

nj }Bj=1 of η∗
n. Equivalently, the test can

be implemented using the bootstrap p-value p∗
n = P∗

n(η∗
n > ηn),

which is also approximated by Monte Carlo. Our bootstrap test
rejects H0 at the αth nominal level, α ∈ (0, 1), when ηn > c∗

nα,
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or equivalently p∗
n < α. The next theorem states that the boot-

strap test is consistent and has the right asymptotic size.

Theorem 1. Assume that FX is continuous and {Vi}ni=1 are
iid, independent of the sample Zn, bounded, and with mean
zero and variance one. Then, for each α ∈ [0, 1],

1. under H0, limn→∞ P(ηn > c∗
nα) ≤ α, with equality under the

l.f.c.;
2. under H1, limn→∞ P(ηn > c∗

nα) = 1.

Our methodology is directly applicable to testing second-
order or, more generally, j th-order conditional stochastic dom-
inance, j ≥ 2, simply replacing the empirical process Cn by

Cn,j (y, u) ≡ 1
n

n∑

i=1

(1{Y1i≤y} − 1{Y2i≤y}) (u − FXn (Xi))j

× 1{FXn(Xi )≤u}, j ≥ 2.

See, for example, McFadden (1989) for discussion of higher-
order stochastic dominance.

The test is also applicable to testing inequality restrictions
of general conditional moments, possibly indexed by parame-
ters, and it can be accommodated to situations with multiple
covariates. These applications are discussed in the next section.

3. SOME APPLICATIONS OF THE BASIC
FRAMEWORK

3.1 Conditional Moment Inequalities With Unknown
Parameters

We apply the basic framework to testing inequality restric-
tions on general conditional moments of functions of the observ-
able variables, which may be indexed by unknown parameters.
That is, given a random vector Z and a measurable function
mθ : XZ → R indexed by a vector of parameters θ ∈ $, where
$ ⊆ Rk is a parameter space, the null hypothesis of interest is

H0 : E(mθ0 (Z)|X = x) ≤ 0 for all x ∈ WX and some θ0 ∈ $.

(6)

Many applications fall under this setting. When Z = (Y1, Y2, X)
and mθ (Z) = Y1 − Y2, Equation (6) is the hypothesis that a
regression function dominates another. A version of the null
hypothesis (6) is natural in treatment program evaluation. Let D
be an indicator of participation in the program, that is, D = 1 if
the individual participates in the treatment and D = 0 otherwise.
Denote the observed outcome by Y = Y (1)D + Y (0)(1 − D),
where Y (1) and Y (0) are the potential outcomes of the individual
in the treatment and control groups, respectively. We assume
unconfoundedness or selection on observables, that is, Y (1) and
Y (0) are independent of D, conditional on the covariate X.

The hypothesis of interest is that the treatment is beneficial for
individuals with x ∈ WX, that is,

E(Y (0)|X = x) ≤ E(Y (1)|X = x), ∀x ∈ WX. (7)

Let q(x) ≡ E(D|X = x) be the propensity score, and assume
that q ∈ (0, 1) a.s. In applied work, it is usually assumed that
q(x) = qθ0 (x) for some θ0 ∈ $ ⊂ Rp, where qθ is some cdf
indexed by a vector of parameters θ ; for example, a probit or

a logit specification. Under these circumstances, using the fact
that

E((qθ0 (X) − D)Y |X = x)

= {E(Y (0)|X = x) − E(Y (1)|X = x)}qθ0 (x)(1 − qθ0 (x)),

the hypothesis in (7) can be rewritten as H0 in (6) with Z =
(Y,D,X) and mθ (Z) = (qθ (x) − D)Y . Lee and Whang (2009)
and Hsu (2011) implemented different tests for (7) based on
smooth estimates of E(Y (0) − Y (1)|X = x).

When θ0 is known, the basic framework presented in the
previous section is directly applicable without changes. For any
generic function m : XZ → Rdm , we consider the test statistic

η̄m,n ≡
√

n max
u∈UXn

(
T C̄m,n − C̄m,n

)
(u) ,

where

C̄m,n(u) ≡ 1
n

n∑

i=1

m(Zi)(u − FXn(Xi))1{FXn(Xi )≤u}, u ∈ [0, 1],

(8)

estimates C̄m(u) ≡ E(m(Z)(u − FX(X))1{FX(X)≤u}). When θ0 is
known, tests based on η̄mθ0 ,n are justified using the same ar-
guments as in Theorem 1. Naturally, the stochastic dominance
hypothesis between treatment and control groups conditional on
the covariate X can be implemented by using Z = (Y,X,D) and
m(Z) = (qθ (x) − D)1{Y≤y}, which is also indexed by y ∈ XY .

A test for unconditional stochastic dominance has recently been
proposed by Donald and Hsu (2011) based on the difference
between the marginal distribution estimators of Y (0) and Y (1).

In many applications of practical relevance, the moment func-
tion mθ0 involves an unknown parameter θ0. It happens when
comparing productivity indexes that are residuals of some pro-
duction function estimate, see, for example, Delgado, Fariñas,
and Ruano (2002). It also happens when testing treatment ef-
fects with an unknown propensity score. In randomized experi-
ments, D is independent of X, and hence, q(x) is constant, say
q(x) ≡ θ0. In this case, the parameter θ0 can be estimated by
its sample analog θn = n−1 ∑n

i=1 Di, which is the relative fre-
quency of participants in the treatment. When dealing with non-
experimental data, that is, if D and X are not mean-independent,
q can be modeled by means of a discrete choice model depend-
ing on some unobserved latent variable, leading to q = qθ0 for
some unknown θ0 ∈ $ ⊂ Rp.

Given iid observations {Zi}ni=1 of Z, we assume that an√
n-consistent estimator of θ0 is available, which satisfies the

following assumption.

Assumption E. The estimator θn is strongly consistent for θ0

and satisfies the following linear expansion:

√
n(θn − θ0) = 1√

n

n∑

i=1

lθ0 (Zi) + oP(1),

where lθ (·) is such that (1) E(lθ0 (Z)) = 0 and Lθ0 ≡
E(lθ0 (Z)lθ0 (Z)′) exists and is positive definite and (2)
limδ→0 E(supθ∈$0,|θ−θ0|≤δ |lθ (Z) − lθ0 (Z)|2) = 0, where $0 is a
neighborhood of θ0, $0 ⊂ $.

We also need some smoothness on mθ . Define ṁθ ≡ ∂mθ/∂θ
a.s.
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Assumption S. The moment function mθ is a.s. continu-
ously differentiable in a neighborhood of θ0, $0 ⊂ $, with
E(|mθ0 (Z)|2) < ∞ and E(supθ∈$0

|ṁθ (Z)|) < ∞.

These assumptions are fulfilled under mild moment condi-
tions when, for example, mθ (Z) = ε1θ1 (Z) − ε2θ2 (Z) with εiθ i

:
XZ × $ → R, i = 1, 2, known functions and θ = (θ ′

1, θ
′
2)′. For

example, the ε′
i’s may be the productivity indexes estimated as

least-squares residuals of a Cobb–Douglas production function.
These assumptions are also fulfilled in randomized experiments
by θn = n−1∑n

i=1 Di, with lθ (Z) = (D − θ ) and ṁθ (Z) = Y,

provided 0 < θ0 < 1 and E(Y 2) < ∞.

Under these two assumptions and the l.f.c., we show in the
Appendix that C̄mθn ,n, defined as in (8), has the uniform in
u ∈ UX representation

C̄mθn ,n (u) = 1
n

n∑

i=1

{mθ0 (Zi)(u − FX(Xi))1{FX(Xi )≤u}

+ l′θ0
(Zi)C̄ṁθ

(u)} + oP(n−1/2). (9)

This uniform expansion suggests a simple bootstrap approxi-
mation based on

C̄∗
mθn ,n (u) = 1

n

n∑

i=1

{mθn
(Zi)((u − FXn (Xi))1{FXn(Xi )≤u}

+ l′θn
(Zi)C̄ṁθn,n

(u))}Vi,

where {Vi}ni=1 are iid generated as indicated in Theorem 1. Let
η̄∗

mθn,n
be the bootstrap test statistic based on C̄∗

mθn ,n, and denote
by c̄∗

α,n the corresponding bootstrap critical value. Our next result
is the analog of Theorem 1 in the current setting.

Theorem 2. Let the assumptions of Theorem 1, E and S hold.
Then,

1. under H0, limn→∞ P(η̄mθn,n
> c̄∗

α,n) ≤ α, with equality under
the l.f.c.;

2. under H1, limn→∞ P(η̄mθn,n
> c̄∗

α,n) = 1.

3.2 Multiple Covariates

In this section, we consider testing H0 with X a d-dimensional
covariate. We discuss two approaches. The first approach is
based on the fact that the null hypothesis implies that for all
β ∈ Sd ≡ {β ∈ Rd : β ′β = 1},

FY1|β ′X
(
y,β ′x

)
≤ FY2|β ′X

(
y,β ′x

)
for all (y, x) ∈ WY × WX.

(10)

Escanciano (2006) considered a similar approach for the prob-
lem of testing the lack of fit of a regression model, and
Kim (2008) has also used this approach for inferences un-
der conditional moment inequalities. For each fixed β ∈ Sd ,

let η̂n(β) denote the test statistic in (5) using the sample
{Y1i , Y2i ,β

′Xi}ni=1. The test statistic for (10) is
∫

Sd η̂n(β)dβ.
In applications, computing the integral can be a cumbersome
task. For that reason, we propose the Monte Carlo approxima-
tion η̂n,m ≡ m−1∑m

j=1 η̂n(βj ), where {βj }mj=1 is a sequence of
iid variables from a uniform distribution in Sd , with m → ∞ as
n → ∞. The sequence {βj }mj=1 can be easily generated from a
d-dimensional vector of standard normals, scaled by its norm.

Alternatively, the researcher may be interested in particular
choices of βj . For instance, βj = (1, 0, . . . , 0) ∈ Sd leads to
a test focusing on the conditional distributions of Yk, k = 1, 2,

given the first component of X.

The limit distribution of η̂n,m under the l.f.c. can be approxi-
mated by the bootstrap distribution of m−1∑m

j=1 η̂∗
n(βj ), where

η̂∗
n(βj ) is the bootstrap approximation suggested in Section 2,

using the same sequence Vn for j = 1, . . . , m. The validity of
the resulting bootstrap test follows from combining the empir-
ical processes tools in Escanciano (2006) with our results of
Section 2 in a routine fashion.

Alternatively, following a traditional approach in multivariate
modeling, see the projection pursuit idea of Friedman and Tukey
(1974), we could consider the composite hypothesis,

H0 : FY1|β ′
0X(y,β ′

0x) ≤ FY2|β ′
0X(y,β ′

0x) for all (y, x)

∈ WY × WX, (11)

where β0 is an unknown d-dimensional parameter, β0 ∈ $ ⊂
Rd . For instance, such a situation arises in treatment effects
when the conditional distribution of (Y,D) given X satisfies a
single-index restriction, that is, F(Y,D)|X(y, d) = F(Y,D)|β ′

0X(y, d)
for some β0 ∈ $ ⊂ Rd . A test for the composite hypothesis
can be constructed based on η̂n(βn), where βn is a consistent
estimator of β0 obtained from the single-index restriction, for
example, by average derivatives or semiparametric least-square
methods. The parameter β0 is only identified up to scale; so
some normalization is in general needed. Here, it is technically
convenient to normalize the first component of β ∈ $ to 1. In
particular, we assume β01 = 1. Furthermore, we also assume
that this coefficient corresponds to a continuous component X1

of X = (X1, X−1), where X−1 ≡ (X2, . . . , Xd ). The following
assumption requires smoothness for the conditional distribution
of X1 given X−1.

Assumption M. The conditional distribution of X1 given
X−1 has a (uniformly) bounded Lebesgue density. Furthermore,
E(|X|2) < ∞ and the parameter space $ is compact.

We now show that under some mild regularity conditions,
η̂n(βn) and η̂n(β0) have the same asymptotic distribution under
the l.f.c. That is, asymptotically, the estimated parameters βn

do not have any effect on the limiting distribution under l.f.c.
See Stute and Zhu (2005) for a related result in a different
context. The bootstrap consistency of the test in this single-
index model follows combining our results in Theorem 1 and
the next Theorem in a routine fashion.

Theorem 3. Let Assumption M hold. Then, under the l.f.c. in
(11), if βn is a consistent estimator of β0, then

η̂n(βn) = η̂n(β0) + oP(1).

Theorem 3 also holds if we replace the index β ′
0x by a gen-

eral parametric index v(β0, x), without significant changes in
the proof. For instance, we could take v(β0, x) = qθ0 (x) and
β0 = θ0 in the treatment effect example, which is often used
in applications. Furthermore, this result is also valid for more
general index functions, including semiparametric or nonpara-
metric ones, but formally proving this is beyond the scope of
this article. The result in Theorem 3 is particularly convenient
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for ease of implementation of our test, as there is no need for
reestimating the parameters β0 in each bootstrap iteration, or
estimating the influence function of the estimator βn. Given
data {Zi}ni=1, we estimate consistently β0, and then apply the
test statistic of Section 2 to {Y1i , Y2i ,β

′
nXi}ni=1, using the same

multiplier-type bootstrap.

4. EMPIRICAL RESULTS

4.1 Monte Carlo Simulations

This section illustrates the finite sample performance of the
tests by means of simulations and an application to testing treat-
ment effects. The {Vi}ni=1 used in the bootstrap implementa-
tion are independently generated as V with P(V = 1 − ϕ) =
ϕ/

√
5 and P(V = ϕ) = 1 − ϕ/

√
5, where ϕ = (

√
5 + 1)/2.

See Mammen (1993) for motivation on this popular choice.
The bootstrap-critical values are approximated by Monte Carlo
using 1000 replications and the simulations are based on 10,000
Monte Carlo experiments. We report rejection probabilities at
10%, 5%, and 1% significance levels.

We first investigate the size accuracy and power of the pro-
posed conditional stochastic dominance tests for the following
designs:

(i) Y1 = 1 + ε(1); Y2 = 1 + ε(2),

(ii) Y1 = exp(X) + ε(1); Y2 = exp(X) + ε(2),

(iii) Y1 = sin(2πX) + ε(1); Y2 = sin(2πX) + ε(2),

(iv) Y1 = 1 + ε(1); Y2 = 1 + X + ε(2),

(v) Y1 = exp(X) + ε(1); Y2 = exp(X) + X + ε(2),

(vi) Y1 = sin(2πX) + ε(1); Y2 = sin(2πX) + X + ε(2),

(vii) Y1 = 1 + ε(1); Y2 = sin(2πX) + ε(2),

(viii) Y1 = exp(X) + ε(1); Y2 = exp(X) + sin(2πX) + ε(2),

(ix) Y1 = sin(2πX) + ε(1); Y2 = 2 sin(2πX) + ε(2),

where X is distributed as U [0, 1], independently of the normal
errors ε(1) and ε(2) that are independent, have zero mean, and
variance σ 2 = 1/4. Similar designs were used by Neumeyer and
Dette (2003) for testing the equality of regression functions in a
two-sample context. Table 1 reports the proportion of rejections
for models (i)–(ix) and sample sizes n = 50 and 150.

Models (i)–(iii) fall under the null hypothesis. We observe
that our bootstrap test exhibits good size accuracy, even when

Table 1. Rejection probabilities

n 50 150

Model α 10% 5% 1% 10% 5% 1%

(i) 0.099 0.042 0.006 0.104 0.050 0.008
(ii) 0.098 0.045 0.006 0.099 0.052 0.085
(iii) 0.099 0.046 0.006 0.101 0.050 0.087
(iv) 0.757 0.631 0.331 0.982 0.962 0.855
(v) 0.752 0.628 0.323 0.984 0.965 0.858
(vi) 0.749 0.630 0.323 0.982 0.963 0.855
(vii) 0.830 0.667 0.235 0.999 0.994 0.924
(viii) 0.827 0.662 0.227 0.998 0.993 0.930
(ix) 0.988 0.966 0.803 1.000 1.000 0.999

NOTES: One thousand bootstrap replications. Ten thousand Monte Carlo simulations.

Table 2. Rejection probabilities. Index model

n 50 150

Model α 10% 5% 1% 10% 5% 1%

(ii) 0.096 0.048 0.010 0.099 0.045 0.010
(iii) 0.089 0.044 0.013 0.102 0.043 0.013
(v) 0.996 0.981 0.745 1.000 1.000 1.000
(vi) 1.000 1.000 1.000 1.000 1.000 1.000
(viii) 0.257 0.151 0.046 0.732 0.572 0.250
(ix) 0.755 0.608 0.322 1.000 0.998 0.964

NOTES: 1,000 bootstrap replications. 10,000 Monte Carlo simulations.

n = 50. The power is moderate for n = 50 under alternatives
(iv)–(viii), and uniformly high for any alternative with n = 150.
The highest power is achieved for the alternative (ix), where the
regression functions cross at one point.

In the second experiment, we study the finite sample perfor-
mance of the stochastic dominance test applied to multivari-
ate covariates with index restrictions. The designs are those
of models (ii, iii) (under null) and models (v, vi, viii, and
ix) (under the alternative), where X is replaced by the index
β ′

0X ≡ X1 + X2 + X3, where Xj, j = 1, 2, and 3 are mutu-
ally independently distributed as U [0, 1], and also independent
of the normal errors ε(1) and ε(2). The methodology is applied
following a two-step approach. In the first step, the unknown pa-
rameter β0 = (1, 1, 1)′ is estimated from the data {(Y1i , Xi)}ni=1
by the minimum average variance estimator (MAVE) proposed
in Xia et al. (2002) and denoted by βn. We implement the MAVE
with a Gaussian kernel and a cross-validation method for choos-
ing the bandwidth parameter. In a second step, the test is applied
to the data {(Y1i , Y2i ,β

′
nXi)}ni=1, as in the univariate case. Table

2 reports the proportion of rejections for sample sizes n = 50
and 150.

The size performance for models (ii) and (iii) is excellent
for small sample sizes as n = 50. The obtained results support
our asymptotic analysis. The estimation of β0 does not have an
impact in the finite sample distribution, in agreement with the
asymptotic equivalence of Theorem 3. Relative to the first set of
experiments, the empirical power is higher for models (v) and
(vi) and lower for (viii) and (ix), which is due to the additional
uncertainty in the semiparametric estimation of the index param-
eter β0. This second set of simulations confirms our theoretical
results—estimation of the nuisance parameter β0 does not affect
the asymptotic distribution of our test under the l.f.c., but it may
affect the power performance. It is remarkable that with a small
sample size as n = 50, the asymptotic result already provides a
good approximation of the finite sample distribution in a semi-
parametric context in which infinite-dimensional estimation is
involved.

In our third experiment, we study the finite sample perfor-
mance of the treatment effect test discussed in Section 3.1. We
consider the design,

Y (0) = 1 − X + ε(1), (12)

Y (1) = 1 − c + (4c2 − 1)X + cX2 + ε(2),

where X, ε(1), and ε(2) are generated as independent
U [0, 1] variables and c is a positive constant. The treatment
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Figure 1. Five percent empirical power function for (12): randomized experiment (top panel) and probit model (bottom panel). Monte Carlo
replications 10,000. B = 1000.

indicator is generated as D = 1{U (3)≤U (4)}, where U (3) and U (4)

are independent copies of ε(1) and ε(2). The observed outcome is
Y = Y (1)D + Y (0)(1 − D). The l.f.c. corresponds to c = 0 and,
as c increases, the design deviates from the null in a direction
somewhat similar to that observed in the empirical application
in Section 4.2.

The top panel of Figure 1 reports the percentage of rejections
as a function of c, for values of c from 0 to 2 at intervals of
0.25, and with n = 100 and 300. For c = 0, the size accuracy
is excellent, with a proportion of rejections, when n = 100,

of 1.1%, 5.1%, and 10.1% at 1%, 5%, and 10% of signifi-
cance, respectively. The empirical power is nondecreasing in c,

is low for c = 0.25, is high for c ≥ 0.5, and stabilizes for c ≥
0.75.

In the fourth experiment, we relax the conditional mean inde-
pendence between D and X, and generate data from (12) but with
D = 1{α0+β0X≤ε}, where θ0 ≡ (α0,β0) = (1, 0.2) is assumed to
be unknown, and ε follows a standard normal distribution, in-
dependently of the standard normal covariate X and the errors
ε(1) and ε(2). The propensity score is modeled by a probit model,
and the parameter θ0 is estimated by the conditional maximum
likelihood estimator. The bottom panel of Figure 1 reports the
percentage of rejections as a function of c, for sample sizes
n = 100 and 300. The results for the nonrandomized experi-
ment with a probit propensity score are qualitatively the same
as for the randomized experiment.

Overall, the simulations show that the proposed bootstrap
tests exhibit fairly good size accuracy and power for relatively
small sample sizes, with good power across all alternatives con-
sidered.

4.2 An Application to Experimental Data

We apply the proposed testing method to studying the effec-
tiveness of the NSW Demonstration program. The NSW was

a randomized, temporary employment program carried out in
the United States during the mid-1970s to help disadvantaged
workers. In an influential article, Lalonde (1986) used the NSW
experimental data to examine the performance of alternative
statistical methods for analyzing nonexperimental data. Varia-
tions and subsamples of this dataset were later reanalyzed by
Dehejia and Wahba (1999), among others. We use the original
data for males in Lalonde (1986) to illustrate our procedure.
For a comprehensive description of the experimental data, see
Lalonde (1986) and Dehejia and Wahba (1999).

The data consist of 297 treatment group observations and
425 control group observations. Our dependent variable Y is
the increment in earnings, measured in 1982 dollars, between
1978 (postintervention year) and 1975 (preintervention year).
To illustrate our methods, we choose as independent variable
X age. Figure 2 plots the kernel regression estimates for the
period 1975–1978 with age restricted to its 10% and 90% quan-
tiles to avoid boundary biases. We used a Gaussian kernel with
bandwidth values 1 and 2 for the control and treatment groups,
respectively. Cross-validation led to smaller bandwidths of 0.55
and 1.38, respectively, which imply undersmoothing. Nonpara-
metric smoothed estimates suggest a positive treatment, espe-
cially for old workers. Parametric tests carried out by Lalonde
(1986) for significance of the unconditional average treatment
effect also indicated a positive effect.

The null hypothesis of nonnegative conditional mean treat-
ment effect is considered, as in (7). The treatment was ran-
domized, and hence, our hypothesis corresponds to (6) with
mθ0 (Z) = (θ0 − D)Y, where θ0 = E(D) is consistently esti-
mated by θn = n−1∑n

i=1 Di. The test statistic is implemented as
in Section 3.1. In Table 3, we report the bootstrap p-values over
10,000 bootstrap replications of our test for several values of
al in WX = [al, 55]. The value al = 17 corresponds to the full
support of age in the data. Table 3 also contains the sample sizes
of the control and treatment groups, n1 and n0, respectively.
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Figure 2. Nonparametric kernel estimates of the conditional means of changes in earnings between 1978 and 1975, as a function of age.

As evidenced from Table 3, our test rejects the null hy-
pothesis of nonnegative impact of the NSW program at 5%
when the whole age distribution is included (al = 17). Our re-
sults, in contrast with previous findings in the literature, pro-
vide evidence of treatment effect heterogeneity in age. Lee and
Whang (2009) used the same dataset and failed to reject the
null hypothesis of nonnegative conditional treatment effect us-
ing a test based on the L1-distance of smoothed estimates of
E(Y (0) − Y (1)|X = x) and the space of nonpositive functions.
Figure 2 and Table 3 suggest that the rejection is due to young
individuals between 17 and 21 years old for whom the job train-
ing program was not beneficial, as measured by the incremental
earnings between postintervention and preintervention years.
This feature of the data is missed by methods using smoothers
because their lack of precision in the tails of the age distribution
implies a lack of power against small deviations of the null in
the direction observed in this data.

Table 3. Nonparametric tests for the NSW. Bootstrap p-values

Mean Distribution Mean
al n1 n0 age age single-index

17 425 297 0.028 0.537 0.032
18 395 275 0.008 0.656 0.262
19 346 249 0.020 0.214 0.664
20 308 224 0.023 0.357 0.600
21 271 203 0.203 0.148 0.648
22 252 182 0.075 0.183 0.334
23 227 165 0.255 0.245 0.424
24 208 143 0.634 0.515 0.404

NOTES: 10,000 bootstrap replications. Cross-validated bandwidth.

For completeness, we have also applied the conditional
stochastic dominance test for the whole distribution, that is, us-
ing mθ0 (Z) = (D − θ0)1{Yi≤y}, which is also indexed by y ∈ XY .

The results are reported in Table 3. The test does not reject this
hypothesis. That is, we reject the hypothesis that the treatment
group dominates the control group in terms of the conditional
means, but we cannot reject the stochastic dominance hypothesis
in terms of the whole distribution. Notice that this does not lead
to contradictory results. We can also arrive at the same conclu-
sion in a pure parametric setting. For instance, when comparing
confidence intervals and confidence ellipses on parameter re-
strictions, that is, we can reject a significance hypothesis on
different single parameters, but we may be unable to reject the
joint significance hypothesis on these parameters.

To check the robustness of the previous results to the inclusion
of other covariates in the NSW study, we consider a single-index
semiparametric specification as in Section 3.2. The covariates
in the NSW study are, in addition to age, educ = years of
schooling; black = 1 if black, 0 otherwise; hisp = 1 if His-
panic, 0 otherwise; married = 1 if married, 0 otherwise; and
ndegr = 1 if no high school degree, 0 otherwise. We spec-
ify E(Y |X) = E(Y |β ′

0X), and estimate the parameter β0 by the
MAVE proposed in Xia et al. (2002), which allows continuous
and discrete covariates. We implement the MAVE with a Gaus-
sian kernel and a cross-validation method for choosing the band-
width parameter. The bootstrap p-values obtained from 10,000
replications are reported in the third column of Table 3. For a bet-
ter comparison with the previous results, we consider the same
subsamples, divided according to age. The null hypothesis is still
rejected when considering the full range of the age distribution,
but the test does not reject when considering subsamples with
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individuals older than 18 years old. In view of the previous re-
sults, the latter is likely to be driven by a decrease in precision
because of the semiparametric smoothed estimation involved.

5. CONCLUSIONS AND SUGGESTIONS FOR
FURTHER WORK

This article has proposed a methodology for testing one-sided
conditional moment restrictions, with two distinctive features.
On the one hand, the tests can be implemented under minimal
requirements on the smoothness of the underlying nonparamet-
ric curves and without resorting to smooth estimation. On the
other hand, the new tests can be easily computed using the effi-
cient PAVA algorithm, already implemented in many statistical
packages. We have shown how the proposed methods can be ap-
plied to accommodate composite hypotheses of different nature
and multiple covariates. Finally, we have illustrated the practi-
cal usefulness of our methods with an application to evaluating
treatment effects in social programs.

Our basic results can be extended to other situations of prac-
tical interest. For instance, a straightforward extension of our
results consists of allowing serial-dependent observations. This
has important applications in a number of settings, see, for ex-
ample, tests of superior predictive ability in Hansen (2005). The
extension to time series does not pose any additional difficulties,
as long as the weak convergence of the process

√
nCn holds.

There is, however, an extensive literature providing sufficient
conditions for weak convergence of empirical processes under
weak dependence, see, for example, Linton, Maasoumi, and
Whang (2005) and Scaillet and Topaloglou (2010) for applica-
tions in the context of stochastic dominance testing.

In the rest of this section, we discuss extensions of the ba-
sic framework to cases where smoothing cannot be avoided.
Most notably, the conditional stochastic dominance test can
also be applied when the covariate observations are different
in each sample by introducing covariate-matching techniques.
See, for example, Hall and Turlach (1997), Hall, Huber, and
Speckman (1997), Koul and Schick (1997, 2003), Cabus (1998),
Neumeyer and Dette (2003), Pardo-Fernández, van Keilegom,
and González-Manteiga (2007), or Srihera and Stute (2010).
These techniques use smooth estimators, typically kernels. In
particular, proposals by Cabus (1998) and Neumeyer and Dette
(2003), designed for testing the equality of nonparametric re-
gression curves in a two-sample context, can be accommodated
into one-sided testing by applying the methodology presented
in this article.

Another important extension would consist of allowing the
function mθ in (6) to be indexed by an infinite-dimensional
nuisance parameter θ . For instance, this is the case in the context
of nonexperimental treatment effects when the propensity score
q is nonparametrically specified. When θ0 is a nonparametric
function estimated by kernels, or other smoothing techniques,
the corresponding C̄mθn,n

is asymptotically equivalent to a
U -process under the l.f.c. The test can also be implemented in
this case by means of a multiplier bootstrap on the Hoeffding
projection, along the lines suggested by Delgado and González-
Manteiga (2001). A detailed analysis of these extensions is
beyond the scope of this article and is deferred to future work.

APPENDIX

Before proving the main results of the article, we first in-
troduce some notation. For a generic set G, let -∞(G) be the
Banach space of all uniformly bounded real functions on G
equipped with the uniform metric ‖f ‖G ≡ supz∈G |f (z)|. In this
article, we consider convergence in distribution of empirical
processes in the metric space (-∞(G), ‖ · ‖G) in the sense of
J. Hoffmann-Jørgensen (see, e.g., van der Vaart and Wellner
1996). For any generic Euclidean random vector ξ on a proba-
bility space (!,A, P), χξ denotes its state space and Pξ denotes
its induced probability measure with corresponding distribution
function Fξ (·) = Pξ (−∞, ·]. Given iid observations {ξ i}ni=1 of
ξ , Pξn denotes the empirical measure, which assigns a mass
n−1 to each observation, that is, Pξnf ≡ n−1 ∑n

i=1 f (ξ i). Let
Fξn(·) ≡ Pξn(−∞, ·] be the corresponding empirical cdf. Like-
wise, the expectation is denoted by Pξf =

∫
f dPξ . The empir-

ical process evaluated at f is Gξnf with Gξn ≡
√

n(Pξn − Pξ ).
Let ‖ · ‖2,P be the L2(P ) norm, that is, ‖f ‖2

2,P =
∫

f 2dP . When
P is clear from the context, we simply write ‖ · ‖2 ≡ ‖ · ‖2,P .
Let | · | denote the Euclidean norm, that is, |A|2 = A1A. For
a measurable class of functions G from XZ to R, let ‖ · ‖ be a
generic pseudo-norm on G, that is, a norm except for the prop-
erty that ‖f ‖ = 0 does not necessarily imply that f ≡ 0. Let
N (ε,G, ‖ · ‖) be the covering number with respect to‖ · ‖, that
is, the minimal number of ε-balls with respect to ‖ · ‖ needed
to cover G. Given two functions l, u ∈ G, the bracket [l, u] is
the set of functions f ∈ G such that l ≤ f ≤ u. An ε-bracket
with respect to ‖ · ‖ is a bracket [l, u] with ‖l − u‖ ≤ ε. The
covering number with bracketing N[·](ε,G, ‖ · ‖) is the mini-
mal number of ε-brackets with respect to ‖ · ‖ needed to cover
G. Let HB be the collection of all nondecreasing functions
F : R → [0, 1] of bounded variation less or equal than 1, and
define / ≡ [−∞,∞]×[0, 1]. Finally, throughout K is a generic
positive constant that may change from expression to expres-
sion.

We first state an auxiliary result from the empirical pro-
cess literature. Define the generic class of measurable functions
G ≡ {Z → m(Z, θ , h) : θ ∈ $, h ∈ H}, where $ and H are en-
dowed with the pseudonorms | · |$ and | · |H, respectively. The
following result is part of Theorem 3 in Chen, Linton, and van
Keilegom (2003).

Lemma A.1. Assume that for all (θ0, h0) ∈ $ × H,
m(Z, θ , h) is locally uniformly L2(P ) continuous, in the sense
that

E
[

sup
θ :|θ0−θ |$<δ,h:|h0−h|H<δ

|m(Z, θ , h) − m(Z, θ0, h0)|2
]

≤ Kδs ,

for all sufficiently small δ > 0 and some constant s ∈ (0, 2].
Then,

N[·](ε,G, ‖·‖2) ≤ N

(( ε

2K

)2/s

,$, |·|$
)

×N

(( ε

2K

)2/s

,H, |·|H
)

.

Proof of Theorem 1. Throughout Zi ≡ (Y1i , Xi), i ≥ 1, z̄ ≡
(ȳ1, ȳ2, x̄) ∈ χZ. Let C̃n be defined as Cn but with FXn replaced

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
id

ad
 C

ar
lo

s I
ii 

M
ad

rid
] a

t 0
6:

03
 0

7 
Fe

br
ua

ry
 2

01
3 



Delgado and Escanciano: Conditional Stochastic Dominance Testing 25

by the true cdf FX. Set 0n ≡
√

n(T Cn − Cn), and similarly
define 0̃n with C̃n replacing Cn. The proof of Theorem 1 follows
three steps: first, we prove that tests based on 0n and 0̃n are
asymptotically equivalent under the l.f.c., that is,

sup
(y,u)∈WY ×UXn

0n(y, u) = sup
(y,u)∈WY ×UXn

0̃n(y, u) + oP(1). (A.1)

Second, we prove that the supremum in UXn in the test statistic
can be replaced by a supremum in UX, that is,

sup
(y,u)∈WY ×UXn

0̃n(y, u) = sup
(y,u)∈WY ×UX

0̃n(y, u) + oP(1). (A.2)

Finally, we prove the asymptotic behavior of the test under H0

and H1, not just under the l.f.c. !
We proceed with the proof of (A.1). To that end, we shall

prove that C̃n and Cn are asymptotically equivalent under the
l.f.c. First, define the classes of functions

G1 ≡ {(ȳ1, ȳ2) ∈ χY1 × χY2 → 0y (ȳ1, ȳ2)

≡ 1{ȳ1≤y} − 1{ȳ2≤y} : y ∈ [−∞,∞]}

and

G2 ≡ {x̄ ∈ χX → fu,F (x̄)

≡ (u − F (x̄)) 1{F (x̄)≤u} : u ∈ [0, 1], F ∈ HB}.

Define the product classH ≡ G1 · G2, and notice that C̃n(y, u) =
PZnhy,u,FX

, where

hy,u,F (z̄) ≡ {1{ȳ1≤y} − 1{ȳ2≤y}} (u − F (x̄)) 1{F (x̄)≤u}

belongs to H. We prove that H is PZ− Donsker. By Example
2.10.8 in van der Vaart and Wellner (1996) and the fact that G1 is
PZ−Donsker, it suffices to prove that G2 is PZ−Donsker. To that
end, note that for each (u, F ) ∈ [0, 1] × HB, using the triangle
inequality and the simple inequality |a+ − b+|2 ≤ |a − b|2 for
all a, b ∈ R, where a+ = max{a, 0}, we obtain

E[sup |fu1,F1 (X) − fu,F (X)|2] ≤ Kδ2,

where the supremum is over the set u1 ∈ [0, 1] and F1 ∈ HB

such that |u1 − u| ≤ δ and supx∈R |F1(x) − F (x)| ≤ δ, respec-
tively. By Lemma A.1 and Theorem 19.5 in van der Vaart (1998),
the class G2, and hence H, is PZ− Donsker.

Thus, by a stochastic equicontinuity argument and the
Glivenko–Cantelli theorem

sup
(y,u)∈/

|GZnhy,u,FXn
− GZnhy,u,FX

| →p 0.

Furthermore, since under the l.f.c. PZh = 0, for all h ∈ H,

sup
(y,u)∈/

|PZnhy,u,FXn
− PZnhy,u,FX

| = oP(n−1/2),

and hence,

sup
(y,u)∈/

|Cn (y, u) − C̃n (y, u) | = oP(n−1/2). (A.3)

To prove (A.1), we must show the continuity in the metric space
(-∞(/), ‖ · ‖/) of the functional ϕ : -∞(/) 2−→ R+ defined as

ϕ(f ) ≡ sup
(y,u)∈/

(T f − f )(y, u).

To that end, note that Lemma 2.2 in Durot and Tocquet (2003)
implies that for each f, g ∈ -∞(/),

sup
u∈[0,1]

|(T f − T g) (y, u)|

≤ sup
u∈[0,1]

|(f − g) (y, u)| for each y ∈ R fixed.

Since the last inequality holds for all y ∈ R, for any f, g ∈
-∞(/),

|ϕ(f ) − ϕ(g)| ≤ ‖T f − T q‖/ + ‖f − g‖/

≤ 2 ‖f − g‖/ ,

which shows that ϕ is continuous with respect to ‖ · ‖/. Then,
(A.1) follows from (A.3) and the continuity of ϕ.

We now prove (A.2) under the l.f.c. We have shown above
that H is a Donsker class, that is, GZn converges in distribution
to a PZ-bridge as a random element of (-∞(H), ‖ · ‖H), which in
turn implies that C̃n(y, u) = PZnhy,u,FX

, and hence Cn by (A.3),
converges in distribution under the l.f.c. to a tight Gaussian
process C∞ in -∞(/) with zero mean and covariance function

K(v1, v2) ≡ E(hv1,FX
(Z)hv2,FX

(Z)), vj = (yj , uj ), j = 1, 2.

(A.4)
In particular, these arguments prove that 0̃n is stochastically
equicontinuous in -∞(/) with respect to the ‖ · ‖2. Hence,
from the triangle inequality, the equicontinuity of 0̃n and the
Glivenko–Cantelli theorem it holds
∣∣∣∣∣ sup
(y,u)∈WY ×UXn

0̃n(y, u) − sup
(y,u)∈WY ×UX

0̃n(y, u)

∣∣∣∣∣

=
∣∣∣∣∣ sup
(y,x)∈WY ×WX

0̃n(y, FXn(x)) − sup
(y,x)∈WY ×WX

0̃n(y, FX(x))

∣∣∣∣∣

≤ sup
(y,x)∈WY ×WX

∣∣0̃n(y, FXn(x)) − 0̃n(y, FX(x))
∣∣

≤ sup
y∈WY , |u−u′|≤δn

∣∣0̃n(y, u) − 0̃n(y, u′)
∣∣

= oP(1),

where δn ≡ supx∈WX
|FXn(x) − FX(x)|.

Hence, by (A.1) and (A.2) and the continuous mapping theo-
rem, ηn converges in distribution under the l.f.c. to

ϕ(C∞) ≡ sup
(y,u)∈WY ×UX

(T C∞ − C∞) (y, u) .

We now study the behavior of the test, not just under the l.f.c., but
under H0 and the alternative hypothesis. To that end, we define
Gn ≡ Cn − C. Then, by definition of the l.c.m., the function
T Gn(y, ·) + C(y, ·) is above Cn(y, ·) and is concave in u ∈ UX

under H0, since both T Gn(y, ·) and C(y, ·) are concave. Hence,
T Gn + C is uniformly above T Cn. Thus, under H0,

√
n (T Cn − Cn) ≤

√
n (T Gn − Gn) . (A.5)

Under the l.f.c., C(y, u) ≡ 0, and hence Gn = Cn, so Equation
(A.5) becomes an equality.

Now, the multiplier functional limit theorem (Theorem 2.9.6
in van der Vaart and Wellner 1996) and the continuous mapping
theorem imply that, for all x ≥ 0,

P∗
n(η∗

n > x) →a.s. 1 − Fϕ(x),
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where Fϕ is the cdf of ‖
√

n(T G∞ − G∞)‖WY ×UX
, with G∞

being a tight Gaussian process in -∞(WY × UX) with zero mean
and covariance function (A.4). Being the cdf of a continuous
mapping of a Gaussian process, Fϕ is continuous, see Lifshits
(1982). Hence, by Equation (A.5), under H0,

P(ηn > c∗
n,α) ≤ P(‖

√
n(T Gn − Gn)‖WY ×UX

> c∗
n,α)

= α + o(1),

with equality under the l.f.c. Under the alternative H1, it can
be easily shown that ηn diverges to infinity, and because c∗

n,α =
O(1) a.s.,

P(ηn > c∗
n,α) → 1.

This completes the proof of Theorem 1.

Proof of Theorem 2. Applying a classical mean value
theorem argument, uniformly in u ∈ [0, 1],

C̄mθn ,n (u) = C̄mθ0 ,n (u) + C̄ṁθn
,n (u)′ (θn − θ0), (A.6)

where θn is an intermediate point that satisfies |θn − θ0| ≤
|θn − θ0| a.s. Define the class of functions on XZ

H1 ≡ {z → ṁθ (z) (u − F (x))

×1{F (x)≤u} : u ∈ [0, 1], F ∈ HB, θ ∈ $0}.

By Examples 19.7 and 19.11 in van der Vaart (1998) and by
Problem 8 in van der Vaart and Wellner (1996, pg. 204), H1 is a
Glivenko-Cantelli class under Assumption S. Thus, by Assump-
tion E and the classical Glivenko-Cantelli theorem, uniformly
in u ∈ [0, 1],

C̄ṁθn ,n(u) = C̄ṁθ
(u) + oP(1). (A.7)

Next, define the class of functions

H2 ≡ {z → qu,F (z) ≡ mθ0 (z) (u − F (x))

×1{F (x)≤u} : u ∈ [0, 1], F ∈ HB}.

Note that for all u ∈ [0, 1] and F ∈ HB,

E[sup |qu1,F1 (Z) − qu,F (Z)|2] ≤ Kδ2,

where the supremum is over the set u1 ∈ [0, 1] and F1 ∈ HB

such that |u1 − u| ≤ δ and supx∈R |F1(x) − F (x)| ≤ δ, respec-
tively. By Lemma A1 and Theorem 19.5 in van der Vaart (1998),
the class H2 is PZ−Donsker. Hence, by the classical Glivenko-
Cantelli theorem

sup
u∈[0,1]

|GZnqu,FXn
− GZnqu,FX

| →p 0.

Furthermore, since under the l.f.c. PZq = 0, for all q ∈ H2,

sup
u∈[0,1]

|C̄mθ0 ,n(u) − C̃mθ0 ,n(u)| = oP(n−1/2), (A.8)

where C̃mθ0 ,n is defined as C̄mθ0 ,n but with FXn replaced by the
true cdf FX. Then, (A.6), (A.7) and (A.8) yield (A.9) under the
l.f.c.

We now prove the validity of the bootstrap approximation.
Using the mean value theorem, we write

1
n

n∑

i=1

mθn
(Zi) (u − FXn (Xi)) 1{FXn(Xi )≤u}Vi

= 1
n

n∑

i=1

mθ0 (Zi) (u − FXn (Xi)) 1{FXn(Xi )≤u}Vi

+ (θn − θ0)′
1
n

n∑

i=1

ṁθn
(Zi) (u − FXn (Xi)) 1{FXn(Xi )≤u}Vi

≡ I1n(u) + I2n(u), (A.9)

where θn is an intermediate point that satisfies |θn − θ0| ≤
|θn − θ0| a.s.

Noticing that the class of real-valued measurable functions
on XZ × XV

H1,∗ ≡ {(z, v) → ṁθ (z) (u − F (x))

× 1{F (x)≤u}v : u ∈ [0, 1], F ∈ HB, θ ∈ $0},

is a Glivenko-Cantelli class, and using Assumption E, one con-
cludes that I2n(u) = oP∗

n
(n−1/2) a.s., uniformly in u ∈ [0, 1].

Next, define the class on XZ × XV ,

H2,∗ ≡ {(z, v) → hu,F (z, v) ≡ mθ0 (z) (u − F (x))

×1{F (x)≤u}v : u ∈ [0, 1], F ∈ HB}.

The class H2,∗ is P(Z,V )−Donsker, since H2 is PZ−Donsker,
see Theorem 2.9.2 in van der Vaart and Wellner (1996). Then,
since P∗

nh = 0 a.s., for all h ∈ H2,∗,

I1n(u) = 1
n

n∑

i=1

mθ0 (Zi) (u − FX (Xi)) 1{FX(Xi )≤u}Vi

+ oP∗
n

(
n−1/2) , a.s. (A.10)

On the other hand, by Assumption E and a strong uniform law
of large numbers,

var∗
(

1√
n

n∑

i=1

{
lθn

(Zi , Xi) − lθ0 (Zi , Xi)
}
Vi

)

= 1
n

n∑

i=1

(lθn
(Zi , Xi) − lθ0 (Zi , Xi))(lθn

(Zi , Xi) − lθ0 (Zi , Xi))′

= o(1), a.s.

Thus,

1√
n

n∑

i=1

lθn
(Zi , Xi)Vi = 1√

n

n∑

i=1

lθ0 (Zi , Xi)Vi + oP∗
n

(1) , a.s.

(A.11)

The expansions (A.9), (A.10) and (A.11), and the multiplier
central limit theorem, see Theorem 2.9.2 in van der Vaart and
Wellner (1996), imply that C̄∗

mθn ,n converges weakly (almost
surely) to the same weak limit as C̄mθn ,n in (-∞(UX), ‖·‖UX

).
From this point, the rest of the proof follows the reasoning of
Theorem 1 in a routine fashion. Details are omitted. !
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Proof of Theorem 3. The proof follows the same steps as that
of Theorem 1. Hence, to save space, we only discuss here the
differences. Let F̂Xn denote the empirical cdf of {β ′

nXi}ni=1 and
let Ĉn be defined as C̃n but with F̂Xn replacing the true cdf Fβ ′

0X.

Set 0̂n ≡
√

n(T Ĉn − Ĉn). Define the class of functions

G3 ≡ {x̄ ∈ χX → fu,F,β(x̄) ≡ (u − F (β ′x̄))

× 1{F (β ′x̄)≤u} : u ∈ [0, 1], F ∈ LB,β ∈ $},
where LB is the set of Liptschitz functions in HB, that is, for all
z1 and z in R, with z1 ≥ z,

F (z1) − F (z) ≤ K[z1 − z].

We prove that G3 is PZ−Donsker. To that end, note that for
each (u, F ) ∈ [0, 1] × HB, using the triangle inequality and the
simple inequality |a+ − b+|2 ≤ |a − b|2 for all a, b ∈ R, where
a+ = max{a, 0}, we obtain

E
[

sup |fu1,F1,β1
(X) − fu,F,β(X)|2

]

≤ 2E
[

sup |F1(β ′
1X) − F2(β ′

1X)|2
]

+ 2E
[

sup |F2(β ′
1X) − F2(β ′

2X)|2
]

≤ K(1 + E
[
|X|2

]
)δ2,

where the supremum is over the set u1 ∈ [0, 1], F1 ∈ LB , and
β1 ∈ $ such that |u1 − u| ≤ δ, supx∈R |F1(x) − F (x)| ≤ δ, and
|β1 − β| ≤ δ, respectively. By Lemma A.1, the class G3, and
hence H ≡ G1 · G3, is PZ−Donsker.

We now prove that P(F̂Xn ∈ LB) → 1 as n → ∞. First, no-
tice that F̂Xn ∈ HB for each n ≥ 1. Also, by the Chebyshev
inequality, for all z1 ≥ z and any constant K1 > 0,

P
(
F̂Xn (z1) − F̂Xn (z) > K1[z1 − z]

)

≤ K−1
1 [z1 − z]−1E

[
F̂Xn (z1) − F̂Xn (z)

]

≤ K−1
1 [z1 − z]−1E [ŝ(z1, z)] ,

where ŝ(z1, z) ≡ 1{β ′
nX≤z1} − 1{β ′

nX≤z}. By Assumption M, and
defining βn =: (1, θ ′

n)′,

E[ŝ1(z1, z)] = E
[
1{z−θ ′

nX−1≤X1≤z1−θ ′
nX−1}

]

= E
[
FX1|X−1

(
z1 − θ ′

nX−1, X−1
)

−FX1|X−1

(
z − θ ′

nX−1, X−1
) ]

≤ K[z1 − z].

Choosing K1 sufficiently large, we obtained the desired result.
Similarly, it can be shown that F̂Xn is uniformly consistent

for Fβ ′
0X, since the class {1{β ′x̄≤z} : z ∈ R,β ∈ $} is Glivenko–

Cantelli, the map β ∈ $ → E[1{β ′X≤z}] is continuous under As-
sumption M and βn is consistent for β0.

Thus, by a stochastic equicontinuity argument and the
Glivenko–Cantelli theorem

sup
(y,u)∈/

∣∣GZnhy,u,FXn,βn
− GZnhy,u,Fβ′

0X,β0

∣∣ →p 0,

where hy,u,F,β (z̄) ≡ {1{ȳ1≤y} − 1{ȳ2≤y}}(u − F (β ′x̄))1{F (β ′x̄)
≤ u}. From the arguments of Theorem 1, we conclude that
under the l.f.c.

sup
(y,u)∈WY ×UXn

0̂n(y, u) = sup
(y,u)∈WY ×UXn

0̃n(y, u) + oP(1).

From here, the same arguments of Theorem 1 lead to

η̂n(βn) = η̂n(β0) + oP(1),

under the l.f.c. !
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