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4. OPTIMIZATION WITH INEQUALITY CONSTRAINTS: THE

METHOD OF KUHN-TUCKER

All throughout this chapter, D denotes an open subset of Rn.

1. Introduction

We study next optimization problems with inequality constraints.

(1.1) max f(x) s.t.: x ∈ S,
where S = {x ∈ D : g1(x) ≤ b1, . . . , gm(x) ≤ bm} and where f : D ⊆ Rn −→ R,
g = (g1, . . . , gm) : D −→ Rm. Contrary to the Lagrange case, there is no limitation
in the (finite) number of constraints.

Remark 1.1. A constraint of the type gi(x) ≥ bi is equivalent to −gi(x) ≤ −bi. The
problem

min f(x) s.t.: x ∈ S,
has the same solution(s) that

max −f(x) s.t.: x ∈ S.

2. Khun-Tucker necessary conditions

Definition 2.1. Given a point x0 ∈ D, we say that the restriction i = 1, 2, . . . ,m
is binding at the point x0 for problem 1.1 if gi(x0) = bi. If gi(x0) < bi, then we
say that the restriction i is not binding at the point x0.

Definition 2.2. Let g be the of class C1 in D. The point x0 ∈ D is regular
if either no restriction binds at x0 or the gradient vectors of the constraints than
binds at x0 form a matrix of maximal rank (that is, if it is k ≤ m the number of
constraints that bind at x0, then the gradient vectors for these constraints form a
matrix of rank k).

Definition 2.3. The Lagrangian function associated to (1.1) is

(2.1) L(x, λ) = f(x) + λ · (b− g(x)),

where λ = (λ1, . . . , λm).

Theorem 2.4 (Kuhn-Tucker’s Method). Suppose that the functions f : D ⊆
Rn −→ R, g = (g1, . . . , gm) : D −→ Rm are of class C1 in D and x0 is a regular
point of (1.1). If x0 is a solution of problem 1.1, then there is a vector λ0 =
(λ01, . . . , λ

0
m) ∈ Rm such that

∀i ∈ {1, . . . , n} ∂L
∂xi

(x0, λ0) = 0,

∀i ∈ {1, . . . ,m}

 λ0i (bi − gi(x0)) = 0,
λ0i ≥ 0,

gi(x0) ≤ bi.

Remark 2.5. The equations

(1) ∇xL(x, λ) = 0,
1
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(2) λ1(b1 − g1(x)) = 0, · · · , λm(bm − gm(x)) = 0,
(3) λ1 ≥ 0, . . . , λm ≥ 0,
(4) g1(x) ≤ b1, . . . , gm(x) ≤ bm.

are the Kuhn-Tucker equations of problem 1.1.

Remark 2.6. A way to apply the necessary conditions of Theorem 2.4 is to find the
solutions of the system of n+m equations and n+m unknowns



∂L
∂x1

(x, λ) = 0
...

...
...

∂L
∂xn

(x, λ) = 0

λ01(b1 − g1(x0)) = 0
...

...
...

λ0m(bm − gm(x0)) = 0.

From the solutions (x, λ) found, only are retained those that satisfy the rest of
conditions: x ∈ S and λi ≥ 0.

Example 2.7 (perfect substitutes). Suppose that an agent has income 5 and that
his utility function over consumption bundles is u(x, y) = 2x + y. If the prices of
the goods are p1 = 3, p2 = 1 what are the demand functions of the agent?
The maximization problem of the agent is

max 2x+ y

s.a. 3x+ y ≤ 5

x ≥ 0

y ≥ 0

We write first this problem in the form 1.1

max 2x+ y

s.a. 5− 3x− y ≥ 0

x ≥ 0

y ≥ 0

The associated Lagrangian is

L(x, y, λ1, λ2, λ3) = 2x+ y + λ1(5− 3x− y) + λ2x+ λ3y
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and the Kuhn-Tucker equations are

∂L

∂x
= 2− 3λ1 + λ2 = 0(2.2)

∂L

∂y
= 1− λ1 + λ3 = 0(2.3)

λ1(5− 3x− y) = 0(2.4)

λ2x = 0(2.5)

λ3y = 0(2.6)

3x+ y ≤ 5

x ≥ 0

y ≥ 0

λ1, λ2, λ3 ≥ 0

We try to solve first equations (2.2)-(2.6). Note that if λ1 = 0 then the first equation
implies that λ2 = −2 < 0, which contradicts equation λ1, λ2, λ3 ≥ 0. Therefore,
λ1 > 0. From equation λ1(5− 3x− y) = 0 we conclude that 5− 3x− y = 0 so that

y = 5− 3x

Suppose that x > 0. In this case, the equation λ2x = 0 implies that λ2 = 0. From
the first equation we see that λ1 = 2/3 and substituting in the equation we obtain
that λ3 = λ1 − 1 = −1/3 < 0 which contradicts the equation λ1, λ2, λ3 ≥ 0.
We conclude that x = 0 and y = 5. Then,

x = 0, y = 5, λ1 = λ2 = 1, λ3 = 0

is the unique solution of the system.

Remark 2.8. If S is compact, then the Theorem of Weierstrass assures the existence
of global solutions of (1.1). Assuming that the condition of regularity holds, these
global solutions are critical points of f relative to S. We will locate the global
solutions by evaluating those critical points with the objective function f . The
extremal values will determine the global maximum and minimum of f on S.

3. Sufficient conditions. Convex programs

Let f : D ⊆ Rn −→ R, g = (g1, . . . , gm) : D −→ Rm be of class C1 in D.

Theorem 3.1. If in problem (1.1) the function f is concave and the functions
g1, . . . , gm are convex, then the Khun-Tucker necessary conditions of Theorem 2.4
are also sufficients and if x0 ∈ S fulfills them, then x0 is a global maximum if f in
S.

Remark 3.2. In the conditions of the above theorem, if f is strictly concave, then
the global maximum, if exists, is unique. Hence, once a solution x0, λ0) of the KT
conditions has been found, we can stop searching, since it is the only solution of
the KT conditions.

4. Non-negativity constraints

Most often, inequality constrained problems include non-negativity of the variables.
Although this is a particular case of the theory developed so far, you will find in
textbooks an apparently different set of Khun-Tucker conditions. Actually, they are
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equivalent to the original ones, but applied to this specific problem of non-negativity
of the variables, adopt the following structure. Let the optimization problem with
inequality constraints and non-negativity constraints

(4.1) max f(x) s.t.: x ∈ S,

where S = {x ∈ D : g1(x) ≤ b1, . . . , gm(x) ≤ bm, x1 ≥ 0, . . . , xn ≥ 0} and where
f : D ⊆ Rn −→ R, g = (g1, . . . , gm) : D −→ Rm.

Definition 4.1. The Lagrangian function associated to (4.1) is

(4.2) L(x, λ) = f(x) + λ · (b− g(x)),

where λ = (λ1, . . . , λm).

Note that this Lagrangian does not incorporate the non-negativity constraints. It
only attaches multipliers to the other kind of constraints, gi(x) ≤ bi.

Theorem 4.2 (Kuhn-Tucker’s Method for problems with non-negativity cosntraints).
Suppose that the functions f : D ⊆ Rn −→ R, g = (g1, . . . , gm) : D −→ Rm are of
class C1 in D and x0 is a regular point of1 (4.1). If x0 is a solution of problem 1.1,
then there is a vector λ0 = (λ01, . . . , λ

0
m) ∈ Rm such that

∀i ∈ {1, . . . , n}

{
xi

∂L
∂xi

(x0, λ0) = 0,

∂L
∂xi

(x0, λ0) ≤ 0

∀i ∈ {1, . . . ,m}

 λ0i (bi − gi(x0)) = 0,
λ0i ≥ 0,

gi(x0) ≤ bi.

5. Optimization of convex (concave) functions

Let C be a convex subset of Rn. Now we consider either of the following problems:

(1) The function f : C → R is concave in C and we study the problem

max
x∈C

f(x)

1For this, it suffices that the matrix formed whose columns are the gradient vectors
∇g1(x0)t, . . . ,∇gm(x0)t, has rank m; there is no need to consider the non-negativity constraints

to check this condition.
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(2) The function f : C → R is convex in C and we study the problem

min
x∈C

f(x)

Proposition 5.1. Let C be a convex subset of Rn. Let f : C → R.

(1) if f is concave and x0 is a local maximum of f on C, then x0 is a global
maximum of f on C.

(2) if f is convex, and x0 ∈ C is a local minimum of f on C, then x0 is a global
minimum of f on C.

Proposition 5.2. Let C ⊂ Rn be convex and open, x0 ∈ C and f of class C1 on
C.

(1) If f is concave on C then, x0 is a global maximum of f on C if and only if
∇f(x0) = 0.

(2) If f is convex on C, then x0 is a global minimum of f on C if and only if
∇f(x0) = 0.

Proof In either case, if f has a maximum at x0 then, ∇f(x0) = 0. If, for example,
f is concave then, for each x ∈ C we have that

f(x) ≤ f(x0) +∇f(x0)(x− x0) = f(x0)

Hence, if ∇f(x0) = 0, we have thatf(x) ≤ f(x0) for other x ∈ C.

Remark 5.3. If a function is strictly concave (resp. convex)then,

f(x) < f(x0) +∇f(x0)(x− x0) = f(x0)
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and we see that if it has a maximum (resp. minimum) point, then it is unique. This
can be proved directly from the definition, without using the first order conditions.

Proposition 5.4. Let C ⊆ Rn be nonempty and convex and let f : C → R. Then

(1) The minimum set of a convex function is a convex set.
(2) The maximum set of a concave function is a convex set.

Proof Let us prove the first assertion. The second one follows from this by con-
sidering −f . Let M denote the set of minimum points of f . If M = ∅, then
there is nothing to prove. Otherwise, let x1, x2 ∈ M and let λ ∈ [0, 1]. We have
m = f(xi) ≤ f(x) for all x ∈M , for i = 1, 2. Since f is convex, f(λx1+(1−λ)x2) ≤
λf(x1) + (1 − λ)f(x2) = m. Hence λx1 + (1 − λ)x2 is also a minimum point of f
and thus λx1 + (1− λ)x2 ∈M and M is convex.

Theorem 5.5. Let C ⊆ Rn be nonempty and convex, let f : C → R and let x0 be
an interior point of f . Then

(1) If f is convex and x0 is a global maximum of f in C, then f is constant.
(2) If f is concave and x0 is a global minimum of f in C, then f is constant.

Definition 5.6. Let C ⊆ Rn be a convex set. A point x0 ∈ C is a vertex or
extreme point of C if x0 = λx1 + (1− λ)x2 for x1, x2 ∈ C and λ ∈ [0, 1], implies
λ = 0 or λ = 1.

Hence, a point of C is a vertex if it cannot be written as a non-trivial convex
combination of points of C. Note that a vertex is a boundary point of C, but not
every boundary point that belongs to C is a vertex. For instance, consider the sets

C1 = {(x, y) ∈ R2 : x+ y < 1},
C2 = {(x, y) ∈ R2 : x+ y ≤ 1},
C3 = {(x, y) ∈ R2 : x+ y ≤ 1, x ≥ 0, y ≥ 0},
C4 = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

All are convex sets. Neither C1 nor C2 has vertices. C3 has three vertices, the
points (0, 0), (0, 1) and (1, 0). C4 has infinitely many vertices (every point in the
circumference x2 + y2 = 1 is a vertex).

Theorem 5.7. Let C ⊆ Rn be nonempty, convex and compact and let f : C → R
be continuous. Then

(1) If f is convex, then f attains its global maximum in some vertex of C.
(2) If f is concave, then f attains its global minimum in some vertex of C.

Example 5.8. The function f(x, y) = −x2− y2 + ln(1 +x+ y) is strictly concave in
the compact and convex set C3 defined above. The derivatives of f are

∇f(x, y) =

(
−2x+

1

1 + x+ y
,−2y +

1

1 + x+ y

)

Hf(x, y) =

 −2− 1

(1 + x+ y)2
− 1

(1 + x+ y)2

− 1

(1 + x+ y)2
−2− 1

(1 + x+ y)2

 .

The principal minors of the Hessian matrix of f are: ∆1 = −2− 1
(1+x+y)2 < 0, and

∆2 = 4 + 4
(1+x+y)2 > 0.
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The vertices of C3 are (0, 0), (0, 1) y (1, 0). From the above theorem, the global
minima of f in C3 are among these points. Since f(0, 0) = 0, f(0, 1) = f(1, 0) =
−1 + ln 2 < −1 + ln e = −1 + 1 = 0, the points (0, 1) y (1, 0) are the global minima
of f in C3.
The theorem gives no information about maxima (other than existence). They
could be located in the interior or in the boundary of C3. To find them, we could
set the corresponding KT problem. However, in this case the FOCs

∂f

∂x
(x, y) = −2x+

1

1 + x+ y
= 0,

∂f

∂y
(x, y) = −2y +

1

1 + x+ y
= 0,

have a unique solution, (1
4 (
√

5 − 1), 14 (
√

5 − 1)), which belongs to C3, since its

components are non-negative and add up 1
2 (
√

5 − 1) ≤ 1. Thus, this point is the

global maximum of f in C3 (and in R2
+ indeed).


