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2. UNCONSTRAINED OPTIMIZATION

All throughout this section, D denotes an open subset of Rn.

1. First order necessary condition

Proposition 1.1. Let f : D → R be differentiable. If x0 ∈ D is a local maximum
or a local minimum of f on D, then

∇f(x0) = 0

Proof Fix i = 1 . . . , n and consider the curve

g(t) = f(x0 + tei)

where {e1 . . . , en} is the canonical basis of Rn. Note that g is a 1-variable differen-
tiable function that attains a local maximum at t0 = 0. Hence,

g′(0) = 0

But,

g′(0) =
d

dt

∣∣∣∣
t=0

f(x0 + tei) = lim
x→0

f(x0 + tei − f(p)

t
=

∂f

∂xi
(x0)

Definition 1.2. Let f : D → R we say that x0 ∈ D is a critical point if either f
is not differentiable at x0 or if

∇f(x0) = 0.

Remark 1.3. If x0 is a local extremum of f , then x0 is a critical point of f .

Definition 1.4. If ∇f(x0) = 0, but x0 is not a local extremum of f , then x0 is a
saddle point.

2. Second order necessary conditions

Proposition 2.1. Let f : D → R be of class C2(D). Fix a point x0 ∈ D.

(1) If x0 is a local maximum of f on D, then the Hessian matrix H f(x0) is
negative semidefinite or negative definite.

(2) If x0 is a local minimum of f on D, then the Hessian matrix H f(x0) is
positive semidefinite or positive definite.

3. Second order sufficient condition

Proposition 3.1. Let f : D → R be of class C2(D). Fix a point x0 ∈ D and
suppose

∇f(x0) = 0.

We have,

(1) If H f(x0) is negative definite, then x0 is a (strict) local maximum of f .
(2) If H f(x0) is positive definite, then x0 is a (strict) local minimum of f .
(3) If H f(x0) is indefinite, then x0 is a saddle point.
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Example 3.2. Consider the function,

f(x, y) = x2y + y2x

Then, ∇f(x, y) = (2xy + y2, 2xy + x2) so the only critical point is (0, 0). To
determine if it is a maximum, minimum or a saddle point, we compute the Hessian
matrix,

H f(0, 0) =

(
2y 2x + 2y

2x + 2y 2x

)∣∣∣∣
x=y=0

=

(
0 0
0 0

)
We see that the second order conditions are not informative. But, note that
f(x, x) = 2x3. So, (0, 0) is a saddle point. The graph of f is the following one

Example 3.3. Consider the function,

f(x, y) = (x− 1)4 + (y − 1)2

Then,

∇f(x, y) = (4(x− 1)3, 2(y − 1))

so the only critical point is (1, 1). To determine if it is a maximum, minimum or a
saddle point, we compute the Hessian matrix,

H f(1, 1) =

(
0 0
0 2

)
Since, it is positive semidefinite, the second order conditions are not informative.
But, f(x, y) ≥ 0 = f(1, 1). Hence, (1, 1) is a global minimum. The graph of f is
the following one
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Example 3.4. Consider the function,

f(x, y) = (x− 1)3 + y2

The gradient is
∇f(x, y) = (3(x− 1)2, 2y)

and there is a unique critical point (1, 0). To classify it, we compute the Hessian
matrix

H f(1, 0) =

(
6(x− 1), 0

0 2

)∣∣∣∣
x=1y=0

=

(
0 0
0 2

)
Since, it is positive semidefinite, the second order conditions are not informative.
But,

f(1 + t, 0) = t3 =

{
> 0 if t > 0
< 0 if t < 0

So, (1, 0) is a saddle point. The graph of f is the following one

x = 1

(t + 1, 0)
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Example 3.5. Consider the function,

f(x, y) = x2 + y2(x + 1)3

The gradient is
∇f(x, y) =

(
2x + 3y2(x + 1)2, 2y(x + 1)3

)
and there is unique critical point, (0, 0). To classify it we compute the Hessian
matrix,

H f(0, 0) =

(
2 + 6y2(x + 1) 6y(x + 1)2

6y(x + 1)2 2(x + 1)3

)∣∣∣∣
x=y=0

=

(
2 0
0 2

)
which is positive definite. Hence, (0, 0) is a strict local minimum. But it is not
a global minimum, because, f(−2, y) = 4 − y2 can be made arbitrarily small, by
taking y very large.

Remark 3.6 (A justification of the second order conditions). Recall that Taylor’s
polynomial of order 2 of f at the point x0 is

P2(x) = f(x0) +∇f(x0) · (x− x0) +
1

2
(x− x0) H f(x0)(x− x0)

Recall also that if f is of class C2 then

lim
x→0

R2(x)

‖x− x0‖2
= 0

where
R2(x) = f(x)− P2(x)

is the error produced when we approximate the function f by Taylor’s polynomial
of order 2. Suppose now x0 is a critical point of f and, hence ∇f(x0) = 0. Then,

f(x)− f(x0) =
1

2
(x− x0) H f(x0)(x− x0) + R2(x0)

and for x near x0 the term R2(x) is ‘negligible’. Therefore if, for example we know
that the term

(x− x0) H f(x0)(x− x0) > 0

then f(x) − f(x0) > 0 for every x 6= x0 ‘sufficiently close’ to x0 and the point x0

would be a local minimum. But, the condition (x−x0) H f(p)(x−x0) > 0 for every
x 6= x0 is satisfied if H f(x0) is positive definite.


