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2. UNCONSTRAINED OPTIMIZATION

All throughout this section, D denotes an open subset of R™.

1. FIRST ORDER NECESSARY CONDITION

Proposition 1.1. Let f: D — R be differentiable. If zg € D is a local maximum
or a local minimum of f on D, then

Vf(xo) =0
Proof Fix i =1...,n and consider the curve
g(t) = f(zo + tei)
where {e; ..., e,} is the canonical basis of R”. Note that g is a 1-variable differen-
tiable function that attains a local maximum at t; = 0. Hence,
g(0)=0

But,

g'(0)

o % =0 0 t o (91'1

Definition 1.2. Let f: D — R we say that ¢ € D is a critical point if either f
is not differentiable at xg or if

Remark 1.3. If xg is a local extremum of f, then x( is a critical point of f.

Definition 1.4. If Vf(xg) = 0, but z¢ is not a local extremum of f, then ¢ is a
saddle point.

2. SECOND ORDER NECESSARY CONDITIONS

Proposition 2.1. Let f: D — R be of class C?(D). Fix a point z¢ € D.

(1) If 2o is a local maximum of f on D, then the Hessian matrix H f(zq) is
negative semidefinite or negative definite.

(2) If 20 is a local minimum of f on D, then the Hessian matrix H f(x¢) is
positive semidefinite or positive definite.

3. SECOND ORDER SUFFICIENT CONDITION

Proposition 3.1. Let f : D — R be of class C?(D). Fix a point #p € D and
suppose
Vf(zo) =0.

We have,

(1) If H f(xo) is negative definite, then xg is a (strict) local maximum of f.

(2) If H f(x0) is positive definite, then zq is a (strict) local minimum of f.

(3) If H f(x0) is indefinite, then z is a saddle point.
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2 2. UNCONSTRAINED OPTIMIZATION
FEzample 3.2. Consider the function,
fx,y) = 2y +yx

Then, Vf(x,y) = (2ry + y?,2zy + %) so the only critical point is (0,0). To
determine if it is a maximum, minimum or a saddle point, we compute the Hessian

matrix,
_ 2y 2z + 2y (0 0
H £(0,0) = (2£L' + 2y 2x ) =0 o <0 0>

We see that the second order conditions are not informative. But, note that
f(x,z) =223, So, (0,0) is a saddle point. The graph of f is the following one

Ezample 3.3. Consider the function,

flay)=(@-1)"+(y—1)
Then,
Vi(z,y) = (4 —1)%2(y — 1))

so the only critical point is (1,1). To determine if it is a maximum, minimum or a
saddle point, we compute the Hessian matrix,

Hf(1,1) = (8 g)

Since, it is positive semidefinite, the second order conditions are not informative.
But, f(z,y) > 0 = f(1,1). Hence, (1,1) is a global minimum. The graph of f is
the following one



2. UNCONSTRAINED OPTIMIZATION 3

Ezample 3.4. Consider the function,
flzy) = (= 1)° + ¢
The gradient is
Vf(z,y) = (3(x - 1)% 2y)
and there is a unique critical point (1,0). To classify it, we compute the Hessian

matrix 6( 1) 0 0 0
rz—1), _
H f(]-’ O) - ( 0 2) x=1y=0 B <0 2)

Since, it is positive semidefinite, the second order conditions are not informative.
But,

3| >0ift>0
JA+6,0) =t _{ <0ift<0

So, (1,0) is a saddle point. The graph of f is the following one
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FEzample 3.5. Consider the function,
fla,y) =2 +y*(z +1)°

The gradient is
Vizy) = (2¢+3y*(z +1)% 2y(z + 1)°)
and there is unique critical point, (0,0). To classify it we compute the Hessian
2+6y*(x+1) 6y(x+ 1)2>

matrix,
2 0
Hf(070) = ( 2 3 = ( )
6y(x +1 2(x+1) sy 0 2

)
which is positive definite. Hence, (0,0) is a strict local minimum. But it is not
a global minimum, because, f(—2,y) = 4 — y? can be made arbitrarily small, by
taking y very large.

Remark 3.6 (A justification of the second order conditions). Recall that Taylor’s
polynomial of order 2 of f at the point zq is

Py(z) = f(wo) + Vf(zo) - (¥ — x0) + %(33 —x0) H f(x0)(x — x0)

Recall also that if f is of class C? then
lim o (@)

2
w0 [l — 202

where

Ra(w) = f(x) - Pa(a)
is the error produced when we approximate the function f by Taylor’s polynomial
of order 2. Suppose now zg is a critical point of f and, hence V f(xg) = 0. Then,

(&) = $ao) = 5 = w0) H S (w0) (& — w0) + Ralio)

and for x near x the term Ry(z) is ‘negligible’. Therefore if, for example we know
that the term

(x —x0) H f(z0)(z — z9) > 0
then f(x) — f(xo) > 0 for every z # ¢ ‘sufficiently close’ to g and the point x
would be a local minimum. But, the condition (z —z¢) H f(p)(x —x¢) > 0 for every
x # xo is satisfied if H f(zg) is positive definite.



