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1. INTRODUCTION TO MATHEMATICAL OPTIMIZATION

1. Mathematical Programs

Mathematical Programming is devoted to the study and resolution of optimization problems. An

optimization problem consists in searching of extrema of functions in their domain or in subsets of

their domain defined though equalities and/or inequalities.

Mathematical programs are expressed by

(1.1) opt f(x) s.a: x ∈ S,

where f : D −→ R, D ⊆ Rn and S ⊆ D, and where “opt” denotes “to optimize” and more

specifically, it can be substituted by “max” for “to maximize” or “min” for “to minimize”.

All throughout this section, D denotes an open subset of Rn.

Definition 1.1. In a mathematical program we distinguish the following elements.

• f is the objective function and S is the feasible set.

• Program (1.1) is impossible if S = ∅.
• An element x0 ∈ D is feasible if x0 ∈ S. Otherwise, it is non feasible.

• A feasible element x0 is a local or global solution of (1.1) if x0 is a local or global extremum

of f restricted to S, respectively.

Let us remember now the notion of local and global extrema of a function f on a set S.

Definition 1.2. Let f : S ⊆ D −→ R, with S 6= ∅ and let x0 ∈ S. We say that x0 is

• a local maximum (or relative) of f in S if and only if ∃r > 0 such that ∀x ∈ B(x0, r) ∩ S,

f(x) ≤ f(x0).

• a local minimum (or relative) of f in S if and only if ∃r > 0 such that ∀x ∈ B(x0, r) ∩ S,

f(x0) ≤ f(x).

• a global maximum (or absolute) of f in S if and only if ∀x ∈ S, f(x) ≤ f(x0).

• a global minimum (or absolute) of f in S if and only if ∀x ∈ S, f(x0) ≤ f(x).

In all the cases above, if the inequality is strict (<) for x 6= x0, then x0 is a strict local/global

maximum/minimum, respectively

Remark 1.3. Note that a global extremum is local, and that the global extrema, if exist, are unique.

Proposition 1.4. Let f : S ⊆ D −→ R, with S 6= ∅ and let x0 ∈ S. The point x0 is a local/global

maximum of f in S iff x0 is a local/global minimum of −f in S.

Remark 1.5. By the Theorem of Weierstrass, if f is continuous in S and S is compact (closed

and bounded), then Problem (1.1) admits global solutions.
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2. Classification of Mathematical Programs

Problem (1.1) is classified attending to the characteristics of the objective function and the feasible

set.

Definition 2.1. We say that Problem (1.1) is

• a problem without constraints if S = D.

• a problem with equality constraints if

S = {x ∈ D : g1(x) = b1, . . . , gm(x) = bm},

where gi : D −→ R, bi ∈ R ∀i ∈ {1, . . . ,m}.
• a problem with inequality constraints if the feasible set S is of the form

S = {x ∈ D : g1(x) ≤ b1, . . . , gm(x) ≤ bm},

where gi : D −→ R and bi ∈ R, for all i = 1, . . . ,m.

Definition 2.2. We say that the Problem (1.1) is a linear program if the objective function is a

linear function, f(x) = c1x1 + · · ·+ cnxn, and the feasible set

S = {x ∈ D : g1(x) ≤ b1, . . . , gm(x) ≤ bm}

is given by linear functions, gi(x) = ai1x1 + · · ·+ ainxn (in this case, S is called polytope).

Definition 2.3. We say that the Problem (1.1) is a convex program if S is a convex set and either

• f is concave and “opt=max’, or

• f is convex and “opt=min”.

3. Geometric properties of mathematical programs

In this section we study some geometric properties of optimization problems that allow their graph-

ical resolution when n = 2.

Definition 3.1. The level k set of a function f : D ⊆ Rn −→ R is the set

Ck(f) = {x ∈ D : f(x) = k}.

When n = 2, they are called level curves.

Remark 3.2. Level sets are disjoint, that is Ck(f)∩Ck′(f) = ∅ if k 6= k′. Moreover, the set of all

level sets of f fills D, that is ⋃
k

Ck(f) = D.

In which direction we face level sets with higher (lower) level k?

Theorem 3.3. Let f : D ⊆ Rn −→ R with D open and let f be differentiable.
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• Given x0 ∈ D, the directional derivative of f at x0 takes the highest value in the direction

of the gradient vector ∇f(x0).

• Given x0 ∈ Ck(f), the gradient vector ∇f(x0) is perpendicular to the level set Ck(f) at x0.

Remark 3.4 (Tips for graphically solving (1.1) when n = 2.). Draw the set S and overlap on it

some level curves of f , for different values of k. We are interested in the highest (lowest) level k

for which S ∩ Ck(f) 6= ∅. The points in this intersection are the global maximum (minimum) of

f is S. The gradient vector gives the direction of maximum increase of f , and the opposite to the

gradient vector gives the direction of maximum decrease of f .

Example 3.5. Solve diagrammatically, using contours, preference directions, and feasible sets, the

following problems

(1) opt x1 + x2 subject to 2x1 − x2 ≤ 2, x1 + x2 ≤ 4, x1 ≥ 0, x2 ≥ 0.

(2) opt x21 − x2 subject to ln(x1 + x2) ≤ 1

(1) The level curves are lines x1+x2 = k, k ∈ R. The preference direction is ∇f(x1, x2) = (1, 1)

for all (x1, x2), where f(x1, x2) = x1 + x2. The furthest contour line that contains points

of the opportunity set is x1 + x2 = 4, thus the segment joining (0, 4) and (2, 2) is formed by

global maximum of f in S. The minimum is attained at (0, 0).

S

∇f = (1, 1)

2x1 − x2 = 2

x1 + x2 = 4

x1 + x2 = 0

(2) The level curves {x21 − x2 = k}, k ∈ R, are convex parabolas. The gradient of f(x1, x2) =

x21 − x2 is ∇f(x1, x2) = (2x1,−1), which is the direction where the function is increasing

fastest. There is no point of the opportunity set where a highest contour is attained, thus

the problem has not a maximum. The point of the opportunity set where the lowest contour

is attained is at the point of tangency of a parabola of level k and the line x1 + x2 = e. The

slope of any of the parabolas at a point (x1, x2) is 2x1. The slope of the line x1 + x2 = e is



4 1. INTRODUCTION TO MATHEMATICAL OPTIMIZATION

−1. Thus, the tangency point satisfies 2x1 = −1, or x1 = −1
2 . Plugging this into the line,

we obtain x2 = e+ 1
2 . Thus, the global minimum of f in S is the point (−1

2 , e+ 1
2) and the

minimum value of f in S is f(−1
2 , e+ 1

2) = 1
4 − e−

1
2 = −e− 1

4 .

S

x1 + x2 = e

x1 + x2 = 0

∇f

∇f

4. Ordered sets and monotone functions in the vectorial sense

In the real line there is a natural order defined as follows: given two real numbers x, y, we say that

x ≤ y if y − x ≥ 0 and say that x < y if y − x > 0. This establishes a relation between x and y,

which is an order relation. Real numbers can be related in many other ways. For instance, we can

define the following relation: x is related with y if x − y is an integer. We write xRy to indicate

that x is related with y. The pair of numbers (x, y) which are related in this sense, xRy, form a

subset of the product space R×R = R2. Hence a relation on the real line R is nothing but a subset

of the plane R2. Obviously, relations can be defined in arbitrary sets.

Definition 4.1. A binary relation on X is a subset R ⊆ X × X. We say that x ∈ X is related

with y ∈ X, and write xRy, if (x, y) ∈ R.

We are specially interested in relations that provide an order to the elements of the given set. This

kind of relations R are denoted �.

Definition 4.2. Let X be a nonempty set and let � be a binary relation between elements in X. We

say that (X,�) is an ordered set if the relation � is an order, that is, it is reflexive, antisymmetric

and transitive:

(i) Reflexive x � x;

(ii) Antisymmetric [x � y and y � x] ⇒ x = y;

(iii) Transitive [x � y and y � z] ⇒ x � z
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for all x, y, z ∈ X.

Definition 4.3. Given (X,�), the order � is called a total order if every pair of distinct elements

is comparable: ∀x, y ∈ X [x � y or y � x].

An order which is not total is called a partial order. In this case, there are two elements at least

with no relation between them (x and y such that, neither x � y nor y � x); in this case they are

incomparable.

Remark 4.4. (X,�) can be a totally or a partially ordered set.

Example 4.5. We illustrate the concepts above with two examples.

(1) The real line with the usual order (R,≤) is a total order.

(2) (R2,�P ) is a partial order, where �P is the Pareto order

(x1, y1) �P (x2, y2)⇐⇒ (x1 ≤ x2, y1 ≤ y2).

Geometrically, this means that (x1, y1) is on the left and below with respect to (x2, y2).

Therefore, (0,1) and (1,0) are not comparable.

Definition 4.6. if (X,�) is a totally ordered set, we define, for any subset A ⊂ X, A 6= ∅:
maximum of (A): max(A) = M is the greatest element in A ⇔

[∀a ∈ A⇒ a �M and M ∈ A].

minimum of (A): min(A) = m is the least element in A ⇔
[∀a ∈ A⇒ m � a and m ∈ A].

Example 4.7. Let (R,≤).

Any finite subset A of R has both maximum and minimum.

A = [0, 1] has both maximum and minimum

A = [0, 1) has minimum but not maximum.

A = (−∞, 1] has maximum but not minimum.

Remark 4.8. Similarly, it is possible to define maximum and minimum in a partially ordered set

(X,�), but it is not a very useful concept.

Example 4.9. Let A = {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ 1} has no maximum.

To solve the lack shown in this example, we introduce the following definitions.

Definition 4.10. If (X,�) is a partially ordered set, for any A ⊂ X, A 6= ∅ , we define:

maximal elements of (A): A maximal element of A is an element that is not smaller than

any other element in A

maximal(A) = {a ∈ A :6 ∃a′ ∈ A, a′ 6= a and a � a′},
minimal elements of (A): A minimal element of A is an element that is not greater than

any other element in A

minimal(A) = {a ∈ A :6 ∃a′ ∈ A, a′ 6= a and a′ � a}
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Example 4.11. Let (R2,�P ). The set A = {(x, y) : x ≥ 0, y ≥ 0, x+y ≤ 1} has maximal elements:

maximal(A) = {(x, y) ∈ A : x+ y = 1, 0 ≤ x ≤ 1}.

Remark 4.12. Observe that, if a maximum M exists, then it is the unique maximal element.

Similarly, if a minimum exists, is the unique minimal element.

But the opposite is not true: the set A = {(x, y) : x = 0, 0 ≤ y ≤ 1} ∪ {0 < x < 1, y = 0} has an

unique maximal element, the point (0, 1), but it has not a maximum.

Remark 4.13. Maximal and minimal elements are also known as Pareto optima. It is a basic

concept in economics since the beginning of the 20th century.

Definition 4.14. We say that a function f : (X,�) −→ R is a monotone increasing function when

it satisfies that: z1 � z2 =⇒ f(z1) ≤ f(z2). For instance, if (X, �) is a subset of the plane with

the Pareto order, it means that:

z1 = (x1, y1) � (x2, y2) = z2 =⇒ f(z1) = f(x1, y1) ≤ f(x2, y2) = f(z2)

Example 4.15. (1) f(x, y) = Ax+By, is monotone increasing if and only if min(A,B) ≥ 0.

(2) f(x, y) = xα · yβ, defined on [0,∞)× [0,∞), it is also monotone increasing when α, β > 0.

With respect to strictly increasing functions, there are several possible definitions.

The most usual one, for the case of the Pareto order, is:

Definition 4.16. We say that a function f : (A,�P ) −→ R is strictly increasing on A ⊂ R2, when

it satisfies that:

z1 = (x1, y1) �P (x2, y2) = z2, z1 6= z2 =⇒ f(z1) = f(x1, y1) < f(x2, y2) = f(z2)

Example 4.17. (1) f(x, y) = Ax+By, is strictly increasing if min(A,B) > 0.

(2) on the other hand, f(x, y) = xα ·yβ, defined on (0,∞)×(0,∞), it is also a strictly increasing

function when α, β > 0.

Theorem 4.18. Let f be defined on A ⊂ R2, with the Pareto order.

a) If f is a monotone increasing function and A is a set bounded above by its maximal elements,

the maximum of f will be reached at some of the maximal points of A and, perhaps, in some

other points of A which are not maximals.

b) If f is strictly increasing and reaches a global maximum, this maximum will be only obtained

at a point in the set of maximal elements of A.

Remark 4.19. A set A is bounded above by its maximal elements when, for any a ∈ A, there exists

a maximal element M , depending on a, such that a �M .

Example 4.20.

(1) if f is a constant function, the maximum will be obtained on all the points of A. Thus, over

all the maximal elements of A supposing that any exists.
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(2) If f is a continuous function, strictly increasing and defined on

A = {(x, y) : x ≥ 0, y ≥ 0, x + y ≤ 1}, then f will get its global maximum on the set

B = {(x, y) : x ≥ 0, y ≥ 0, x+ y = 1}, i.e., on the set of maximal elements of A.

On the same way, it can be defined a monotone decreasing and a strictly decreasing function over

the Pareto order.

Definition 4.21. We say that a function f : (X,�) −→ R is a monotone decreasing function when

it satisfies that: z1 � z2 =⇒ f(z1) ≥ f(z2). For instance, if (X,�) is a subset of the plane with the

Pareto order, it means that:

z1 = (x1, y1) � (x2, y2) = z2 =⇒ f(z1) = f(x1, y1) ≥ f(x2, y2) = f(z2)

Example 4.22. (1) f(x, y) = Ax+By, is monotone decreasing if and only if max(A,B) ≤ 0.

(2) f(x, y) = −xα · yβ, defined on [0,∞)× [0,∞) it is also monotone decreasing when α, β > 0.

With respect to strictly decreasing functions, there are several possible definitions.

The most usual one, for the case of the Pareto order, is:

Definition 4.23. We say that a function f : (A,�P ) −→ R is a strictly decreasing function, with

A ⊂ R2, when it satisfies that:

z1 = (x1, y1) �P (x2, y2) = z2, z1 6= z2 =⇒ f(x1, y1) > f(x2, y2)

Example 4.24. (1) f(x, y) = Ax+By, is strictly decreasing if max(A,B) < 0.

(2) On the other hand, f(x, y) = −xα · yβ, defined on (0,∞) × (0,∞), it is also a strictly

decreasing function when α, β > 0.

Theorem 4.25. Let f defined on A ⊂ R2, with the Pareto order.

a) If f is a monotone decreasing function and A is a set bounded above by its maximal elements,

the minimum of f will be reached at some of the maximal points of A and, perhaps, in some

other points of A which are not maximals.

b) If f is strictly decreasing and reaches a global minimum, this minimum will be only obtained

at a point in the set of maximal elements of A.

Example 4.26.

(1) if f is a constant function, the minimum will be obtained on all the points of A. Thus, over

all maximal elements of A supposing that any exists.

(2) If f is a continuous function, strictly decreasing, defined on

A = {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ 1},

then f will get its global minimum on the set B = {(x, y) : x ≥ 0, y ≥ 0, x + y = 1}, i.e.,

on the set of maximal elements of A.


