May 28, 2021

SHEET 4. OPTIMIZATION WITH INEQUALITY CONSTRAINTS

(1) Find the maximum of the function f(x, y, z) = xyz on the set $\{(x, y, z) \in \mathbb{R}^3 : x + y + z \le 1, x, y, z \ge 0\}$.

Solution: First we write the problem in the canonical form,

$$\begin{array}{ll} \max_{x,y,z} & xyz \\ \text{s.t.} & x+y+z \leq 1 \\ & -x \leq 0 \\ & -y \leq 0 \\ & -z \leq 0 \end{array}$$

The Lagrangian is

$$L = xyz + \lambda_1(1 - x - y - z) + \lambda_2 x + \lambda_3 y + \lambda_4 z$$

and the Kuhn–Tucker equations are

(1)
$$\frac{\partial L}{\partial x} = yz - \lambda_1 + \lambda_2 = 0 \Leftrightarrow \lambda_1 = yz + \lambda_2$$

(2)
$$\frac{\partial L}{\partial y} = xz - \lambda_1 + \lambda_3 = 0 \Leftrightarrow \lambda_1 = xz + \lambda_3$$

(3)
$$\frac{\partial L}{\partial z} = xy - \lambda_1 + \lambda_4 = 0 \Leftrightarrow \lambda_1 = xy + \lambda_4$$

(4)
$$\lambda_1(1-x-y-z) = 0$$

(5)
$$\lambda_2 x = 0$$

(6)
$$\lambda_3 y = 0$$

(7)
$$\lambda_4 z = 0$$

(8)
$$\lambda_1, \lambda_2, \lambda_3 \geq 0$$

$$(9) x+y+z \leq 1$$

$$(10) x, y, z \ge 0$$

Case 1 $\lambda_1 = 0$. In this case, from equations (1), (2) y (3) we obtain that

$$yz + \lambda_2 = xz + \lambda_3 = xy + \lambda_4 = 0$$

But all the variables are positive, so

(11)
$$yz = xz = xy = \lambda_2 = \lambda_3 = \lambda_4 = 0$$

The equations (11) yield an infinite number of solutions in which at least two of the variables x, y, z vanish. The value of the objective function at these solutions is 0.

Case 2 $\lambda_1 > 0$. Then, x + y + z = 1. If, for example x = 0, we obtain from equations (2) y (3) that

$$\lambda_3 = \lambda_4 = \lambda_1 > 0$$

and from the equations (6) y (7) we see that y = z = 0. But this contradicts that x+y+z = 1. We conclude that x > 0. Analogously, one can show that y, z > 0. By equations (5), (6) y (7) we see that

$$\lambda_2 = \lambda_3 = \lambda_4 = 0$$

and equations (1), (2) y (3) imply that

$$yz = xz = xy$$

that is

$$x = y = z$$

And since x + y + z = 1, we conclude that

$$x = y = z = \frac{1}{3}; \quad \lambda_1 = \frac{1}{9}$$

The value of the objective function is

$$f\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)=\frac{1}{27}$$

So the point

$$x = y = z = \frac{1}{3}$$

corresponds to the maximum.

(2) Find the minimum of the function $f(x,y) = 2y - x^2$ on the set $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, x, y \ge 0\}$.

Solution: First we write the problem in the canonical form,

$$\max_{\substack{x,y,z\\ \text{s.t.}}} \qquad x^2 - 2y$$
$$x^2 + y^2 \le 1$$
$$-x \le 0$$
$$-y \le 0$$

The Lagrangian is

$$L = x^{2} - 2y + \lambda_{1}(1 - x^{2} - y^{2}) + \lambda_{2}x + \lambda_{3}y$$

and the Kuhn–Tucker equations are

(12)
$$\frac{\partial L}{\partial x} = 2x - 2\lambda_1 x + \lambda_2 = 0 \Leftrightarrow 2\lambda_1 x = 2x + \lambda_2$$

(13)
$$\frac{\partial L}{\partial y} = -2 - 2\lambda_1 y + \lambda_3 = 0 \Leftrightarrow \lambda_3 = 2 + 2\lambda_1 y$$

(14)
$$\lambda_1(1-x^2-y^2) = 0$$

(15)
$$\lambda_2 x = 0$$

(16)
$$\lambda_3 y =$$

(17)
$$\lambda_1, \lambda_2, \lambda_3 \geq 0$$

$$(18) x^2 + y^2 \leq 1$$

$$(19) x, y \ge 0$$

Since all the variables that appear in equation (13) are positive, we have that

$$\lambda_3 \ge 2 > 0$$

0

 \mathbf{SO}

y = 0

and from equation (13) we see that

 $\lambda_3 = 2$

Case 1: x = 0. By equation (14) we see that $\lambda_1 = 0$ y by equation (12) we see that $\lambda_2 = 0$. That is, of solution of the Kuhn–Tucker equations is

$$x^*y^* = 0; \quad \lambda_1 = \lambda_2 = 0, \quad \lambda_3 = 2$$

The value of the objective function at these solutions is f(0,0) = 0.

Case 2: x > 0. Then, $\lambda_2 = 0$ and by equation (12), $\lambda_1 = 1$. Now we obtain from equation (14) that $x^2 + y^2 = 1$. And since $y = 0, x \ge 0$ we have that

x = 1

Another solution of the Kuhn–Tucker equations is

$$x^* = 1, \quad y^* = 0; \quad \lambda_1 = 1, \quad \lambda_2 = 0, \quad \lambda_3 = 2$$

The value of the objective function at these solutions is f(1,0) = -1. Therefore, the minimum is attained at the point (1,0).

(3) Solve the optimization problem

min
$$x^2 + y^2 - 20x$$

s.t. $25x^2 + 4y^2 \le 100$

Solution: We write the problem as

$$\begin{cases} \max & -x^2 - y^2 + 20x \\ \text{s.t.} & 25x^2 + 4y^2 \le 100 \end{cases}$$

The associated Lagrangian is

$$L = -x^{2} - y^{2} + 20x + \lambda(100 - 25x^{2} - 4y^{2})$$

and the Kuhn-Tucker equations are

(20)
$$-2x + 20 - 50\lambda x = 0$$

$$(21) -2y - 8\lambda y = 0$$

(22)
$$25x^2 + 4y^2 \leq 100$$

(23)
$$\lambda(100 - 25x^2 - 4y^2) = 0$$

$$(24) \qquad \qquad \lambda \geq 0$$

From (20) we see that $y(1+4\lambda) = 0$, so if $y \neq 0$, then $\lambda = -1/4$ which contradicts (24). We conclude that y = 0 and the system reduces to

(25)
$$-2x + 20 - 50\lambda x = 0$$

$$(26) x^2 \leq 4$$

$$\lambda(4-x^2) = 0$$

$$(28) \qquad \qquad \lambda \geq 0$$

If $\lambda = 0$ from (25) we obtain that x = 10. But this does not satisfy (26). Therefore, $\lambda \neq 0$ and from (27) we see that $x^2 = 4$. There are two possibilities $x = \pm 2$. Solving in (25) we obtain

$$\lambda = \frac{10 - x}{25x}$$

so that if x = -2 then $\lambda = -12/50$ does not satisfy (28). Therefore, the solution is

$$x = 2, \quad y = 0, \qquad \lambda = \frac{8}{50}$$

(4) Solve the optimization problem

$$\begin{cases} \max & x+y-2z \\ s.t. & z \ge x^2+y^2 \\ & x,y,z \ge 0 \end{cases}$$

Solution: First we write the problem in the canonical form,

$$\max_{\substack{x,y,z\\ \text{s.t.}}} \qquad \begin{array}{l} x+y-2z\\ x^2+y^2-z\leq 0\\ -x\leq 0\\ -y\leq 0\\ -z\leq 0\end{array}$$

The Lagrangian is

$$L = x + y - 2z + \lambda_1(z - x^2 - y^2) + \lambda_2 x + \lambda_3 y + \lambda_4 z$$

and the Kuhn–Tucker equations are

(29)
$$\frac{\partial L}{\partial x} = 1 - 2\lambda_1 x + \lambda_2 = 0 \Leftrightarrow 2\lambda_1 x = 1 + \lambda_2$$

(30)
$$\frac{\partial L}{\partial x} = 1 - 2\lambda_1 y + \lambda_3 = 0 \Leftrightarrow 2\lambda_1 y = 1 + \lambda_3$$

$$\frac{\partial y}{\partial y} = 1 - 2\lambda_1 y + \lambda_3 = 0 \Leftrightarrow 2\lambda_1 y = 0$$

(31)
$$\frac{\partial L}{\partial z} = -2 + \lambda_1 + \lambda_4 = 0 \Leftrightarrow \lambda_1 + \lambda_4 = 2$$
(32)
$$\lambda_1 (x^2 + y^2 - z) = 0$$

$$\lambda_1(x + g - z) = 0$$
(33)
$$\lambda_2 x = 0$$

(34)
$$\lambda_3 y = 0$$

$$\lambda_4 z = 0$$

$$(36) \qquad \qquad \lambda_1, \lambda_2, \lambda_3, \lambda_4 \geq 0$$

$$(37) x, y, z \ge 0$$

From equation (29), we see that if $\lambda_1 = 0$ o x = 0, then $1 + \lambda_2 = 0$ so $\lambda_2 < 0$. Therefore, we must have that $\lambda_1 > 0$ y x > 0. Similarly, from equation (30) we obtain that y > 0. From equations (33) and (34) we see now that $\lambda_2 = \lambda_3 = 0$. The Kuhn–Tucker equations may now be written as follows

$$\lambda_1 + \lambda_4 = 2$$

$$(41) x^2 + y^2 = z$$

(42)
$$\lambda_4 z = 0$$

(43)
$$\lambda_1, \lambda_4 \geq 0$$

$$(44) x, y, z \ge 0$$

Since $\lambda_1 > 0$, from equations (38) and (39) we obtain that

$$x = y = \frac{1}{2\lambda_1}$$

 \mathbf{so}

$$z = 2x^2 > 0$$

And we deduce from equation (42) that $\lambda_4 = 0$ and from equation (40) that $\lambda_1 = 2$. Therefore, the solution is

$$x = y = \frac{1}{4}, \quad z = \frac{1}{8}; \qquad \lambda_1 = 2, \quad \lambda_2 = \lambda_3 = \lambda_4 = 0$$

(5) Solve the optimization problem

$$\begin{cases} \max & x^2 - 2xy + 4y^2 \\ s.t. & x + y \le 4 \\ & y \ge 2x \\ & x, y \ge 0 \end{cases}$$

Solution: The function $f(x, y) = x^2 - 2xy + 4y^2$ is convex and the opportunity set is convex and compact, thus f attains the maximum at some of the vertex of S, which are (0,0), (0,4) and (2,4). Evaluating we have

$$f(0,0) = 0$$
, $f(0,4) = 64$, $f(2,4) = 52$.

Hence, (0, 4) is the global maximum of f in S.