OPTIMIZACIÓN MATEMÁTICA PARA LA ECONOMÍA (2023-24)

ECONOMÍA, DERECHO-ECONOMÍA, ESTUDIOS INTERNACIONALES-ECONOMÍA

HOJA 3. OPTIMIZACIÓN CON RESTRICCIONES DE IGUALDAD

(1) Hallar los extremos de las siguientes funciones sujetas a restricciones.

- (a) f(x, y, z) = x + y + z en $x^2 + y^2 + z^2 = 2$.
- (b) $f(x,y) = \cos(x^2 y^2)$ en $x^2 + y^2 = 1$.
- (2) Minimizar $x^4 + y^4 + z^4$ sobre el plano x + y + z = 1.
- (3) Una empresa fabrica productos P_1 y P_2 . Los ingresos totales para x_1 unidades de P_1 y x_2 unidades de P_2 son $R = -5x_1^2 8x_2^2 2x_1x_2 + 42x_1 + 102x_2$. Hallar x_1 y x_2 de forma que los ingresos sean máximos.
- (4) La precios de venta de dos productos producidos por un monopolista son

$$p_1 = 256 - 3q_1 - q_2$$

$$p_2 = 222 + q_1 - 5q_2$$

donde p_1 , p_2 son los precios y q_1 , q_2 son las cantidades producidas. La función de costes es $C(q_1, q_2) = q_1^2 + q_1q_2 + q_2^2$. Hallar las cantidades de cada producto que maximizan los beneficios.

- (5) La función de producción de un fabricante es 4x + xy + 2y. La cantidad total disponible para trabajo y capital es de 2000\$. Las unidades de trabajo y capital cuestan 20\$ y 4\$ respectivamente.
 - (a) Razona que 20x + 4y = 2000.
 - (b) Halla el nivel máximo de producción del fabricante con la restricción del apartado anterior.
- (6) A un editor se le han asignado 60.000 para gastar en producción y publicidad de un nuevo libro. Se calcula que si se gastan x miles de dólares en producción e y miles de dólares en publicidad se venderín aproximadamente $f(x,y) = 20x^{3/2}y$ ejemplares del libro. ¿Cuánto dinero debe asignar el editor a producción y cuánto a publicidad para maximizar las ventas?
- (7) Un minorista vende dos productos que se hacen competencia, y cuyos precios respectivos son P_1 y P_2 . Hallar P_1 y P_2 de forma que los ingresos sean máximos siendo $R = 500P_1 + 800P_2 + 1,5P_1P_2 1,5P_1^2 P_2^2$.

1

- 2
- (8) La función de utilidad de un consumidor es $u(x,y) = \frac{1}{3} \ln x + \frac{2}{3} \ln y$ siendo x e y el consumo realizado de dos bienes, cuyos precios son, respectivamente, p_1 y p_2 . Suponiendo que el agente dispone de una renta M, calcular las cantidades que demandaría de cada bien, dependiendo de la renta M y de los precios.
- (9) Hallar y clasificar los puntos extremos de la función dada en el conjunto correspondiente.
 - (a) $f(x, y, z) = x^2 + y^2 + z^2$ en el conjunto $\{(x, y, z) \in \mathbb{R}^3 : x + 2y + z = 1, 2x 3y z = 4\}$.
 - (b) $f(x, y, z) = (y + z 3)^2$ en el conjunto $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y + z = 2, x + y^2 + 2z = 2\}$.
 - (c) f(x, y, z) = x + y + z en el conjunto $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, x y z = 1\}$.
 - (d) $f(x, y, z) = x^2 + y^2 + z^2$ en el conjunto $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z, x + y + z = 4\}.$
- (10) [Examen Final de mayo de 2022] Se considera el siguiente problema de Lagrange:

Optimizar
$$f(x,y) = xy - 3x - 6y$$

sujeto a:
$$g(x,y) = 2x + 4y = 40$$
.

- (a) Encontrar todos los puntos críticos del problema.
- (b) Encontrar todos los extremos locales de f(x, y) sujetos a la restricción. Justificar si los extremos locales son o no globales.
- (c) Se supone que f(x,y) es la función de beneficios de una empresa y que 2x + 4y = 40 es la restricción presupuestaria, ambas expresadas en miles de euros.

Calcular de forma aproximada el incremento en los beneficios si los fondos de la empresa se incrementan en 1.000 euros.

(11) [Examen Final de junio de 2022] Una empresa estatal gestionada por el Gobierno del país G produce dos bienes A y B, de los que vende x e y unidades diarias, respectivamente. La función de costes está dada por

$$C(x,y) = xy + 2x^2 + y^2.$$

El precio unitario del bien A es $p_A(x,y) = 3 - 2x - \alpha y$, donde $\alpha > 0$ es un parámetro positivo. El precio unitario del bien B es constante, igual a 1, es decir, $p_B(x,y) = 1$.

- (a) Encontrar el rango de valores de α para los que la función de beneficios de la empresa es una función cóncava.
- (b) Sea $\alpha = 1$. Encontrar los valores de x e y que maximizan los beneficios de la empresa.
- (c) Sea $\alpha = 1$. El Gobierno ordena a los directivos de la empresa producir cantidades de los bienes A y B tales que el precio unitario del bien A sea 2, es decir, $p_A(x,y) = 3 2x y = 2$. Encontrar los valores de x y de y que maximizan los beneficios de la empresa bajo esta restricción.
- (d) Sea $\alpha=1$. Suponga ahora que el Gobierno ordena a los directivos de la empresa producir cantidades de los bienes A y B tales que el precio unitario del bien A sea $2+\frac{1}{6}$, es decir, $p_A(x,y)=3-2x-y=2+\frac{1}{6}$. Sin resolver este nuevo problema de Lagrange,

dar una valor estimado del incremento (positivo o negativo) de los beneficios óptimos de la empresa con respecto al caso resuelto en el apartado (c) anterior, cuando el precio unitario de A fue fijado en 2. Base su respuesta en el valor del multiplicador encontrado en el apartado (c).