#### **Bayesian games**

#### 2. Economic applications

Universidad Carlos III de Madrid

## **Economic applications**

- Auctions with asymmetric information over valuations:
  - First price auctions.
  - Second price auctions.
- Cournot duopoly with asymmetric information over:
  - Rival's costs.
  - Demand.
- Public goods with asymmetric information over the rival's valuation or costs.

## Auctions

- Two individuals participate in a closed-envelope auction to buy an object.
- They must choose their bids, b<sub>1</sub> and b<sub>2</sub>, simultaneously, and the object is sold to the one with the highest bid. In case of a tie, the winner is selected randomly.
- Valuations are  $v_1$  and  $v_2$ .
- Player *i*'s utility is:

$$u_i(b_1, b_2; v_1, v_2) = \begin{array}{cc} v_i - p & \text{if } b_i > b_j \\ \hline v_i - p \\ 2 & \text{if } b_i = b_j \\ 0 & \text{if } b_i < b_j \end{array}$$

where *p* depends on the auction type used to sell the item.

- The individual placing the highest bid gets the item. She pays her bid.
- Players: buyers 1 and 2.
- Possible actions:  $b_i \in [0, \infty)$ , i = 1, 2.
- Types: each buyer has a valuation  $v_i$ , that may be their private information.
- Player *i*'s utility:

$$v_i - b_i \quad \text{if } b_i > b_j$$

$$u_i(b_1, b_2; v_1, v_2) = \begin{array}{c} \frac{v_i - b_i}{2} & \text{if } b_i = b_j \\ 0 & \text{if } b_i < b_j \end{array}$$

Let us see a simplified version of a first price auction:

- Buyer 1 may be of two types, with equal probabilities, one type values the item at 60 and the other values it at 100.
- Buyer 2 has only one type, that values the item at 60.
- Only bids allowed are 40, 60 and 80.
- We will not consider equilibria in weakly dominated strategies.

 $v_1 = 60$ , prob = 0.5

Player 2

|             |                            | $b_2 = 40$        | $b_2 = 60$        | $b_2 = 80$ |
|-------------|----------------------------|-------------------|-------------------|------------|
|             | $b_1 = 40$                 | 10, 10            | 0, 0              | 0, -20     |
| Player 1.60 | $b_1 = 60$                 | <del>0, 0</del>   | <del>0,</del> 0   | 0, 20      |
|             | <i>b</i> <sub>1</sub> = 80 | <del>-20, 0</del> | <del>-20, 0</del> | -10, -10   |

 $v_1 = 100, \text{ prob} = 0.5$  Player 2  $b_2 = 40$   $b_2 = 60$   $b_2 = 80$   $b_1 = 40$  30, 10 0, 0 0, -20 Player 1.100  $b_1 = 60$  40, 0 20, 0 0, -20

Player 1.100 $b_1 = 60$ 40, 020, 00, -20 $b_1 = 80$ 20, 020, 010, -10

Eliminate weakly dominated strategies for 1.60 and 1.100.

| $v_1 = 60$ , prob = 0,5  |                            |            | Player                  | 2   |                  | l     |
|--------------------------|----------------------------|------------|-------------------------|-----|------------------|-------|
|                          |                            | $b_2 = 40$ | <i>b</i> <sub>2</sub> = | 60  | b <sub>2</sub> = | = 80  |
|                          | <i>b</i> <sub>1</sub> = 40 | 10, 10     | 0,                      | 0   | 0,               | -20   |
| Player 1.60              | $b_1 = 60$                 | 0, 0       | 0,                      | 0   | 0,               | -20   |
|                          | $b_1 = 80$                 | -20, 0     | -20                     | ,0  | -10              | , -10 |
|                          |                            |            |                         |     |                  |       |
| $v_1 = 100$ , prob = 0,5 |                            |            | Playe                   | r 2 |                  |       |
|                          |                            | $b_2 = 40$ | $b_2 =$                 | 60  | b <sub>2</sub> = | = 80  |
|                          | $b_1 = 40$                 | 30, 10     | 0,                      | 0   | 0,               | -20   |
| Player 1.100             | $b_1 = 60$                 | 40, 0      | 20                      | , 0 | 0,               | -20   |
|                          | $b_1 = 80$                 | 20, 0      | 20                      | , 0 | 10,              | -10   |
|                          |                            |            |                         |     |                  |       |

Eliminate weakly dominated strategies for 2.

- Eliminate weakly dominated strategies for Type  $v_1 = 60$ :  $b_1 = 60$  and  $b_1 = 80$  are weakly dominated by  $b_1 = 40$ .
- Eliminate weakly dominated strategies for Type  $v_1 = 100: b_1 = 40$  is weakly dominated by  $b_1 = 60$ .
- Eliminate weakly dominated strategies for Player 2:  $b_2 = 60$  and  $b_2 = 80$  are weakly dominated by  $b_2 = 40$ .

After the first round of elimination of weakly dominated strategies we get:

$$v_{1} = 60, \text{ prob} = 0.5$$
Player 2
$$b_{2} = 40$$
Player 1.60
$$b_{1} = 40$$
10, 10
Player 2
$$b_{2} = 40$$
Player 2
$$b_{2} = 40$$
Player 1.100
$$b_{1} = 60$$
40, 0
$$b_{1} = 80$$
20, 0

- Now  $b_1 = 80$  is weakly dominated for 1.100.
- We are left with one action for each type, and that will be the Bayesian equilibrium: ((40, 60), 40).
- Equilibrium Payoffs: Player 1 obtains  $0.5 \times 40 + 0.5 \times 10 = 25$ , Player 2 obtains  $0.5 \times 10 + 0.5 \times 0 = 5$ .
- The auctioneer's expected revenues are  $0.5 \times 40 + 0.5 \times 60 = 50$ .

- The player placing the highest bid gets the item. She pays the second highest bid.
- Players: buyers 1 and 2.
- Possible actions :  $b_i \in [0, \infty)$ , i = 1, 2.
- Types: each player has a valuation  $v_i$ , that may be their private information.
- Player *i*'s utility:

$$v_i - b_j \quad \text{if } b_i > b_j$$

$$u_i(b_1, b_2; v_1, v_2) = \begin{array}{c} \frac{v_i - b_j}{2} & \text{if } b_i = b_j \\ 0 & \text{if } b_i < b_j \end{array}$$

 $v_1 = 60$ , prob = 0.5

Player 2



 $v_1 = 100$ , prob = 0.5

Player 2



Eliminate weakly dominated strategies for 1.60 and 1.100.



Eliminate weakly dominated strategies for 2.

- Eliminate weakly dominated strategies for Type  $v_1 = 60$ :  $b_1 = 40$  and  $b_1 = 80$  are weakly dominated for  $b_1 = 60$ .
- Eliminate weakly dominated strategies for Type  $v_1 = 100 : b_1 = 40$ and  $b_1 = 60$  are weakly dominated for  $b_1 = 80$ .
- Eliminate weakly dominated strategies for Player 2:  $b_2 = 40$  and  $b_2 = 80$  are weakly dominated for  $b_2 = 60$ .
- After the elimination we are left with the Bayesian equilibrium: ((60, 80), 60).
- The equilibrium expected payoffs are:
  - $0.5 \times 0 + 0.5 \times 40 = 20$  for Player 1,
  - $0.5 \times 0 + 0.5 \times 0 = 0$  for Player 2.
- The auctioneer's expected revenue is 0.5×60 + 0.5×60 = 60 (recall that he gets the second price).

## Cournot: private info. over costs

- Two firms compete on quantity in a market with demand p = A Q.
- Marginal costs for Firm 1 are either  $c_A$  or  $c_B$  with probabilities 1/3, 2/3 and with  $c_A > c_B$ .
- Marginal cost for Firm 2 are  $c_2$ .
- Each firm knows its own costs.
- Firm 1 knows the costs for Firm 2.
- Firm 2 does not know the costs for Firm 1, but knows that they are either c<sub>A</sub> or c<sub>B</sub> with the above probabilities.

## Cournot: private info. over costs

- This is the problem for Firm 1:
  - If costs are  $c_A$ :

$$\max_{q_A} (A - q_A - q_2)q_A - c_A q_A,$$
$$q_A = \frac{A - q_2 - c_A}{2}.$$

• If costs are  $c_B$ :

$$\max_{q_B} (A - q_B - q_2)q_B - c_B q_B,$$
$$q_B = \frac{A - q_2 - c_B}{2}.$$

• Firm 2:

$$\begin{split} \max_{q_2} \frac{1}{3} (A - q_A - q_2 - c_2) q_2 + \frac{2}{3} (A - q_B - q_2 - c_2) q_2, \\ q_2 &= \frac{1}{3} \frac{A - q_A - c_2}{2} + \frac{2}{3} \frac{A - q_B - c_2}{2}. \end{split}$$

• Using the three reaction functions we will find the equilibrium.

#### Cournot: private info. over the demand

- Two firms compete on quantity in a market with demand p = A - Q where A can take values A<sub>A</sub> or A<sub>B</sub>, with probabilities ½, ½, and A<sub>A</sub> > A<sub>B</sub>.
- Marginal costs for Firm i are  $c_i$ .
- Firm 1 knows with certainty the value for the demand.
- Firm 2 does not know the demand, but knows that it will be either A<sub>A</sub> or A<sub>B</sub> with the above probabilities.

# Cournot: private info. over the demand

- This is the problem for Firm 1:
  - If demand is  $A_A$ :

$$\max_{q_A} (A_A - q_A - q_2)q_A - c_1 q_A,$$
$$q_A = \frac{A_A - q_2 - c_1}{2}.$$

• If demand is  $A_B$ :

$$\max_{q_B} (A_B - q_B - q_2)q_B - c_1 q_B,$$
$$q_B = \frac{A_B - q_2 - c_1}{2}.$$

• Firm 2:

$$\max_{q_2} \frac{1}{2} (A_A - q_A - q_2 - c_2)q_2 + \frac{1}{2} (A_B - q_B - q_2 - c_2)q_2,$$
$$q_2 = \frac{1}{2} \frac{A_A - q_A - c_2}{2} + \frac{1}{2} \frac{A_B - q_B - c_2}{2}.$$

• Using the three reaction functions we will find the equilibrium.

- Two players must decide simultaneously whether to contribute towards the provision of a public good.
- Their actions are "contribute" and "do not contribute".
- Each player gets a utility of 3 if they both contribute, of 1 only one decides to contribute and 0 no one contributes.
- For Player 1, the cost of contributing is  $c_1 \in (1,3)$ .
- For Player 2, the cost of contributing is either  $c_A \in (0,1)$  or  $c_B \in (1,3)$ , with probabilities 2/5, 3/5 respectively.
- Each player knows his own costs.
- Player 2 knows the costs for Payer 1.
- Player 1 does not know the costs for Player 2, but knows that they
  must be either c<sub>A</sub> or c<sub>B</sub> with the above probabilities.

• Payoffs are:

 $t_2 = c_A$ , Prob 2/5

Player 2 Contribute Do not contribute

| Player 1 | Contribute        | $3 - c_1, 3 - c_A$           | $1 - c_1, 1$ |
|----------|-------------------|------------------------------|--------------|
|          | Do not contribute | 1, 1 − <i>c</i> <sub>A</sub> | 0, 0         |

 $t_2 = c_{\rm B}$ , Prob 3/5

Player 2

|          |                   | Contribute         | Do not contribute |
|----------|-------------------|--------------------|-------------------|
| Player 1 | Contribute        | $3 - c_1, 3 - c_B$ | $1 - c_1, 1$      |
|          | Do not contribute | 1, $1 - c_B$       | 0, 0              |

• For example, let  $c_1 = 1.5$ ,  $c_A = 0.2$  and  $c_B = 1.8$ :

 $c_A = 0.2$ , Prob 2/5

Player 2



Strategies after eliminating "Do not contribute" for 2.c<sub>A</sub>:
1: (C, N),
2: (CC, CN).

Let us build the normal form.



- There are two EN in pure strategies : (C, CC) and (N, CN), that will also be BNE in pure strategies
- There will also be a third equilibrium in mixed strategies.