Bayesian games

2. Economic applications

Universidad Carlos III de Madrid

Economic applications

- Auctions with asymmetric information over valuations:
- First price auctions.
- Second price auctions.
- Cournot duopoly with asymmetric information over:
- Rival's costs.
- Demand.
- Public goods with asymmetric information over the rival's valuation or costs.

Auctions

- Two individuals participate in a closed-envelope auction to buy an object.
- They must choose their bids, b_{1} and b_{2}, simultaneously, and the object is sold to the one with the highest bid. In case of a tie, the winner is selected randomly.
- Valuations are v_{1} and v_{2}.
- Player i 's utility is:

$$
u_{i}\left(b_{1}, b_{2} ; v_{1}, v_{2}\right)=\begin{array}{cl}
v_{i}-p & \text { if } b_{i}>b_{j} \\
\frac{v_{i}-p}{2} & \text { if } b_{i}=b_{j} \\
0 & \text { if } b_{i}<b_{j}
\end{array}
$$

where p depends on the auction type used to sell the item.

First price auction

- The individual placing the highest bid gets the item. She pays her bid.
- Players: buyers 1 and 2.
- Possible actions: $b_{i} \in[0, \infty), i=1,2$.
- Types: each buyer has a valuation v_{i}, that may be their private information.
- Player i 's utility:

$$
u_{i}\left(b_{1}, b_{2} ; v_{1}, v_{2}\right)=\begin{array}{cl}
v_{i}-b_{i} & \text { if } b_{i}>b_{j} \\
\frac{v_{i}-b_{i}}{2} & \text { if } b_{i}=b_{j} \\
0 & \text { if } b_{i}<b_{j}
\end{array}
$$

First price auction

Let us see a simplified version of a first price auction:

- Buyer 1 may be of two types, with equal probabilities, one type values the item at 60 and the other values it at 100.
- Buyer 2 has only one type, that values the item at 60 .
- Only bids allowed are 40, 60 and 80.
- We will not consider equilibria in weakly dominated strategies.

First price auction

$$
\begin{aligned}
& v_{1}=60, \text { prob }=0.5 \\
& \text { Player } 2 \\
& v_{1}=100, \text { prob }=0.5 \\
& \text { Player } 2
\end{aligned}
$$

Eliminate weakly dominated strategies for 1.60 and 1.100.

First price auction

$$
\begin{aligned}
& v_{1}=60, \text { prob }=0,5 \\
& \text { Player } 2
\end{aligned}
$$

Eliminate weakly dominated strategies for 2.

First price auction

- Eliminate weakly dominated strategies for Type $v_{1}=60: b_{1}=60$ and $b_{1}=80$ are weakly dominated by $b_{1}=40$.
- Eliminate weakly dominated strategies for Type $v_{1}=100: b_{1}=40$ is weakly dominated by $b_{1}=$ 60.
- Eliminate weakly dominated strategies for Player 2: $b_{2}=60$ and $b_{2}=80$ are weakly dominated by $b_{2}=40$.

First price auction

After the first round of elimination of weakly dominated strategies we get:

$$
\begin{aligned}
& v_{1}=60, \text { prob }=0.5 \quad \text { Player } 2 \\
& b_{2}=40 \\
& \text { Player } 1.60 \quad b_{1}=40 \quad 10,10 \\
& v_{1}=100, \text { prob }=0.5 \quad \text { Player } 2 \\
&
\end{aligned}
$$

- Now $b_{1}=80$ is weakly dominated for 1.100 .
- We are left with one action for each type, and that will be the Bayesian equilibrium: ((40, 60$)$, 40).
- Equilibrium Payoffs: Player 1 obtains $0.5 \times 40+0.5 \times 10=25$, Player 2 obtains $0.5 \times 10+$ $0.5 \times 0=5$.
- The auctioneer's expected revenues are $0.5 \times 40+0.5 \times 60=50$.

Second price auction

- The player placing the highest bid gets the item. She pays the second highest bid.
- Players: buyers 1 and 2.
- Possible actions : $b_{i} \in[0, \infty), i=1,2$.
- Types: each player has a valuation v_{i}, that may be their private information.
- Player i's utility:

$$
u_{i}\left(b_{1}, b_{2} ; v_{1}, v_{2}\right)=\begin{array}{cl}
v_{i}-b_{j} & \text { if } b_{i}>b_{j} \\
\frac{v_{i}-b_{j}}{2} & \text { if } b_{i}=b_{j} \\
0 & \text { if } b_{i}<b_{j}
\end{array}
$$

Second price auction

$$
v_{1}=60, \text { prob }=0.5
$$

Player 2

| | | $b_{2}=40$ | | $b_{2}=60$ |
| :---: | :---: | :---: | :---: | :---: |$b_{2}=80$

$$
v_{1}=100, \text { prob }=0.5 \quad \text { Player } 2
$$

Eliminate weakly dominated strategies for 1.60 and 1.100.

Second price auction

$$
v_{1}=60, \text { prob }=0.5
$$

Jugador 2

		$b_{2}=$	40	$b_{2}=60$	$b_{2}=$	$=80$
	$b_{1}=40$	10,	0	0, 20	0 ,	20
Jugador 1.60	$b_{1}=60$	20,	0	0, 0		0
	$b_{1}=80$	20,	0	0, 0		
$v_{1}=100$, prob $=0.5$		$b_{2}=$	40	gador 2 $x_{2}=60$		80
	$b_{1}=40$	30,	10	0,20	0 ,	20
Jugador 1.100	$b_{1}=60$	60	0	20, 0		0
	$b_{1}=80$	60	0	40, 0	10.	-10

Eliminate weakly dominated strategies for 2.

Second price auction

- Eliminate weakly dominated strategies for Type $v_{1}=60: b_{1}=40$ and $b_{1}=80$ are weakly dominated for $b_{1}=60$.
- Eliminate weakly dominated strategies for Type $v_{1}=100: b_{1}=40$ and $b_{1}=60$ are weakly dominated for $b_{1}=80$.
- Eliminate weakly dominated strategies for Player 2: $b_{2}=40$ and $b_{2}=$ 80 are weakly dominated for $b_{2}=60$.
- After the elimination we are left with the Bayesian equilibrium: (60,80), 60).
- The equilibrium expected payoffs are:
- $0.5 \times 0+0.5 \times 40=20$ for Player 1 ,
- $0.5 \times 0+0.5 \times 0=0$ for Player 2 .
- The auctioneer's expected revenue is $0.5 \times 60+0.5 \times 60=60$ (recall that he gets the second price).

Cournot: private info. over costs

- Two firms compete on quantity in a market with demand $p=A-Q$.
- Marginal costs for Firm 1 are either c_{A} or c_{B} with probabilities $1 / 3,2 / 3$ and with $c_{A}>c_{B}$.
- Marginal cost for Firm 2 are c_{2}.
- Each firm knows its own costs.
- Firm 1 knows the costs for Firm 2.
- Firm 2 does not know the costs for Firm 1, but knows that they are either c_{A} or c_{B} with the above probabilities.

Cournot: private info. over costs

- This is the problem for Firm 1:
- If costs are c_{A} :

$$
\begin{aligned}
& \max _{q_{A}}\left(A-q_{A}-q_{2}\right) q_{A}-c_{A} q_{A} \\
& q_{A}=\frac{A-q_{2}-c_{A}}{2} .
\end{aligned}
$$

- If costs are c_{B} :

$$
\begin{aligned}
& \max _{q_{B}}\left(A-q_{B}-q_{2}\right) q_{B}-c_{B} q_{B}, \\
& q_{B}=\frac{A-q_{2}-c_{B}}{2} .
\end{aligned}
$$

- Firm 2:

$$
\begin{aligned}
& \max _{q_{2}} \frac{1}{3}\left(A-q_{A}-q_{2}-c_{2}\right) q_{2}+\frac{2}{3}\left(A-q_{B}-q_{2}-c_{2}\right) q_{2} \\
& q_{2}=\frac{1}{3} \frac{A-q_{A}-c_{2}}{2}+\frac{2}{3} \frac{A-q_{B}-c_{2}}{2} .
\end{aligned}
$$

- Using the three reaction functions we will find the equilibrium.

Cournot: private info. over the demand

- Two firms compete on quantity in a market with demand $p=A-Q$ where A can take values A_{A} or A_{B}, with probabilities $1 / 2,1 / 2$, and $A_{A}>A_{B}$.
- Marginal costs for Firm i are c_{i}.
- Firm 1 knows with certainty the value for the demand.
- Firm 2 does not know the demand, but knows that it will be either A_{A} or A_{B} with the above probabilities.

Cournot: private info. over the demand

- This is the problem for Firm 1:
- If demand is A_{A} :

$$
\begin{aligned}
& \max _{q_{A}}\left(A_{A}-q_{A}-q_{2}\right) q_{A}-c_{1} q_{A}, \\
& q_{A}=\frac{A_{A}-q_{2}-c_{1}}{2} .
\end{aligned}
$$

- If demand is A_{B} :

$$
\begin{aligned}
& \max _{q_{B}}\left(A_{B}-q_{B}-q_{2}\right) q_{B}-c_{1} q_{B}, \\
& q_{B}=\frac{A_{B}-q_{2}-c_{1}}{2} .
\end{aligned}
$$

- Firm 2:

$$
\begin{aligned}
& \max _{q_{2}} \frac{1}{2}\left(A_{A}-q_{A}-q_{2}-c_{2}\right) q_{2}+\frac{1}{2}\left(A_{B}-q_{B}-q_{2}-c_{2}\right) q_{2}, \\
& q_{2}=\frac{1}{2} \frac{A_{A}-q_{A}-c_{2}}{2}+\frac{1}{2} \frac{A_{B}-q_{B}-c_{2}}{2} .
\end{aligned}
$$

- Using the three reaction functions we will find the equilibrium.

Contributions to a public good

- Two players must decide simultaneously whether to contribute towards the provision of a public good.
- Their actions are "contribute" and "do not contribute".
- Each player gets a utility of 3 if they both contribute, of 1 only one decides to contribute and 0 no one contributes.
- For Player 1, the cost of contributing is $c_{1} \in(1,3)$.
- For Player 2, the cost of contributing is either $c_{A} \in(0,1)$ or $c_{B} \in$ $(1,3)$, with probabilities $2 / 5,3 / 5$ respectively.
- Each player knows his own costs.
- Player 2 knows the costs for Payer 1.
- Player 1 does not know the costs for Player 2, but knows that they must be either c_{A} or c_{B} with the above probabilities.

Contributions to a public good

- Payoffs are:
$t_{2}=c_{A}, \operatorname{Prob} 2 / 5$
Player 2

Player 1

	Contribute	Do not contribute
Contribute	$3-c_{1}, 3-c_{A}$	$1-c_{1}, 1$
Do not contribute	$1,1-c_{A}$	0,0

$t_{2}=c_{\mathrm{B}}, \operatorname{Prob} 3 / 5$
Player 2

	Contribute	Do not contribute
Contribute	$3-c_{1}, 3-c_{B}$	$1-c_{1}, 1$
Do not contribute	$1,1-c_{B}$	0,0

Contributions to a public good

- For example, let $c_{1}=1.5, c_{A}=0.2$ and $c_{B}=1.8$:
$c_{A}=0.2, \operatorname{Prob} 2 / 5$
Player 2

Player 1
$c_{\mathrm{B}}=1.8, \operatorname{Prob} 3 / 5$

	Contribute	Do not c	ntribute
Contribute	1.5, 2.8	-0	5, 1
Do not contribute	1, 0.8	0	0

		Contribute	Do not contribute
	Contribute	$1.5,1.2$	$-0.5,1$
	Player 1	Do not contribute	$1,-0.8$

Strategies after eliminating "Do not contribute" for 2.c c_{A} :
1: (C, N),
2: (CC, CN).

Let us build the normal form.

Contributions to a public good

- There are two EN in pure strategies: $(C, C C)$ and $(N, C N)$, that will also be BNE in pure strategies
- There will also be a third equilibrium in mixed strategies.

