# Repeated games 

## 1: Finite repetition

Universidad Carlos III de Madrid

## Finitely repeated games

- A finitely repeated game is a dynamic game in which a simultaneous game (the stage game) is played finitely many times, and the result of each stage is observed before the next one is played.
- Example: Play the prisoners' dilemma several times. The stage game is the simultaneous prisoners' dilemma game.


## Results

- If the stage game (the simultaneous game) has only one NE the repeated game has only one SPNE: In the SPNE players' play the strategies in the NE in each stage.
- If the stage game has 2 or more NE, one can find a SPNE where, at some stage, players play a strategy that is not part of a NE of the stage game.


## The prisoners' dilemma repeated twice

- Two players play the same simultaneous game twice, at $t=1$ and at $t=2$.
- After the first time the game is played (after $t=1$ ) the result is observed before playing the second time.
- The payoff in the repeated game is the sum of the payoffs in each stage ( $t=1, t=2$ )
- Which is the SPNE?

Player 2

| Player 1 | D | D | C |
| :---: | :---: | :---: | :---: |
|  |  | 1, 1 | 5, 0 |
|  |  | 0, 5 | 4, 4 |

## The prisoners' dilemma repeated twice



## The prisoners' dilemma repeated twice

Let's find the NE in the subgames. Consider the subgame starting at 1.3. Other subgames are solved similarly.

Player 2



Adding or not the payoffs of the first stage does not change the game. In each subgame we have the same prisoners' dilemma.

## The prisoners' dilemma repeated twice

- In each of the four subgames there is only one NE: (D, D).
- Using backward induction, we substitute the payoffs in the equilibria $((1,1)$ in all of them) and proceed to solve the first stage.

Player 2


Player 1


Player 2


Again, we have a prisoners' dilemma, with NE: (D, D). The only SPNE is ((D, D, D, D, D), (D, D, D, D, D)).

## The augmented prisoners' dilemma

Player 2

|  | D | D | C | P |
| :---: | :---: | :---: | :---: | :---: |
| Player 1 |  | 1, 1 | 5, 0 | 0, 0 |
|  | C | 0, 5 | 4, 4 | 0, 0 |
|  | P | 0, 0 | 0,0 | 3, 3 |

- Let's play twice the game before. It is the prisoners' dilemma with and added strategy.
- (D, D) is still a Nash equilibrium.
- There is also a new Nash equilibrium: ( $\mathrm{P}, \mathrm{P}$ ).
- Could the play of $(C, C)$ be part of a SPNE?
- In the second stage we may not have the same NE in all subgames and, thus, the game in the first stage may not be the same as the stage game.


## The augmented prisoners' dilemma



## The augmented prisoners' dilemma

- To sustain cooperation (C, C) in the first stage, let's play with the NE in the second one:
- If there has been cooperation in the first stage, in the second stage play he NE with the best payoffs: (P, P).
- If there has not been cooperation, in the second stage play the NE with worse payoffs: (D, D).
- Formally:
- At $t=1$ :
(C, C).
- At $t=2$ :
(P, P) if (C, C) was played at $t=1$,
(D, D) if (C, C) was not played at $t=1$.


## The augmented prisoners' dilemma

At $t=1:(C, C)$.
At $t=2:(P, P)$ if $(C, C)$ was played at $t=1$,
$(D, D)$ if $(C, C)$ was not played $t=1$.

- Let us check if the above strategy is a SPNE:
- It prescribes a Nash equilibrium in each subgame of the second stage: (P, P) or (D, D).
- It remains to check whether it is a NE of the whole game.
- If the players follow the strategy, each one gets $4+3=7$.
- If one player deviates:
- In the second stage there is no profit in deviating (recall that players play a NE).
- In the first stage, the best deviation from ( $C, C$ ) is $D$. In this first stage, the player that deviates gets 5 , but then in the second stage the game reaches a subgame in which the equilibrium is ( $D, D$ ), with payoff 1 .
- The total for the deviating player is $5+1=6$, less than the 7 in case of no deviation.
- Thus, the strategy is a SPNE.


## The augmented prisoners' dilemma

Recall:
AT $t=2:(P, P)$ if $(C, C)$ was played at $t=1$,
(D, D) if (C, C) was not player at $t=1$.
Player 2


Player 2

|  | D | D | C | P |
| :---: | :---: | :---: | :---: | :---: |
| Player 1 |  | $\underline{2}$, 2 | 6,1 | 1,1 |
|  | C | 1, 6 | 7, 7 | 1,1 |
|  | P | 1, 1 | 1,1 | 4, 4 |

## The augmented prisoners' dilemma

- For any combination of NE in the subgames of the second stage, there will be different SPNE.
- How may combinations are there?
- It's 9 subgames, with two NE in pure strategies in each one. Thus, there are $2^{9}=512$ different combinations.
- It will be very complicated to analyze all of them. Instead, we can look for interesting equilibria, like the one we just found.
- Let's see three more examples of SPNE:
- Play (D, D) always (at $t=1$ and at $t=2$ in all subgames).
- Play (P, P) always.
- Play ( $\mathrm{D}, \mathrm{D}$ ) at $t=1$ and (P, P) at $t=2$ in all subgames.
- There are many more. In fact, in these games we typically study the set of payoffs that can be obtained in a SPNE.


## The chicken game

|  |  | $K$ |
| :---: | :---: | :---: |
|  | $S$ |  |
| $K$ | 0,0 | 5,1 |
|  | 1,5 | 4,4 |
|  |  |  |

- The game has 3 NE: $\left\{(S, K),(K, S),\left(\frac{1}{2}[K]+\frac{1}{2}[S], \frac{1}{2}[K]+\frac{1}{2}[S]\right)\right\}$, with respective payoffs: $(1,5)$, $(5,1),(2,5,2,5)$.
- Repeat the game twice. Can we sustain $(S, S)$ in the first stage?
- Define an appropriate strategy:

At $t=1: \quad(\mathrm{S}, \mathrm{S})$.
At $t=2: \quad\left(\frac{1}{2}[\mathrm{~K}]+\frac{1}{2}[\mathrm{~S}], \frac{1}{2}[\mathrm{~K}]+\frac{1}{2}[\mathrm{~S}]\right)$ if either $(\mathrm{S}, \mathrm{S})$ or $(\mathrm{K}, \mathrm{K})$ was played at $t=1$,
$(S, K)$ if $(K, S)$ was played at $t=1$,
$(\mathrm{K}, \mathrm{S})$ if $(\mathrm{S}, \mathrm{K})$ was played at $t=1$.

- Observe that this strategy only punishes the unilateral deviator.
- Utility if there are no deviations: $4+2,5=6,5$.
- Utility for $i$ if he deviates at $t=1: 5+1=6$.
- The trigger strategy is a SPNE.

