Dynamic Games

2: Imperfect information

Universidad Carlos III de Madrid

Dynamic Games with Imperfect Information

- Games in which at least one of the following happens:
- A player does not know which action some other player has taken.
- Some players have different information over a result of a nature move.
- This translates into the fact that some players don't know with certainty in which one of their nodes actually are at some point in the game.
- The nodes a player cannot tell apart are nodes in which the player has the same information. Each set of nodes in which this occurs is called an information set.
- Trivially, when a player knows that she is a node, that node is an information set of one element.
- Graphically, we will join the nodes belonging in an information set with a dotted line or a "cloud".

Example: dynamic battle of the sexes

- Player 2 knows what player 1 did.

- Player 2 does not know what player 1 did.
- Nodes 2.1 y 2.2 belong in an information set.
- There is no backward induction equilibrium, but there are SPNE.

A complicated example

- Information sets:
- Player 1: $\{1.1\},\{1.2,1.3\}$ y $\{1.4\}$.
- Player 2: $\{2.1\},\{2.2\},\{2.3,2.4\}$ y $\{2.5\}$.
- Player 3: $\{3.1\}$ y $\{3.2\}$.
- Static and dynamic subgames:
- At 2.1 begins a static (sub)game.
- At 2.2 begins a dynamic (sub)game.
- At 3.1 begins a (sub)game with characteristics of both kinds of game.

Extensive form, normal form and subgames

- We have to add or change the following in the extensive form definition for games of imperfect information:
- Group the nodes of a player in information sets.
- Define actions in each information set (not in each node): informally, an action implies choosing the same edge in each node of a given information set.
- To obtain the normal form, it is enough to define a player' strategy as a vector that defines an action in each information set (rather than in each node).
- Subgames are defined as before, but with a new rule "do not break information sets".

A complicated example

- Which subgames are there?
- Those starting at 1.1, 2.1, 2.2, 3.1, 3.2, 1.4 and 2.5.
- Which is the set of strategies for Player 1 ?
- \{(I,a,x), (I,a,z), (I,b,x), (I,b,z), (C,a,x), (C,a,z), (C,b,x), (C,b,z), (D,a,x), (D,a,z), (D,b,x), (D,b,z)\}.
- Example: (C,a,z) in red.

Complicated example 2

- Which subgames are there?
- Those starting at 1.1, 3.1, 3.2, 1.4 y 2.5 .
- Which is the set of strategies for Player 2?
- $\{(I, a, r),(I, a, t),(I, b, r),(I, b, t),(D, a, r),(D, a, t),(D, b, r),(D, b, t)\}$.
- Example: (D, a, r) in red.

Example to find SPNEa

- Player 1 chooses between A and B.
- If he chooses A , he and Player 2 play the chicken game.
- If he chooses B, they play the battle of the sexes.

- We have numbered the information sets (rather than the nodes).
- Which subgames are there?

Three, starting at 1.1, 1.2 and 1.3.

- Begin by solving 1.2 and 1.3.

Example to find SPNEa

- To simplify, we only consider pure strategies.
- The subgame starting at 1.2 is the chicken game with NE in pure strategies: (K, S) and (S, K).
- The subgame starting at 1.3 is the battle of the sexes with NE in pure strategies: (F, F) and (O, O).
- To find the equilibrium action at 1.1 , we must consider four possibilities:

1.2: (K, S)	1.2: (K, S)	1.2: (S, K)	1.2: (S, K)
1.3: (F, F)	1.3: (O, O)	1.3: (F, F)	1.3: (O, O)
1.1 prefers A	1.1 prefers A	1.1 prefers B	1.1 is indifferent
SPNE: $((A, K, F),(S, F))$	SPNE: $((\mathrm{A}, \mathrm{~K}, \mathrm{O}),(\mathrm{S}, \mathrm{O}))$	SPNE: $((B, S, F),(K, F))$	SPNEa: ($(A, S, O),(K, O))$ and ((B,S,O), (K,O))

Two ways to write the SPNEa

- The canonic way: sort by players.
- The convenient way: sort by subgames.
- In the example before, the equilibrium ((A,K,F), $(S, F))$ is written in the canonic way.
- The convenient way is: $(A,(K, S),(F, F))$.

By players:
((1.1, 1,2, 1.3), (2.1, 2.2))
((A, K, F), (S, F))

By subgames:
(1.1, (1,2, 2.1), (1.3, 2.2))
(A, (K, S), (F, F))

Example 2 on how to find ENPS

Formula 1 Game

- Before deciding what type of tires to use, Al can make a strategic maneuver that would prevent Ham from participating in the race.
- Thus, in a first stage, Al must decide whether to prevent or not Ham's participation in the race (decisions P and NP).
- If Al prevents the participation of $\mathrm{Ham}, \mathrm{Al}$ will have 4 points at the end of the race, and Ham will have none.
- If Al does not prevent Ham's participation, both pilots must choose simultaneously the type of tires (rain or dry), with the results shown next.

Example 2 on how to find ENPS

Formula 1 Game

Subgames:
starting at AL. 1 and
starting at AL. 2

Example 2 on how to find ENPS

Formula 1 Game

- Start by solving subgame at AL. 2 after NP:

The normal form is:
HAM. 1

- $N E=\{(D, R),(R, D),(1 / 2[R]+1 / 2[D], 1 / 3[R]+2 / 3[D])\}$
- Payoffs in NE of subgame after NP for AL: 5, 2 and $5 / 3$, respectively.
- If AL. 1 plays P he will get 4. Thus, if at the subgame after NP the NE is (D, R), he will choose NP. For any other NE he will choose P.
- Hence: SPNE : \{((NP,D), R), (P,R), D), ((P,1/2), 1/3) \}.

