WORKSHEET 3 : Differentiation I

- 1. Find the points where the following functions have horizontal tangent.
 - a) $f(x) = x^3 + 1$ b) $f(x) = 1/x^2$ c) $f(x) = x + \sin x$ d) $f(x) = \sqrt{x-1}$ e) $f(x) = e^x - x$ f) $f(x) = \sin x + \cos x$ a) x=0; b) never; c) $x = \pi + 2k\pi$; d) never; e) x = 0; f) $x = \frac{\pi}{4} + k\pi$.
- 2. (*)Prove that the tangent lines to the graphs of y = x and y = 1/x in their points of intersection are perpendicular to each other.

3. In what point is the tangent to the curve $y^2 = 3x$ pararell to the line y = 2x? The point of the curve is $(\frac{3}{16}, \frac{3}{4})$.

4. (*)Calculate the intersection point with the x axis of the tangent line to the graph of $f(x) = x^2$ in the point (1, 1).

The intersection point is x = 1/2.

5. Calculate a so that the tangent to the graph of f(x) = a/x + 1 in the point (1, f(1)) intersects the horizontal axis in x = 3.

Therefore, the intersection point will be x=3 when a=1.

- 6. (*)Find the tangent and normal lines to $f(x) = \arctan\left(\frac{\sin x}{1+\cos x}\right)$ in x = 0. Ecuation of the tangent line: $y - 0 = \frac{1}{2}(x - 0)$; ecuation of the normal line: y - 0 = -2(x - 0).
- 7. Find the derivatives of the following functions.

a)
$$f(x) = (sinx + tan 3x)sin2x$$

b) $f(x) = \frac{x\sqrt{x^2 - 1}}{2x + 6}$
c) $f(x) = 4x^{3/2}\cos 2x$
d) $f(x) = 5x\ln(8x + sin2x) + e^{tan 5x}$

8. (*)Let $f(x) = 2[\ln(1+g^2(x))]^2$. Using that g(1) = g'(1) = -1, calculate f'(1). $f'(1) = 4\ln(2)$.

- 9. (*)Using that $a^b = e^{b \ln a}$, differentiate $f(x) = x^{sinx}$ and $g(x) = (\sqrt{x})^x$. $f'(x) = x^{sinx}(\cos x . \ln x + sinx/x).$ $g'(x) = (\sqrt{x})^x(\ln x + 1)/2.$
- 10. (*)Let $f(x) = \ln(1+x^2)$ and $g(x) = e^{2x} + e^{3x}$. Calculate h(x) = f(g(x)), v(x) = g(f(x)), h'(0) and v'(0). $h(x) = \ln(1 + e^{4x} + e^{6x} + 2e^{5x}), h'(0) = 4$ $v(x) = (1 + x^2)^2 + (1 + x^2)^3, v'(0) = 0.$
- 11. Let $f: [-2, 2] \rightarrow [-2, 2]$ be continuous and bijective.

a) Suppose that f(0) = 0 and $f'(0) = \alpha$, $\alpha \neq 0$. Find $(f^{-1})'(0)$. b) Now suppose that f(0) = 1 and $f'(0) = \alpha$, $\alpha \neq 0$. Find $(f^{-1})'(1)$. c) Now suppose that f(1) = 0 and $f'(1) = \alpha$, $\alpha \neq 0$. Find $(f^{-1})'(0)$. a) $(f^{-1})'(0) = \frac{1}{\alpha}$. b) $(f^{-1})'(1) = \frac{1}{\alpha}$. c) $(f^{-1})'(0) = \frac{1}{\alpha}$. 12. (*)Supposing that the following equations define y as a differentiable function of x, calculate y' in the given points:

a) $x^3 + y^3 = 2xy$ in (1, 1). b) $sinx = x(1 + \tan y)$ in $(\pi, 3\pi/4)$. c) $x^2 + y^2 = 25$ in (3, 4), (0, 5) and (5, 0).

a) y' = -1.b) $y' = \frac{-1}{2\pi}.c$) the derivative in that point does not exist.

13. Calculate the derivative of the following functions showing where they are not differentiable.

$$\begin{aligned} \mathbf{a})(^{*}) \ f(x) &= \begin{cases} x^{2} - 1 & \text{if } x \leq 0 \\ 0 & \text{if } x > 0 \end{cases} \quad \mathbf{b}) \ (^{*})g(x) &= \begin{cases} 1/|x| & \text{if } x \leq -2 \\ (x+2)^{2} & \text{if } -2 < x \leq 0 \\ 3 + \sin(x + \frac{\pi}{2}) & \text{if } x > 0 \end{cases} \\ \mathbf{c}) \ h(x) &= \begin{cases} \arctan^{2} x & \text{if } x \leq 0 \\ \sin^{3} x & \text{if } 0 < x \leq 2\pi \\ \sin x & \text{if } 2\pi < x \end{cases} \end{aligned}$$
$$\begin{aligned} \mathbf{a}) \ f'(x) &= \begin{cases} 2x & \text{if } x < 0 \\ 0 & \text{if } x > 0 \end{cases} \text{Obviously, f is not differentiable in 0.} \end{aligned}$$
$$\begin{aligned} \mathbf{b}) \ g'(x) &= \begin{cases} 1/x^{2} & \text{if } x < -2 \\ 2(x+2) & \text{if } -2 < x < 0 \\ \cos(x + \frac{\pi}{2}) & \text{if } x > 0 \end{cases} \text{Obviously, f is not differentiable in -2 nor in 0.} \end{aligned}$$
$$\begin{aligned} \mathbf{c}) \ h'(x) &= \begin{cases} \frac{2\arctan x}{1 + x^{2}} & \text{if } x < -2 \\ 2(x+2) & \text{if } -2 < x < 0 \\ \cos(x + \frac{\pi}{2}) & \text{if } x > 0 \end{cases} \text{Obviously, f is not differentiable in -2 nor in 0.} \end{aligned}$$
$$\begin{aligned} \mathbf{c}) \ h'(x) &= \begin{cases} \frac{2\arctan x}{1 + x^{2}} & \text{if } x \leq 0 \\ 3\sin^{2} x \cdot \cos x & \text{if } 0 \leq x < 2\pi \\ \cos x & \text{if } 2\pi < x \end{cases} \text{Obviously, f is not differentiable in 2\pi.} \end{aligned}$$

14. (*)Find a and b so that the function $f(x) = \begin{cases} 3x+2 & \text{if } x \ge 1 \\ ax^2+bx-1 & \text{if } x < 1 \end{cases}$ is differentiable. f differentiable in 1 when a = -3, b = 9.

15. Apply the mean value theorem to f in the given interval and find the c values of the thesis of the theorem.

a) $f(x) = x^2$ in [-2, 1]b) f(x) = -2sinx in $[-\pi, \pi]$ c) $f(x) = x^{2/3}$ in [0, 1]d) f(x) = 2sinx + sin2x in $[0, \pi]$

- 16. Let $f : [a, b] \longrightarrow [a, b]$ be a continuous function in [a, b] and differentiable in (a, b). Prove that, if $f'(x) \neq 1$ in (a, b), then f has a unique fixed point in [a, b].
- 17. Prove that the function f has a unique fixed point.
 - a) $f(x) = 2x + \frac{1}{2}sinx$ b) $f(x) = 2x + \frac{1}{2}cosx$

18. (*)Let $f(x) = x^3 - 3x + 3$, $f: [-3, 2] \to \mathbb{R}$. Determine the global extrema.

The minimum is reached in -3 and the maximum is reached in -1 and in 2.

19. Let $f: [-5,5] \to \mathbb{R}$ such that f reaches the maximum in x = 2 and the minumum in x = -3. Let g(x) = -f(-x). What can be said about the maximum and the minimum of g?