WORKSHEET 5: Integration

1. (*) Calculate the following integrals:

a)
$$\int \frac{x^2 + x + 1}{x\sqrt{x}} dx$$
b)
$$\int xe^{-2x} dx$$
c)
$$\int \sin^{14}x \cos x \, dx$$
d)
$$\int (x+1)(2-x)^{1/3} dx$$
e)
$$\int \frac{x^4}{1+x^5} dx$$
f)
$$\int (1+\frac{1}{x})^3 \frac{1}{x^2} dx$$
g)
$$\int \sin^3x \, dx$$
h)
$$\int xe^{ax^2} \, dx$$
i)
$$\int \frac{1}{3+x^2} dx$$
j)
$$\int \frac{\sqrt{x-1}}{1+\sqrt[3]{x-1}} dx$$
k)
$$\int \frac{x}{\sqrt{16-x^2}} dx$$
l)
$$\int x^4 \ln x \, dx$$
m)
$$\int \frac{dx}{\sqrt[4]{x^3} - \sqrt{x}}$$
n)
$$\int (\ln x)^2 dx$$
n)
$$\int \frac{40x}{(x-1)^{40}} dx$$
o)
$$\int \frac{4x+6}{(x^2+3x+7)^3} dx$$
p)
$$\int \frac{2x-6}{(x-2)^2} dx$$
q)
$$\int \frac{x^2+1}{x^3-4x^2+4x} dx$$
r)
$$\int \frac{2x+1}{x^3+6x} dx$$
s)
$$\int \frac{1}{\frac{x^2}{2}-2x+4} dx$$
t)
$$\int \frac{x^4}{x^4-1} dx$$

- 2. How many different intersection points can two different primitives of the same function have?
- 3. (*) Let $f : [0,2] \longrightarrow \mathbb{R}$ be continuous, increasing in (0,1), decreasing in (1,2) and, also, satisfying that: f(0) = 3, f(1) = 5 and f(2) = 4. Between which values can we guarantee that $\int_0^2 f(x) dx$ is located?
- 4. (*) Certain company has determined that its marginal cost is $\frac{dC}{dx} = 4(1+12x)^{-1/3}$. Find the cost function if C = 100 when x = 13.
- 5. (*) Given that the marginal cost of producing x units is x + 5 and the average cost has a minimum in x = 4, find the fixed costs of the firm.
- 6. (*) Calculate F'(x) in the following cases:

a)
$$\int_{x}^{x^{3}} t \cos t \, dt$$
 b) $\int_{1}^{x^{2}} \sqrt{t^{4} + 2t} \, dt$ c) $\int_{1}^{x^{2}} \left(t^{2} - 2t + 5\right) \, dt$

- 7. Calculate F'(x) in the following cases:
 - (a) $\int_{-x}^{x^2} \tan^2 t \, dt$, supposing that $x^2 < \frac{\pi}{2}$. (b) $\int_{x^2}^{2x} f^2(2t) \, dt$, supposing that f is continuous.
- 8. (*) What are the values of x where $F(x) = \int_{-3}^{x} \frac{t^2 4}{3t^2 + 1} dt$ has a local maximum or minimum?
- 9. Let $F(x) = \int_{x^2}^{2x} f(t^2) dt$ be such that f(1) = 1, f(2) = f(4) = 4 and f is continuous. Calculate F'(1).

10. (*) Calculate observing the symmetry of the functions:

a)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{27}x \cos^{28}x \, dx$$
 b) $\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} (\sqrt[3]{x^5} \cos 3x + \cos \frac{x}{3} + \tan^3 x) dx$

- 11. Let f be a function with period T, such that $\int_0^T f = b$. Find $\int_a^{a+nT} f$.
- 12. (*) Find the area located between the following curves:

a)
$$f(x) = x^2 - 4x + 3$$
, $g(x) = -x^2 + 2x + 3$
b) $f(x) = (x - 1)^3$, $g(x) = x - 1$
c) $f(x) = x^4 - 2x^2 + 1$, $g(x) = 1 - x^2$

- 13. (*) Graph the functions $y = 2e^{2x}$ and $y = 2e^{-2x}$. Calculate the area located between those graphs and the lines x = -1 and x = 1.
- 14. Let $f: [1,3] \longrightarrow [2,4]$ be increasing, continuous and bijective such that $\int_1^3 f \, dx = 5$. Calculate $\int_2^4 f^{-1}(x) \, dx$
- 15. (a) Given $f: [0,4] \to \mathbb{R}$, convex and increasing with values f(0) = 0, $f(2) = \alpha$, $f'(2) = \beta$, f(4) = 16. Estimate as a function of α and β , the value of $\int_0^2 f(x) dx$.
 - (b) Given $f: [0,4] \to \mathbb{R}$, concave and increasing with values f(0) = 0, $f(2) = \alpha$, $f'(2) = \beta$, f(4) = 2. Estimate as a function of α and β , the value of $\int_0^2 f(x) dx$.
- 16. The sales of a product are given by the formula $S(t) = 10 + 5sin(\frac{\pi t}{6})$ where S is measured in thousands of units and time t in months. Calculate the average sales during the year $(0 \le t \le 12)$.
- 17. Calculate:

a)
$$\int_{0}^{1} \frac{1}{\sqrt{x}} dx$$
 b) $\int_{0}^{3} \frac{1}{x^{3}} dx$ c) $\int_{1}^{\infty} \frac{1}{x^{2}} dx$
d) $\int_{1}^{\infty} e^{-x} dx$ e) $\int_{-\infty}^{\infty} \frac{dx}{1+x^{2}}$ f) $\int_{-2}^{4} \frac{dx}{x^{2}}$

18. Calculate $\int_0^\infty \frac{dx}{\sqrt{x}(1+x)}$