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Abstract

We study the impact of an information advantage on the equilibrium payo¤s and

e¤orts in Tullock contests where the common value of the prize and the common cost

of e¤ort are uncertain. We show that if the cost of e¤ort is linear then a player�s

information advantage is rewarded. For symmetric contests, we explicitly calculate the

unique equilibrium and establish information invariance of the expected e¤ort. We

then study two-player contests with state-independent convex costs from the family

c(x) = x�:Whereas players�expected costs of e¤ort turns out to be the same regardless

of their information asymmetry, in expectation a player with information advantage

exerts no more e¤ort, and wins the prize no more frequently, than his opponent. In

classic Tullock contests (i.e., � = 1), both players are shown to exert the same expected

e¤ort, which is larger when players have symmetric information than when one player

has information advantage. Finally, we show that all-pay auctions do not necessarily

provide better incentives to exert e¤ort than do Tullock contests.
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1 Introduction

Tullock contests (see Tullock 1980) are perhaps the most widely studied models in the

literature on imperfectly discriminating contests. In a Tullock contest a player�s probability

of winning the prize is the ratio of the e¤ort he exerts and the total e¤ort exerted by all

players. This paper belongs to a relatively recent but growing strand of this literature

that concerns Tullock contests with incomplete information. Speci�cally, we study Tullock

contests in which the players� common value for the prize as well as their common cost

of e¤ort depend on the state of nature. Players have a common prior belief, but upon

the realization of the state of nature (and before taking action) each player obtains some

information pertaining to the realized state. The interim information endowment of each

player at the moment of taking action is described by a �-�eld of subsets of the state space,

known as events: the player knows which events in his information �eld have occurred, and

which have not, once the state is realized. The information �elds may di¤er across players.

This representation of players�uncertainty and information is natural, and encompasses the

most general structures. In particular, it includes Harsanyi�s model of Bayesian games.

In this setting, we show that Tullock contests reward information advantage: if some

player i has more information about the uncertain parameters of the game than another

player j, then the expected payo¤ of player i is greater than or equal to that of player

j. This result holds for any two players with rankable information �elds, regardless of the

information endowments of the other players. Its proof relies on the proof of the theorem

of Einy et al. (2002), showing that in any Bayesian Cournot equilibrium of an oligopolistic

industry a �rm�s information advantage is rewarded.

We then proceed to study the impact of information advantage on e¤ort. We identify

a system of equations that all equilibria must satisfy. Using this system we establish a

number of properties of the equilibria of these contests. First, we explicitly calculate the

players�e¤ort in classic Tullock contests in which players have symmetric information. It

turns out the in equilibrium (which is unique, interior and symmetric), a player�s expected

e¤ort is invariant to the level of information. Further, while the each player�s expected e¤ort

decreases with the number of players, the expected total e¤ort increases.

Next we derive properties of two-player contests in which the cost of e¤ort is a convex

function of the form c(x) = x�. We �rst show that regardless of the players�information,

2



in any equilibrium their expected costs of e¤ort coincide. Using this result, we show that

the expected e¤ort of the player with an information advantage is less or equal to that of

his disadvantaged opponent; the former�s ex-ante probability to win is also less or equal to

that of the latter. The comparison is only strict for strictly convex costs. In fact, in classic

Tullock contests, i.e., when � = 1; both players exert the same expected e¤ort regardless

of their respective information endowments (that may not be comparable). But, when the

information is comparable, a shift towards symmetry increases e¤ort: the two players exert

no less e¤ort when they have the same information compared to the information advantage

case. We also present examples showing that these results do not generalize to contests with

more than two players.

Finally, we study whether all-pay auctions provide better incentives for players to exert

e¤ort than do Tullock contests. Einy et al. (2017) characterize the unique equilibrium of

a two-player common-value all-pay auction, which is in mixed strategies, and provide an

explicit formula that allows us to compute the players�total e¤ort. We show that the sign

of the di¤erence between the total e¤ort exerted by players in an all-pay auction and in a

Tullock contest is ambiguous.

Relation to the literature

There is an extensive literature on Tullock contests under complete information. Baye

and Hoppe (2003) have identi�ed a variety of economic settings (rent-seeking, innovation

tournaments, patent races), which are strategically equivalent to a Tullock contest. Skaper-

das (1996) and Clark and Riis (1998) provide axiomatic characterizations of Tullock con-

tests. Perez-Castrillo and Verdier (1992), Baye, Kovenock and de Vries (1994), Szidarovszky

and Okuguchi (1997), Cornes and Hartley (2005), Yamazaki (2008) and Chowdhury and

Sheremeta (2009) study existence and uniqueness of equilibrium. Skaperdas and Gan (1995),

Glazer and Konrad (1999), Konrad (2002), Cohen and Sela (2005) and Franke et al. (2011)

look into the e¤ects of changes in the payo¤ structure on the behavior of players, and

Schweinzer and Segev (2012) and Fu and Lu (2013) study optimal prize structures.

The study of Tullock contests under incomplete information is relatively sparse, however.

Fey 2008 and Wasser 2011 study rent-seeking games under asymmetric information. Einy

et al. (2015a) show that under standard assumptions Tullock contests with asymmetric

information have pure strategy Bayesian Nash equilibria, although they neither characterize
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equilibrium strategies nor they study their properties.

More closely related to the topic of the present paper are the articles of Warneryd (2003),

and Einy et al. (2016). Warneryd (2003) studies two-player Tullock contests in which

the players�marginal cost of e¤ort is constant and state-independent, and the value is a

continuous random variable. In this setting, Warneryd considers the information structures

arising when each player either observes the value, or has only the information provided by

the common prior. Our results for two-player contests extend some of Warneryd�s results

to contests with the most general information structures. Moreover, we obtain results for

two-player contests when the cost functions are not linear and when players information are

not rankable, as well as for contests with more than two players. Additionally, we study

the impact of information on payo¤s and show that information advantage is rewarded in

contests with any number of players and general information structures. Einy et al. (2016)

also study the impact of information in Tullock contests, but their information is public and

the attention is restricted to the symmetric information case.

As for the comparison of the outcomes generated by Tullock contests and all-pay auc-

tions, Fang (2002), Epstein, Mealem and Nitzan (2011) study this issue under complete

information, and Dubey and Sahi (2012) consider an incomplete information binary set-

ting. Common-value �rst-price and second-price auctions have been studied by Einy et al.

(2001, 2002), Forges and Orzach (2011), and Malueg and Orzach (2009, 2012), while all-pay

auctions have been studied by Einy et al. (2017, 2017a) and Warneryd (2012).

The rest of the paper is organized as follows: Section 2 describes our setting. Section 3

studies the impact of information on payo¤s, and Section 4 �its impact on e¤orts. Section

4 is dedicated to the question of whether Tullock contests or all-pay auctions are better in

providing incentives to exert e¤ort. Some technical proofs are relegated to the Appendix.

2 Common-Value Tullock Contests

A group of players N = f1; :::; ng; with n � 2; compete for a prize by exerting e¤ort. Players�
uncertainty about the value of the prize and the cost of e¤ort is described by a probability

space (
;F ; p), where 
 is the set of states of nature, F is a �-�eld of subsets of (or events in)

; and p is a probability measure on (
;F) representing the players�common prior belief.
Players� common value for the prize is an F-measurable and integrable random variable
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V : 
! R++: Players�common cost of e¤ort is given for all (!; x) 2 
� R+ by W (!)c(x);
where W : 
! R++ is an F-measurable and integrable random variable; and c : R+ ! R+
is a di¤erentiable, strictly increasing and concave function satisfying c(0) = 0. We assume

that the private information of every player is described by a �-sub�led Fi of F . This means
that, for any event A 2 Fi, player i knows whether the realized state of nature is contained
in A; in particular, if Fi is generated by a �nite or countably in�nite partition of 
; then i
knows the exact element of the partition containing the realized state.

A common-value Tullock contest (to which we will henceforth refer as a Tullock con-

test) starts by a move of nature that selects a state ! from 
; of which every player i

has partial knowledge (via Fi): Then the players simultaneously choose their e¤ort levels,
x = (x1; :::; xn) 2 Rn+. The prize is awarded to the players in a probabilistic fashion, using a
contest contest success function � : Rn+ ! 4n, where 4n is the n-simplex. Speci�cally, for

x 2 Rn+; if
Pn

k=1 xk > 0; then the probability that player i 2 N receives the prize is

�i(x) =
xiPn
k=1 xk

;

whereas if
Pn

k=1 xk = 0; i.e., if no player exerts e¤ort, then the prize is allocated according

to some �xed probability vector �(0) 2 4n: Hence, the payo¤ of player i 2 N is

ui(!; x) = �i(x)V (!)�W (!)c(xi): (1)

A Tullock contest de�nes a Bayesian game in which a pure strategy for player i 2 N
is an Fi-measurable integrable function Xi : 
 ! R+; which describes i�s choice of e¤ort

in each state of nature, conditional on his private information. We denote by Si the set of

strategies of player i, and by S = �ni=1Si the set of strategy pro�les. Given a strategy pro�le
X = (X1; :::; Xn) 2 S we denote by X�i the pro�le obtained from X by suppressing the

strategy of player i. Throughout the paper we restrict attention to pure strategies.

A strategy pro�le X = (X1; :::; Xn) is a (Bayesian Nash) equilibrium if for every i 2 N
and every X 0

i 2 Si;
E[ui(�; X (�)] � E[ui(�; X�i (�) ; X 0

i (�))]; (2)

or equivalently, if for every i 2 N and every X 0
i 2 Si;

E[ui(�; (X (�)) j Fi] � E[ui(�; (X�i (�) ; X 0
i (�)) j Fi] (3)

almost everywhere on 
; where E[f j Fi] denotes the conditional expectation of an F-
measurable random variable f with respect to the �-�eld Fi �see Borkar (1995), section 3.1.
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Einy et al. (2015a) provide conditions that imply the existence of equilibrium in the contests

that we consider, at least when the information �elds are generated by �nite or countably

in�nite partitions of 
:

Remark 1. If X is a equilibrium then
P

i2N Xi(!) > 0 for almost every ! 2 
.

Proof. Let X be an equilibrium and assume, contrary to our claim, that there exists a

positive-measure set B 2 F such that X1 = ::: = Xn = 0 on B: Let i be a player for whom

�i(0) � 1
2
: Since Xi is Fi-measurability there is Ai 2 Fi such that B � Ai and Xi = 0 a.e. on

Ai: Let " > 0, and consider a strategy X 0
i = "1Ai +Xi1
nAi 2 Si: Then �i(X) � �i(X�i; X

0
i)

on Ai; and E[�i(X�i; X
0
i) j B] = 1. Therefore by switching from Xi to X 0

i, player i�s expected

payo¤ remains unchanged on 
nAi and increases on Ai by at least

1

2
E[V j B]p(B)� c(")E[W j Ai]p(Ai);

which is positive for a su¢ ciently small ", since c(0) = 0 and c is continuous at 0: Hence X 0
i

is a pro�table deviation, contradicting that X is an equilibrium. �

By Remark 1, the vector �(0) 2 4n used to allocate the prize when no player exerts

e¤ort does not a¤ect the set of equilibria. Hence we may describe a Tullock contest by a

collection T = (N; (
; ;F ; p); fFigi2N ; V;W; c): Contests in which W = 1
 and c(x) = x will

be called classic Tullock contests.

3 Information Advantage and Payo¤s

Our �rst result is concerned with the natural question of whether an information advantage

is re�ected in equilibrium payo¤s. Formally, player i 2 N is said to have an information

advantage over player j 2 N if Fi � Fj. Thus, the information of i on the realized state
of nature is never less precise that that of j : whenever player j knows that the realized

! 2 
 is contained in some A 2 Fj, there exists B � A; B 2 Fi; such that i knows that !
is contained in B:

Proposition 1 shows that an information advantage is rewarded in Tullock contests in

which the deterministic component of the cost of e¤ort c is a linear function: in these

contests the expected payo¤ of a player is never below that of another player with less
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information. This result holds, in particular, in classic Tullock contests. Proposition 1 is

proved by observing a formal equivalence between a Tullock contest and a Cournot oligopoly

with asymmetric information, and by appealing to (the proof of) a result of Einy et al.

(2002) which shows that the (Bayesian Cournot) equilibria of such industries have the desired

property.

Proposition 1. Assume that X = (X1; :::; Xn) is an equilibrium of a Tullock contest with

c(x) = x (i.e., the state-contingent marginal cost is constant), for which there exists a > 0

such that
Pn

j=1Xj(!) � a at almost every ! 2 
: If some player i has an information
advantage over some other player j; then E[ui(�; X (�)] � E[uj(�; X (�)]:

Proof. Let (N; (
;F ; p); (Fi)i2N ; V;W; c) be a Tullock contest. For X = (X1; :::; Xn) 2 S
and ! 2 
; the payo¤ of each player i 2 N may be written as

ui(!;X(!)) =
Xi(!)Pn
j=1Xj(!)

V (!)�W (!)c(Xi(!))

= P (!;
Xn

j=1
Xj(!))Xi(!))� C(!;Xi(!));

where the functions P;C : 
� R+ ! R+ are de�ned as

P (!; x) =
V (!)

x
; and C(!; x) =W (!)c(x): (4)

Thus, if X is an equilibrium of the contests, then X is an equilibrium of the oligopolist

industry (N; (
;F ; p); (Fi)i2N ; P; C); where P is the inverse market demand and C is the

�rms�cost function.

Einy et al. (2002) showed that information advantage is rewarded in any equilibrium of

an oligopolist industry under certain conditions on the inverse demand function and costs:

Some of the conditions are not satis�ed, however, by the function P in (4). Fortunately, the

proof of Einy et al. can be utilized in the present case too, provided it is shown that, for

every i 2 N;
E

�
1Xi>0 �

d

dxi
ui(�; X (�)) j Fi

�
= 0: (5)

(Equation (5) yields (2.6) on page 157 in Einy et al. (2002), from which point on their proof

applies without change). We establish that equation (5) holds in the Appendix. �

It is important to note that Proposition 1 does not involve any assumption about the

information of the players whose information �elds are not being compared: a player�s infor-

mation advantage over another player is rewarded regardless of the information endowments
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of the other players. That is, the conclusion of Proposition 1 holds whenever two players

have rankable information.

Remark 2 shows that the quali�cation in Proposition 1 that the sum of equilibrium e¤orts

is bounded away from zero holds under some general conditions. The proof of this remark

is given in the Appendix.

Remark 2. Let X be any equilibrium of a Tullock contest. If either

(a) N = f1; 2g, 0 < inf V � supV <1, and 0 < infW � supW <1, or
(b) for every i 2 N the �-�eld Fi is �nite,

then there exists a > 0 such that
P

i2N Xi(!) � a at almost every ! 2 
.

4 Information Advantage and E¤ort

In this section we study the impact of information advantage on the e¤orts that players

exert in Tullock contests. It turns out that the impact of change in the players�information

on e¤ort is ambiguous, expect in restricted classes of contests. Throughout this section

we restrict attention to the class of Tullock contests in which the players�cost of e¤ort is

state-independent, i.e., W = 1
.

The following lemma provides a system of equations that characterizes the equilibria of

Tullock contests in this class. This system will be useful to derive properties of the equilibria

of these contests. The proof of Lemma 1 is given in the Appendix.

Lemma 1. Assume that X = (X1; :::; Xn) is an equilibrium of a Tullock contest. Then for

all i 2 N ,

E

"
Xi
�X�i�

Xi + �X�i
�2V j Fi

#
= Xic

0(Xi);

where �X�i =
P

j2NnfigXj:

Einy et al. (2017a) study the impact of public information on payo¤s and e¤ort in Tullock

contests with symmetric information. Their Theorem 2.1 establishes that these contests have

a unique equilibrium, which is symmetric and interior. For classic Tullock contests (where

c(x) = x), they show that changes in the information available to the players have no impact

on the expected e¤ort they exert (Proposition 5.1). Using Lemma 1 we explicitly calculate

the equilibrium e¤orts in these contests, which leads to the interesting observation that each
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individual�s expected e¤ort and total expected e¤ort are both independent of the players�

information, and that, while each individual�s expected e¤ort decreases with the number of

players, the total e¤ort increases with the number of players.

Proposition 2. A classic Tullock contests in which players have symmetric information,

i.e., Fi = G for all i 2 N , where G is any �-sub�eld of F , has a unique equilibrium,
which is symmetric and is given by (X; :::; X), where X = (n� 1)E [V j G] =n2. Hence
the expected e¤ort of each player, E[X] = (n� 1)E [V ] =n2, and the expected total e¤ort,
E[nX] = (n� 1)E [V ] =n, are independent of G, and while E[X] decreases with the number
of players, E[nX] increases with the number of players.

Proof. Assume that Fi = G for all i 2 N; and denote by X the player�s strategy in the

unique and symmetric equilibrium (see Theorem 2.1 of Einy et al. (2016)). Since c0(x) � 1;
Lemma 1 implies

X = E

�
(n� 1)X2

(X + (n� 1)X)2
V j G

�
=
n� 1
n2

E [V j G] :

Thus

E[nX] = nE[X] = n

�
n� 1
n2

E[E[V j G]]
�
=
n� 1
n

E[V ]: �

Proposition 3 below shows that, in any equilibrium of a two-player Tullock contest in

which the players�cost of e¤ort is a convex function of the family c(x) = x�, the players�

expected costs of e¤ort coincide. (Example 1 in what follows will make clear that Proposition

3 does not extend to contests with more than two players.) Note that Proposition 3 does

not involve any assumption about the players� information endowments; in particular, it

holds when one player has information advantage over the other, but such a condition is not

necessary.

Proposition 3. Consider a two-player Tullock contest in which the players�cost of e¤ort is

c(x) = x�, where � 2 [1;1). Then, in any equilibrium (X1; X2),

E[c(X1)] = E[c(X2)]:

Proof. Let (X1; X2) be a equilibrium. Since xc0(x) = x(�x��1) = �c(x); Lemma 1 and the
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Law of Iterated Expectation (see Theorem 34.3 in Billingsley (1995)) imply

E[c(Xi)] =
1

�
E[Xic

0(Xi)]

=
1

�
E

"
E

"
XiXj

(Xi +Xj)
2V j Fi

##

=
1

�
E

"
XiXj

(Xi +Xj)
2V

#

=
1

�
E

"
E

"
XjXi

(Xj +Xi)
2V j Fj

##
=

1

�
E [Xjc

0(Xj)]

= E[c(Xj)]: �

Our next remark states an obvious but interesting implication of Proposition 3 for two-

player classic Tullock contests. It turns out that in any equilibrium of such contests both

players exert the same expected e¤ort regardless of their information.

Remark 3. In any equilibrium (X1; X2) of a two-player classic Tullock contest, E[X1] =

E[X2]:

Proposition 4 below establishes that when the convex cost function belongs to the family

c(x) = x� the expected e¤ort of a player with information advantage is less than or equal

to that of his opponent. This result is an implication of Jensen�s inequality. Moreover, it

is easy to see that the expected e¤ort of the player with information advantage is strictly

smaller than that of his opponent when � > 1, except in equilibria in which the strategies

of both players coincide almost everywhere.

Proposition 4. Consider a two-player Tullock contest in which the players�cost of e¤ort

is c(x) = x�, where � 2 [1;1), and in which player 2 has an information advantage over
player 1. Then, in any equilibrium (X1; X2),

E[X1] � E[X2]:

Proof. Let (X1; X2) be an equilibrium. Since xc0(x) = �c(x) = �x�; Lemma 1 and the

assumption that F1 � F2 imply the following, using the law of iterated expectation:

X�
1 = E

�
X1X2V

� (X1 +X2)
2 j F1

�
= E

�
E

�
X2X1V

� (X1 +X2)
2 j F2

�
j F1

�
= E [X�

2 j F1] :
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Thus, using Jensen�s inequality, the law of iterated expectation and F1-measurability of X2,

we obtain

E[X1] = E[(X�
1 )

1
� ]

= E[(E[X�
2 j F1])

1
� ]

� E[(E[X2 j F1]�)
1
� ]

= E[E[X2 j F1]]

= E[X2]: �

Example 1 identi�es a three-player classic Tullock contest with a unique equilibrium,

in which a player with an information disadvantage exerts less e¤ort than his opponents.

Hence, neither of propositions 3, 4 nor remark 3 extend to Tullock contests with more than

two players.

Example 1 Consider a three-player classic Tullock contest in which 
 = f!1; !2g and
p(!1) = 1=8, and the value is V (!1) = 1 and V (!2) = 8. Assume that players 2 and 3

observe the value prior to taking action, but player 1 has only the prior information. The

unique equilibrium of this contest is X given by (X1(!1); X1(!2)) = (168=121; 168=121) and

(X2(!1); X2(!2)) = (X3(!1); X3(!2)) = (0; 224=121). Hence

E[X1] =
168

121
<
7

8
� 224
121

= E[X2] = E[X3];

i.e., the expected e¤ort of player 1 is less than those of players 2 and 3. (One can construct

an example with this feature in which the equilibrium is interior, but the calculations involved

are more cumbersome.)

Our next proposition shows that in two-player classic Tullock contests players exert, in

expectation, less e¤ort (and hence capture a larger share of the surplus) when one of them has

an information advantage compared to the scenario when they are symmetrically informed.

Proposition 5. In any interior equilibrium (X1; X2) of a two-player classic Tullock contest

in which player 2 has information advantage over player 1, the expected total e¤ort E[X1] +

E[X2] never exceeds E[V ]=2; that is the expected total e¤ort in a symmetric information

scenario.
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Proof. Let (X1; X2) be a an interior equilibrium, i.e., Xi > 0 for i 2 f1; 2g. By Lemma 1

E

�
X1X2V

(X1 +X2)
2 j F2

�
= X2:

Since both X1 and X2 are F2-measurable (as F1 � F2) and X2 > 0; this equation may be

written as

1 = E

�
X1V

(X1 +X2)
2 j F2

�
=
X1E [V j F2]
(X1 +X2)

2 ;

i.e.,

X2 =
p
X1

p
E[V j F2]�X1: (6)

Also,

E

�
X1X2V

(X1 +X2)
2 j F1

�
= X1

by Lemma 1, and since X1 > 0 is F1-measurable, we may write this equation as

E

�
X2V

(X1 +X2)
2 j F1

�
= 1:

By the law of iterated expectation

E

�
X2V

(X1 +X2)
2 j F1

�
= E

�
E

�
X2V

(X1 +X2)
2 j F2

�
j F1

�
:

Substituting X2 from equation (6) and recalling that X1 is F2-measurable, we get

1 = E

264E
264

�p
X1

p
E[V j F2]�X1

�
V�

X1 +
�p
X1

p
E[V j F2]�X1

��2 j F2
375 j F1

375
= E

"
E

"
V

p
X1

p
E[V j F2]

� V

E[V j F2]
j F2

#
j F1

#

=
1p
X1

E

"
E[V j F2]p
E[V j F2]

j F1

#
� E

�
E[V j F2]
E[V j F2]

j F1
�

=
E
hp
E[V j F2] j F1

i
p
X1

� 1:

Hence p
X1 =

E
hp
E [V j F2] j F1

i
2

; (7)

Therefore, since F2 is �ner than F1, Jensen�s inequality implies

E[X1] =

E

��
E
hp
E[V j F2] j F1

i�2�
4

� E[V ]

4
:
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Since E(X2) = E(X1) by Remark 2,

E[X1] + E[X2] �
E[V ]

2
:

By Proposition 2, E[V ]
2
is precisely the expected total e¤ort of the two players in a symmetric

information scenario. �

The following remark is an interesting observation implied by the equations (6) and (7)

derived in the proof of Proposition 5.

Remark 4. Consider a two-player classic Tullock contest in which player 2 observes the

state of nature and player 1 has only the prior information, i.e., F2 = F and F1 = f
;?g.
If the constest has an interior equilibrium, then it is given by X1 = (E[

p
V ])2=4; and X2 =

E[
p
V ]
�
V=2� E[

p
V ]=4

�
:

Our last result establishes that in a two-player classic Tullock contest a player with

information advantage wins the prize less often than his opponent, i.e., his ex-ante probability

to win the prize is less or equal to 1
2
:

Proposition 6. In any interior equilibrium (X1; X2) of a two-player classic Tullock contest

in which player 2 has information advantage over player 1,

E [�2(X1; X2)] �
1

2
� E [�1(X1; X2)] :

Proof. Let (X1; X2) be a an interior equilibrium, i.e., Xi > 0 for i 2 f1; 2g. Using the
equations (6) and (7) derived in the proof of Proposition 5 we may write

E [�1(X1; X2)] = E

�
X1

X1 +X2

�
= E

"
X1

X1 +
p
X1

p
E[V j F2]�X1

#

= E

" p
X1p

E[V j F2]

#

=
1

2
E

24E
hp
E [V j F2] j F1

i
p
E[V j F2]

35
� 1

2
;

13



where the last inequality follows from Jensen�s inequality. �

Our last example exhibits an eight-player classic Tullock contest in which a player who

has an information advantage over the other players wins the prize more frequently, which

shows that Proposition 6 does not extend to contests with more than two players.

Example 2 Consider an eight-player classic Tullock contest in which 
 = f!1; !2g and
p(!1) = 1=2. The value is V (!1) = 1 and V (!2) = 2. Player 8 observes the value prior to

taking action, while other players have only the prior information. The unique equilibrium

of this contest X is given by X1 = ::: = X7 = (x; x) and X8 = (0; y), where

x =
7
p
229 + 139

1575
; y =

56
p
229� 238
1575

:

Thus, the ex-ante probability that player i 2 f1; 2; :::; 7g wins the prize is

1

2
� (1
7
+

x

7x+ y
) =

p
229 + 37

420
;

whereas the ex-ante probability that player 8 win the prize is

1� 7 �
 p

229 + 37

420

!
=
161� 7

p
229

420
>

p
229 + 37

420
;

i.e., the player with information advantage wins the prize more frequently than his opponents.

5 Tullock Contests and All-Pay Auctions

Consider a two-player contest in which 
 = f!1; !2g and p(!2) = p 2 (0; 1): Player 2

observes the value prior to taking action, but player 1 has only the prior information. The

value is V (!1) = 1 and V (!2) = v 2 (1;1). The cost has no random component: W (!1) =

W (!2) = 1; and c(x) = x.

Assume that the prize is allocated using a Tullock contest. If v < (1 + p)2 =p2; then the

unique equilibrium is interior, and is given by

XTC
1 = (x2; x2); XTC

2 =
�
x (1� x) ; x

�p
v � x

��
;

where x = E[
p
V ]=2 = [1 + p(

p
v � 1)]=2. Hence the expected total e¤ort is

TETC := E[XTC
1 ] + E[XTC

2 ] = [1 + p(
p
v � 1)]2=2;

14



Likewise, if v � (1 + p)2 =p2, then the unique equilibrium is

X̂TC
1 = (x̂2; x̂2); X̂TC

2 = (0; x̂
�p
v � x̂

�
);

where x̂ = p
p
v=(1 + p); and the expected total e¤ort is

dTETC := E[X̂TC
1 ] + E[X̂TC

2 ] = 2x̂ = 2p2v=(1 + p)2:

Assume now that the prize is allocated using an all-pay auction. Using the formula

provided by Einy et al. (2015b) we compute the players�total expected e¤ort in the unique

equilibrium, which is given by

TEAPC = 2(1� p)p+ (1� p)2 + p2v:

Thus,

TEAPA � TETC = 2(1� p)p+ 1
2

�
1� p� p

p
v
�2
> 0;

i.e., the all-pay auction generates more e¤ort than the Tullock contest when v < (1 + p)2 =p2.

However, if v � (1 + p)2 =p2, then

TEAPA �dTETC = (1� p)(1 + p)� p2v� 2

(1 + p)2
� 1
�
;

which may be negative �e.g., p = 1=4 and v > 375=7. Therefore, in general the level of

e¤ort generated by these two contests cannot be ranked.

6 Appendix

Proof of Remark 2.

Case (a). Assume w.l.o.g. that player 2 has an information advantage over player 1.

Let " > 0 be such that c(3") < inf V
4 supW

; it exists as c(0) = 0 and c is continuous at 0: Also,

let a 2 (0; ") be such that 2a
"+2a

<
[c(")�c( "2 )]�infW

supV
; it exists because the left-hand side vanishes

when a & 0; while the right-hand side is positive. Now consider an equilibrium X in the

contest. We will show that X1 � a a.e. on 
. Assume by the way of contradiction that this
is false. Then there exists a positive-measure set A1 2 F1 such that X1 < a on A1: We will

now show that X2 � " a.e. on A1:
Indeed, suppose to the contrary that X2 > " on some positive-measure A2 2 F2 which

is a subset of A1. Consider a strategy X 0
2 =

"
2
� 1A2 + Xi � 1
nA2 2 S2: Then, by switching

15



from X2 to X 0
2, player 2 decreases his expected reward by at most

2a
"+2a

supV � p(A2); and
simultaneously decreases his expected cost by at least

�
c(")� c( "

2
)
�
� infW � p(A2): By the

choice of a the �rst expression is smaller than the second; and hence deviating to X 0
2 is, in

expectation, pro�table for player 2; in contradiction to X being an equilibrium.

It follows that maxfX1(!); X2(!)g � " on A1. Let i be a player for whom E(�i(X) j
A1) � 1

2
; and consider a strategy X 00

i = 3" � 1A1 +Xi � 1
nA1 2 Si: Since A1 2 F1 � F2; X 00
i

is measurable w.r.t. both F1 and F2: Also �i(X) � �i(X�i; X
00
i ) on A1; and E(�i(X�i; X

00
i ) j

A1) � 3
4
(this is due to the fact that, on A1; �i(X�i; X

00
i ) � 3"

3"+"
= 3

4
): Thus, by switching

fromXi toX 00
i player i improves his expected reward by at least

1
4
inf V p(A1); while incurring

an expected cost increase of at most c(3") �supW �p(A1): By the choice of "; such a deviation
leads to a net gain in the expected utility, in contradiction to X being an equilibrium. We

conclude that, indeed, X1(!) � a for a.e. ! 2 
:

Case (b). As
P

i2N Xi is measurable w.r.t. _i2NFi �the smallest �-�eld containing
each Fi (which is, in particular, �nite), the probabilities p

�P
i2N Xi � a

�
can take only

�nitely many values in [0; 1]: Let � = maxa>0 p
�P

i2N Xi � a
�
; and suppose that it is at-

tained at a0 > 0: By Remark 1,
P

i2N Xi > 0 a.e. on 
 in any equilibrium X, and hence

lima&0 p
�P

i2N Xi � a
�
= p

�P
i2N Xi > 0

�
= 1: Therefore � = 1 and a0 is the desired bound

for the equilibrium sum of e¤orts. �

Proof of Lemma 1. Let X be an equilibrium and let i 2 N: For any " 2 R set X 0
i;" =

maxfXi + "; 0g 2 Si: The equilibrium condition (3) implies

E[ui(�; X(�)) j Fi] � E[ui(�; X�i (�) ; X 0
i;" (�)) j Fi]:

In particular, for any " > 0

E

�
ui(�; X�i (�) ; X 0

i;" (�))� ui(�; X (�))
"

j Fi
�
� 0; (8)

and hence

E

�
ui(�; X�i (�) ; X 0

i;�" (�))� ui(�; X (�))
�" j Fi

�
� 0: (9)

As Xi and X 0
i;�" are Fi-measurable and non-negative, by multiplying both sides of inequality

(8) by Xi we obtain

E

�
Xi (�)

ui(�; X�i (�) ; X 0
i;" (�))� ui(�; X (�))
"

j Fi
�
� 0: (10)

16



Likewise, by multiplying both sides of the inequality (9) by X 0
i;�" we obtain

E

�
X 0
i;�" (�)

ui(�; X�i (�) ; X 0
i;�" (�))� ui(�; X (�))
�" j Fi

�
� 0: (11)

For every ! 2 
 the function ui(!; x) is concave in the variable xi; and hence for any
" > 0 ����Xi (!)

ui(!;X�i (!) ; X
0
i;" (!))� ui(!;X (!))
"

���� (12)

� Xi (!)max

����� ddxiui(!;X (!))
���� ; ���� ddxiui(!;X�i (!) ; Xi;" (!))

�����
and ����X 0

i;�" (!)
ui(!;X�i (!) ; X

0
i;�" (!))� ui(!;X (!))
�"

���� (13)

� X 0
i;�" (!)maxf

���� ddxiui(!;X (!))
���� ; ���� ddxiui(!;X�i (!) ; Xi;�" (!))

����g
(When

Pn
j=1 xj = 0 the partial derivatives dui (!; x) =dxi may not be de�ned. However, the

bounds in (12) and (13) will vanish in this case, and are thus well-de�ned.)

Since the cost function c is convex and strictly increasing, there exists b > 0 such that

c(b) > E(V ): It follows that Xi is bounded from above by b almost everywhere on 
, as

otherwise the expected equilibrium payo¤of player i would be negative, making the deviation

X̂i � 0 pro�table. Now notice that

d

dxi
ui(!;X(!)) =

�X�i(!)�
Xi(!) + �X�i(!)

�2V (!)� c0(Xi(!)) (14)

whenever Xi(!) + �X�i(!) > 0: Since Xi is bounded as argued above, (14) implies that the

functions

Xi (�)
d

dxi
ui(�; X (�));

Xi (�)
d

dxi
ui(�; X�i (�) ; Xi;" (�));

X 0
i;�" (�)

d

dxi
ui(�; X (�));

X 0
i;�" (�)

d

dxi
ui(�; X�i (�) ; Xi;�" (�))

17



are bounded; in particular, the expressions in both (12) and (13) are uniformly bounded.

Since for every ! 2 


lim
"&0

Xi (!)
ui(!;X�i (!) ; X

0
i;" (!))� ui(!;X (!))
"

= lim
"&0

X 0
i;�" (!)

ui(!;X�i (!) ; X
0
i;�" (!))� ui(!;X (!))
�"

= Xi (!)
d

dxi
ui(!;X (!));

the bounded convergence theorem implies that the convergence as " & 0 is also in the

L1-norm on (
;F ; p) ; which in turn implies pointwise a.e. convergence of the conditional
expectation on the �-�eld Fi: Thus, the functions in (10) and (11) converge a.e. to

E

�
Xi (�)

d

dxi
ui(�; X (�)) j Fi

�
;

and hence we obtain that

E

�
Xi (�)

d

dxi
ui(�; X (�)) j Fi

�
= 0

a.e. on 
. Using (14) we may write this equation as

0 = E

�
Xi (�)

d

dxi
ui(�; X (�)) j Fi

�
= E

"
XiX�i�

Xi +X�i
�2V �Xic

0(Xi) j Fi

#

= E

"
XiX�i�

Xi +X�i
�2V j Fi

#
� E [Xic

0(Xi) j Fi]

= E

"
XiX�i�

Xi +X�i
�2V j Fi

#
�Xic

0(Xi);

which establishes the lemma. �

Proof that equation (5) used in the proof of Proposition 1. We rely on this proof on

the notations and intermediate results derived in the proof Lemma 1. Note that the proof

of Lemma 1 does not involve Proposition 1.

For every ! 2 


lim
"!0+

1Xi>0 (!)�
ui(!;X�i (!) ; X

0
i;" (!))� ui(!;X (!))
"

(15)

= lim
"!0+

1Xi>0 (!)�
ui(!;X�i (!) ; X

0
i;�" (!))� ui(!;X (!))
�"

= 1Xi>0 (!)�
d

dxi
ui(!;X (!)):
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Also, for every ! 2 
 the function ui(!; x) is concave in the variable xi; and hence for any
" 2

�
0; a

2

�
and ! 2 
i ����ui(!;X�i (!) ; X

0
i;" (!))� ui(!;X (!))
"

���� (16)

� maxf
���� ddxiui(!;X (!))

���� ; ���� ddxiui(!;X�i (!) ; Xi;" (!))

����g
and

����ui(!;X�i (!) ; X
0
i;�" (!))� ui(!;X (!))
�"

���� (17)

� maxf
���� ddxiui(!;X (!))

���� ; ���� ddxiui(!;X�i (!) ; Xi;�" (!))

����g:
Since Xi is bounded (as was shown in the proof of Lemma 1), and

P
i2N Xi � a a.e. on


 by assumption (implying in particular that �X�i+Xi;�" � a
2
for " 2

�
0; a

2

�
), it follows from

(14) that the right-hand side functions in both (16) and (17) are bounded from above by the

same integrable function f =
Xi; a2
a2
V + c0(Xi;a

2
). Using this fact, (15), and the conditional

dominated convergence theorem (see Corollary 3.1.1. (iv) in Borkar (1995)), we obtain that,

almost surely on 
,

lim
"!0+

E

�
1Xi>0 (�)�

ui(�; X�i (�) ; X 0
i;" (�))� ui(�; X (�))
"

j Fi
�

(18)

= lim
"!0+

E

�
1Xi>0 (�)�

ui(�; X�i (�) ; X 0
i;�" (�))� ui(�; X (�))
�" j Fi

�
= E

�
1Xi>0 (�)�

d

dxi
ui(�; X (�)) j Fi

�
:

As 1Xi>0 is Fi-measurable and can be extracted from the expectation, multiplying by 1Xi>0

both sides of the inequalities (8) and (9), and using (18), we obtain

E

�
1Xi>0 (�)�

d

dxi
ui(�; X (�)) j Fi

�
= 0;

which is equation (5). �
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