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What is an Auction?

Auction: (Latin: auctiō, auctiōn. From auctus, past participle of augēre:
to increase.)

.A sale of property to the highest bidder. (Merriam-Webster) The buying
and selling of real and personal property through open public bidding.
(Encyclopædia Britannica)

. A market institution with an explicit set of rules determining resource
allocation and prices on the basis of bids from the market participants.
(McAfee-McMillan, 1987.)
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What is an Auction?

.Subasta. Del lat., sub-asta, bajo la lanza. (Porque los soldados romanos
clavaban su lanza en el lugar en el que exponían su botín de guerra, que
ofrecían al mejor postor.)

1. Venta pública de bienes o alhajas que se hace al mejor postor, y
regularmente por mandato y con intervención de un juez u otra autoridad.

2. Adjudicación que en la misma forma se hace de una contrata,
generalmente de servicio público; como la ejecución de una obra, el
suministro de provisiones, etc.
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History

.Babylon (500 BC): sale of wives.

.Roman Empire: sale of slaves, war booty, debtors’property, ... the whole
Empire (Didius Julianus, emperor between March 28 and June 1, 193 AD).

. Recent Time: art and antiques, flowers, fish, agricultural products ... —
Stockholm’s Auktionsverk (1674), Sothebys (1744), Christies (1766).

.Today: treasury bills, procurement, mineral rights, spectrum licences, real
estate, firms (hostile takeovers), pollution permits, ... internet auctions, ...
as much as 30% of GDP is contracted through auctions.
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Common Auctions

Open ascending price auctions (English Auctions).

Open descending price auctions (Dutch auctions).

First-price sealed-bid auctions.

Second-price sealed-bid auctions (Vickrey Auctions).

Open Sealed-Bid
First-Price DA FPA
Second-Price EA SPA
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Other Auctions

Hybrid Anglo-Dutch auction (EA, then a FPA with the two finalists).

Clock auctions (with or without a buy-now price).

Candle auctions (random stopping time).

Third-price auctions, ...

All-pay auctions.

(All these are examples of a class of auctions known as standard —to be
defined formally.)
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Why using an auction?

Practical Reasons: an auction is a way to implement a market.

An auction provides the means for:

price discovery (the seller and/or buyers may not know what the item
or service is worth)

winner determination

payment mechanism.
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Why using an auction?

Normative Reasons: auctions have good properties.

Well designed auctions:

produce effi cient outcomes

maximize revenue

are perceived as fair and transparent

may prevent corruption

etc.
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Why using an auction?

Under perfect information,

direct bargaining, or

posted prices

may provide a simpler way to arrange trade.

Auctions are useful precisely because the seller and the buyers
are unsure about the values of the objects up for sale.
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The IPV Model

There is a single object for sale.

The object has a pure consumption (private) value (e.g., a rare
wine).1

There are n risk neutral buyers (bidders).

Bidders’values (X1, ...Xn) are iid according to some increasing
differentiable cdf FX whose support is an interval [0, ω].

Each bidder knows her value, but is uncertain about the values of the
other bidders (i.e., values are private information).

The value of the object to the seller is normalized to zero.

1If an object has an investment value (e.g., the right to extract the oil of a track of
land), then bidders’values are interdependent.
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Auctions

In an auction:

Each bidder i places a bid bi ∈ R+.

The profile of bids (b1, ..., bn) determines the probability with which
each bidder wins the object, pi (b1, ..., bn), and how much each bidder
pays, ti (b1, ..., bn).

An auction (p, t), where p : Rn+ → ∆n and t : Rn+ → Rn, defines a game
of incomplete information.
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An Auction Game

In the Bayesian game Γ = (N,T ,A, u, µ) defined by an auction (p, t):

The players are the bidders, i.e., N = {1, ..., n}.

A player’s type is her value, i.e., Ti = [0, ω].

A player’s action is a bid, i.e., Ai = R+

The payoff of a player ui : [0, ω]n × Rn+ → R is

ui (x , b) = pi (b)xi − ti (b).

Players’beliefs are described by the c.d.f.

µ(x1, .., xn) =
n∏
i=1

FX (xi ).
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Strategically Equivalent Auctions

In the context of the IPV model:

The English action is strategically equivalent to the second-price
sealed-bid auction.

The Dutch action is strategically equivalent to the first-price
sealed-bid auction.
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SPA - Equilibrium Analysis

In a Second Price Auction:

The highest bidder wins the object

The winner pays the second highest bid, and the losers pay nothing.

Ties are resolved by, e.g., assigning the object to the highest bidders
with equal probability.

The functions (p, t) defining a SPA are given for b ∈ Rn+ by

pSPAi (b) =

{ 1
|M (b)| if bi ∈ M(b),

0 otherwise,

tSPAi (b) = pSPAi (b) max
j∈N\{i}

bj ,

where M(b) = {j ∈ N | bj = maxk∈N bk}.

Diego Moreno () Auctions 14 / 57



SPA - Equilibrium Analysis

The Bayesian game defined by a SPA in the IPV setting has multiple
equilibria. However, ...

Prop. 1. In a SPA, true value bidding, i.e., β(x) = x, is a weakly
dominant strategy.

Discuss a heuristic proof.

True value bidding is the unique symmetric equilibrium of a SPA, and is
the natural equilibrium to consider. However, there asymmetric equibria
involving weakly dominated strategies; e.g., (β̂1, ..., β̂n) given by
β̂1(x) = ω, β̂2(x) = ... = β̂n(x) = 0 for all x ∈ [0, ω].
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SPA - Equilibrium Analysis

We identify the outcome generated by the true value bidding equilibrium
of a SPA. Some basic properties are direct corollaries of Prop. 1:

Corollary 1. In a SPA,

(1.1) The bidder with the highest value wins the object.

(1.2) The seller revenue is the second largest value.

Remark 1. Under independent private values the results above extend to
English actions.
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SPA - Equilibrium Analysis

Order Statistics

Let X1, ...,Xk be iid on [0, ω] according to FX . For j ≤ k let Y (k)j be the
jth largest value of any realization of X1, ...,Xk .

The cdf of is

F
Y (k)1

(y) = Pr(Y (k)1 ≤ y)

= Pr(X1 ≤ y , ...,Xk ≤ y)

(Independence) = FX (y)k .
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SPA - Equilibrium Analysis

Order Statistics

The cdf of Y (k)2 is

F
Y (k)2

(y) = Pr(Y (k)2 ≤ y)

(see Figure 1 below) = Pr (X1 ≤ y ,X2 ≤ y , ...,Xk ≤ y)

+Pr (X1 > y ,X2 ≤ y , ...,Xk ≤ y)

...+ Pr (X1 ≤ y ,X2 ≤ y , ...,Xk > y)

= FX (y)k + k (1− FX (y))FX (y)k−1

= kFX (y)k−1 − (k − 1)FX (y)k .
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SPA - Equilibrium Analysis

X1 ≤ y X1 > y X2 ≤ y ... Xk ≤ y
...

...
Xk ≤ y X1 ≤ y X2 ≤ y ... Xk > y

Figure 1: Partition of the Event Y (k)2 ≤ y .
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SPA - Equilibrium Analysis

Payoffs and Revenue in a SPA

By Corollary 1 calculating the seller’s expected revenue and the bidders’
expected payoffs in a SPA is a simple task.

The seller revenue RSPA is equal to Y (n)2 . Therefore the expected seller
revenue is

E[RSPA] = E[Y (n)2 ].

The expected payoff of a bidder whose value is x is

USPA(x) = Pr(winning | x)(x − E[Second Highest Bid | x ]).

Since a bidder wins the auction when her value is the largest, then

Pr(winning | x) = Pr(Y (n−1)1 < x) = F
Y (n−1)1

(x).
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SPA - Equilibrium Analysis

Payoffs and Revenue in a SPA

Since all bidders bid their value, the expected payment of a bidder who
wins the auction when her value is x is

E[Second Highest Bid | x ] = E[Y (n−1)1 | Y (n−1)1 < x ].

Hence

USPA(x) = F
Y (n−1)1

(x)(x − E[Y (n−1)1 | Y (n−1)1 < x ])

= F
Y (n−1)1

(x)x −mSPA(x),

where mSPA(x) is the expected payment of a bidder whose value is x .

mSPA(x) = F
Y (n−1)1

(x)E[Y (n−1)1 | Y (n−1)1 < x ].

Therefore, the ex-ante (random) payoff of a bidder is USPA(X ), and her

ex-ante expected payoff is E[USPA(X )].
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SPA - Equilibrium Analysis

Surplus in a SPA

For each realization of values, the gross surplus generated in the action,
denoted SSPA, is the largest value; i.e., SSPA = Y (n)1 . (Recall that the
seller’s value is zero.) Hence the expected gross surplus is

E[SSPA] = E[Y (n)1 ].

Exercise. Show that

E[SSPA] = E[RSPA] + nE[USPA].

Hint.
E[RSPA] = nE[mSPA(X )].
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SPA - Equilibrium Analysis

Example
Let n = 2, ω = 1, FX (x) = x (uniform). The seller revenue is Y (2)2 . The

cdf of Y (2)2 is

F
Y (2)2

(y) = FX (y)2 + 2FX (y)(1− FX (y)) = 2FX (y)− FX (y)2 = 2y − y2.

Hence the expected seller revenue is

E[RSPA] =

∫ 1

0
ydF

Y (2)2
(y) = 2

∫ 1

0
y (1− y) dy =

1
3
.

The expected payment of a bidder whose value is x is

mSPA(x) = F
Y (1)1

(x)E[Y (1)1 | Y (1)1 < x ] =
x2

2
.

where
F
Y (1)1

(x) = FX (x) = x ,

and
E[Y (1)1 | Y (1)1 < x ] = E[Y | Y < x ] =

x
2
.
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SPA - Equilibrium Analysis

Example

Hence the expected payoff of a bidder whose value is x is

USPA(x) = F
Y (1)1

(x)x −mSPA(x) =
x2

2
,

and her ex-ante expected payoff is

E[USPA(X )] =

∫ 1

0

x2

2
dx =

1
6
.

Finally, the gross surplus is Y (2)1 , where F
Y (2)1

(y) = y2, and therefore the

expected gross surplus is

E[SSPA] = E[Y (2)1 ] =

∫ ω

0
ydF

Y (2)1
(y) = 2

∫ 1

0
y2dy =

2
3
.
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FPA - Equilibrium Analysis

In a FPA:

The highest bidder wins the object.

The winner pays her bid, and the losers pay nothing.

(Ties are resolved by, e.g., assigning the object to the highest bidders with
equal probability. But how ties are resolved does not affect equilibrium.)

The functions (p, t) defining a first-price auction are given for b ∈ Rn+ by

pFPAi (b) =

{ 1
|M (b)| if bi ∈ M(b),

0 otherwise,

tFPAi (b) = pFPAi (b)bi .

where as before M(b) = {j ∈ N | bj = maxk∈N bk}.
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FPA - Equilibrium Analysis

In the incomplete information game defined by a FPA, true value bidding
is neither a weakly dominant strategy nor an equilibrium.

However, there is a unique symmetric increasing differentiable equilibrium
strategy β.

Prop. 2. (Vickrey, 1961) The FPA has a unique symmetric equilibrium
(β, ..., β) such that β is differentiable and increasing. This equilibrium is
given by

β(x) = E[Y (n−1)1 | Y (n−1)1 < x ].

Remark 2. This result extends to DA, even if values are interdependent.
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FPA - Equilibrium Analysis

Proof of Prop 2
Let (β, ..., β) be a symmetric equilibrium such that β′ > 0.

1. β(0) = 0.

2. Bidding b > β(ω) is suboptimal.

3. For each x ∈ [0, ω] bidding β(x) must be optimal. Since the expected
payoff of a bidder who bids b ≤ β(ω) when her value is x ∈ [0, ω] is

F
Y (n−1)1

(β−1(b)) (x − b) ,

where β−1(b) is the value in [0, ω] that bids b. Then b = β(x) solves

max
b∈[0,β(ω)]

F
Y (n−1)1

(β−1(b)) (x − b) .
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FPA - Equilibrium Analysis

Proof of Prop 2 (cont.)

4. Set z = β−1(b); then z = x solves

max
z∈[0,ω]

F
Y (n−1)1

(z) (x − β(z)) .

Since both FX and β are differentiable, x solves

f
Y (n−1)1

(x) (x − β(x))− F
Y (n−1)1

(x)β′(x) = 0,

i.e.,
F
Y (n−1)1

(x)β′(x) + f
Y (n−1)1

(x)β(x) = xf
Y (n−1)1

(x),

or
d
dx

(
F
Y (n−1)1

(x)β(x)
)

= xf
Y (n−1)1

(x).

Diego Moreno () Auctions 28 / 57



FPA - Equilibrium Analysis

Proof of Prop 2 (cont.) Hence

F
Y (n−1)1

(x)β(x) =

∫ x

0
yf
Y (n−1)1

(y)dy ,

i.e.,

β(x) =

∫ x

0
y
f
Y (n−1)1

(y)

F
Y (n−1)1

(x)
dy .

We show that
f
Y (n−1)1

(y)

F
Y (n−1)1

(x)
= f

Y (n−1)1 |Y (n−1)1 <x
(y),

and hence

β(x) =

∫ x

0
yf
Y (n−1)1 |Y (n−1)1 <x

(y)dy = E[Y (n−1)1 | Y (n−1)1 < x ].
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FPA - Equilibrium Analysis

Proof of Prop 2 (cont.)

F
Y (n−1)1 |Y (n−1)1 <x

(y) = Pr(Y (n−1)1 < y | Y (n−1)1 < x)

=
Pr(Y (n−1)1 < y ,Y (n−1)1 < x)

Pr(Y (n−1)1 < x)
.

Hence F
Y (n−1)1 |Y (n−1)1 <x

(y) = 0 for y > x , and for y ≤ x

F
Y (n−1)1 |Y (n−1)1 <x

(y) =
F
Y (n−1)1

(y)

F
Y (n−1)1

(x)
.

Thus, f
Y (n−1)1 |Y (n−1)1 <x

(y) = 0 for y > x , and for y ≤ x

f
Y (n−1)1 |Y (n−1)1 <x

(y) =
dF
Y (n−1)1 |Y (n−1)1 <x

(y)

dy
=
f
Y (n−1)1

(y)

F
Y (n−1)1

(x)
.
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FPA - Equilibrium Analysis

Proof of Prop 2 (cont.)

4. So far we have shown that if there is a symmetric increasing
differentiable equilibrium, then the bidding strategy is

β(x) = E[Y (n−1)1 | Y (n−1)1 < x ].

In order to complete the proof of Prop. 2 we need to show that (β, ..., β)
is indeed an equilibrium.

We show that β(x) is optimal for each x ∈ [0, ω], i.e., that x solves

max
z∈[0,ω]

F
Y (n−1)1

(z) (x − β(z)) = F
Y (n−1)1

(z)x −
∫ z

0
yf
Y (n−1)1

(y)dy .
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FPA - Equilibrium Analysis

Proof of Prop 2 (cont.)

Integration by parts (u(y) = y , v(y) = F
Y (n−1)1

(y)) yields∫ z

0
yf
Y (n−1)1

(y)dy = F
Y (n−1)1

(z)z −
∫ z

0
F
Y (n−1)1

(y)dy

Hence

F
Y (n−1)1

(z) (x − β(z)) = F
Y (n−1)1

(z) (x − z) +

∫ z

0
F
Y (n−1)1

(y)dy .

and

F
Y (n−1)1

(x) (x − β(x)) =

∫ x

0
F
Y (n−1)1

(y)dy .
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FPA - Equilibrium Analysis

Proof of Prop 2 (cont.)
Thus for all z ∈ [0, ω] we have

F
Y (n−1)1

(z) (x − β(z))− F
Y (n−1)1

(x) (x − β(x)) = F
Y (n−1)1

(z) (x − z)

−
∫ x

z
F
Y (n−1)1

(y)dy .

Since F
Y (n−1)1

is non-decreasing, for z < x∫ x

z
F
Y (n−1)1

(y)dy ≥ F
Y (n−1)1

(z)

∫ x

z
dy = F

Y (n−1)1
(z) (x − z) ,

and for z > x .

−
∫ x

z
F
Y (n−1)1

(y)dy =

∫ z

x
F
Y (n−1)1

(y)dy ≤ F
Y (n−1)1

(z) (z − x) .
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FPA - Equilibrium Analysis

Proof of Prop 2 (cont.)

Hence for all z ∈ [0, ω]

F
Y (n−1)1

(z) (x − β(z))− F
Y (n−1)1

(x) (x − β(x)) ≤ 0,

and therefore z = x . That is, bidding β(x) is optimal.
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FPA - Equilibrium Analysis

Value Shading in a FPA
Integrating β(x) by parts (u(y) = y , v(y) = F

Y (n−1)1
(y)/F

Y (n−1)1
(x)) yields

β(x) =

∫ x

0
y
f
Y (n−1)1

(y)

F
Y (n−1)1

(x)
dy

= x −
∫ x

0

F
Y (n−1)1

(y)

F
Y (n−1)1

(x)
dy

= x −
∫ x

0

(
FX (y)

FX (x)

)n−1
dy < x .

That is, in a FPA bidders bid below value. The extend to which bidders
shade their bids depends on the distribution of values and the number of
bidders.
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FPA - Equilibrium Analysis

Bidders Payoffs in a FPA

In a FPA, the expected payoff of a bidder whose value is x is

UFPA(x) = Pr(winning | x) (x − β(x))

= F
Y (n−1)1

(x)
(
x − E[Y (n−1)1 | Y (n−1)1 < x ]

)
= USPA(x).

Hence bidders expected payoff are the same in FPA and SPA.
Since a in FPA bidder pays her bid, the expected payment of a bidder
whose value is x is

mFPA(x) = F
Y (n−1)1

(x)E[(Y (n−1)1 | Y (n−1)1 < x ] = mSPA(x).
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FPA - Equilibrium Analysis

Revenue in a FPA

The seller revenue in a FPA is

RFPA = β(Y (n)1 ),

which differs from the revenue in a SPA, RSPA = Y (n)2 .

However, since mFPA(x) = mSPA(x),

E[RFPA] = nE[mFPA(x)] = nE[mSPA(x)] = E[RSPA].

i.e., the expected seller revenue in a FPA and SPA coincide. In fact:

Prop. 3. The seller revenue in a SPA is a mean preserving spread of the
seller revenue in a FPA.
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Revenue in FP and SP Auctions

Surplus is a FPA

In a FPA the object is allocated to the bidder who places the largest bid.
Since β is increasing, this is the bidder with the largest value.

Hence, the surplus realized in a FPA is SFPA = Y (n)1 . (Recall that the seller
value is zero by assumption.)
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Revenue in FP and SP Auctions

Example. Let n = 2, ω = 1, FX (x) = x (uniform). Then, in a FPA
bidders bid according to

βFPA(x) = E[Y (1)1 | Y (1)1 < x ] =
x
2
.

Thus, the cdf of RFPA is the cdf of is

FRFPA(y) = Pr(βFPA(Y (2)1 ) ≤ y)

= Pr(
Y (2)1

2
≤ y)

= Pr(Y (2)1 ≤ 2y)

= F
Y (2)1

(2y)

= 4y2.

Note the support of RFPA is [0,
1
2

].
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Revenue in FP and SP Auctions

Example. Let n = 2, ω = 1, FX (x) = x (uniform).

Recall that RSPA = Y (2)2 , and therefore

FRFPA(y) = F
Y (2)2

(y) = 2y − y2.

Thus, the support of RSPA is [0, 1].

See the figure below.
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Revenue in FP and SP Auctions

Revenue Comparison in a FPA and a SPA

0.5 1.0

0.5

1.0

R

cdf

The cdfs of RFPA (in blue) and RSPA (in red).
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FP and SP Auctions: pros and cons

SPA:
⊕ Strategic simplicity.
⊕ Effi ciency (even if values are asymmetric).
	 Susceptible to corruption, political embarrassment.2

	 Susceptible to collusion.

FPA:
	 Strategic sophistication.
⊕	 Effi ciency (but not if values are asymmetric).
⊕	 Less susceptible to corruption, political embarrassment.
⊕	 Less susceptible to collusion.

2The revelation of values can be troublesome: In 1990 the New Zealand government
allocated several licences for TV broadcast using a SPA for each license. In one auction,
the high bid was NZ$7 million and the second bid was NZ$5,000.
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Revenue Equivalence

Revenue Equivalence

The expected seller revenue is the same in a FPA and SPA.

This revenue equivalence extends to any standard auction.

(An auction is standard if it allocates the object to the highest bidder and
treats bids equally. In particular, it involves no probabilistic allocation of
the item —except when there are ties.)
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Revenue Equivalence

Example

Let n = 2, ω = 1, FX (x) = x (uniform). Let βAPA be an increasing
symmetric equilibrium of the all pay auction such that mAPA(0) = 0. Since
a bidder pays her bid whether she wins or not, then

βAPA(x) = mAPA(x) = F
Y (n−1)1

(x)E[Y (n−1)1 | Y (n−1)1 < x ].

In our example

βAPA(x) = F
Y (1)1

(x)E[Y (1)1 | Y (1)1 < x ] =
x2

2
.

(Compare βFPA(x) = x/2 and βSPA(x) = x .)
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Reserves Prices and Entry Fees

By the Revenue Equivalence Theorem a (risk neutral) seller whose
objective is to maximize his expected revenue would be indifferent
between any standard auction. However, the seller may have a value
for the object. In this case, the payoff to the seller differs from the
expected revenue.

The payoff of a risk neutral seller with value x0 ∈ (0, ω) who sells the
object using a standard auction is equal to the revenue minus x0. Also
the net social surplus is equal to the gross surplus minus the seller
value.

A disadvantage of selling the object using a standard auction is that
the object is allocated to the bidder with the largest value, even when
this value is below the seller’s value.
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Reserves Prices and Entry Fees

A way to avoid this problem (and to improve the effi ciency of the
outcome) is to introduce (and to announce publicly) a reserve price
below which the object remains with the seller.

In an auction with a reserve price r ∈ (0, ω), bids below r are ignored.

How does a reserve price affect the outcome of an auction?

The Revenue Equivalence Theorem
extends to auctions with reserve prices and/or entry fees.
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Reserves Prices and Entry Fees

Seller Expected Revenue and Payoff

The seller expected revenue in an standard auction with a reserve price
r ∈ [0, ω] is

R̄(r) = nE[m(X , r)],

and her expected payoff is

V̄ (r) = R̄(r) + x0FY (n)1
(r)

= nE[m(X , r)] + x0FY (n)1
(r).

Hence

V̄ ′(r) = n
dE[m(X , r)]

dr
+ x0fY (n)1

(r).
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Reserves Prices and Entry Fees

Seller Expected Revenue and Payoff

E[m(X , r)] =

∫ ω

r

(
rF
Y (n−1)1

(r) +

∫ x

r
yf
Y (n−1)1

(y)dy
)
dFX (x)

= r (1− FX (r))F
Y (n−1)1

(r) +

∫ ω

r

∫ x

r
yf
Y (n−1)1

(y)fX (x)dydx

= r (1− FX (r))F
Y (n−1)1

(r)

+

∫ ω

r

(∫ ω

y
fX (x)dx

)
yf
Y (n−1)1

(y)dy

= r (1− FX (r))F
Y (n−1)1

(r)

+

∫ ω

r
y (1− FX (y)) f

Y (n−1)1
(y)dy .
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Seller Revenue and Payoff
Taking derivatives (using Leibniz integral rule):

dE[m(X , r)]

dr
=

d
dr

(
rF
Y (n−1)1

(r) (1− FX (r))
)

+
d
dr

∫ ω

r
y (1− FX (y)) f

Y (n−1)1
(y)dy

= (1− FX (r))F
Y (n−1)1

(r)

+r
(

(1− FX (r)) f
Y (n−1)1

(r)− F
Y (n−1)1

(r)fX (r)
)

−r (1− FX (r)) f
Y (n−1)1

(r)

= F
Y (n−1)1

(r) (1− FX (r)− rfX (r)) .
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Reserves Prices and Entry Fees

Seller Revenue and Payoff

Then

V̄ ′(r) = nF
Y (n−1)1

(r) (1− FX (r)− rfX (r)) + x0fY (n−1)1
(r)

= nF
Y (n−1)1

(r) (1− FX (r)− rfX (r) + x0fX (r))

= nF
Y (n−1)1

(r) (1− FX (r)− (r − x0)fX (r)) .

Assuming FX (r) < 1, we can rewrite this expression as

V̄ ′(r) = nF
Y (n−1)1

(r) (1− FX (r)) (1− (r − x0)λ(r)) .

where

λ(x) =
fX (x)

1− FX (x)

is the hazard rate of FX .
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Reserves Prices and Entry Fees

Seller Revenue and Payoff

Thus, the reserve price r∗ that maximizes the seller’s expected payoff solves

1− (r − x0)λ(r) = 0.

i.e.,

r∗ = x0 +
1

λ(r∗)

Second Order Suffi cent Condition: if λ is increasing, then

V̄ ′′(r∗) = −nF
Y (n−1)1

(r∗) (1− FX (r∗))
(
λ(r∗) + (r∗ − x0)λ′(r∗)

)
< 0.

(Although V̄ ′(0) = 0, since

V̄ ′′(0) = nf
Y (n−1)1

(0) (1+ x0fX (0)) > 0,

r = 0 is a minimum.)
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Seller Revenue and Payoff

Interestingly, the reservation price that maximizes the seller’s expected
payoff is, r∗ = x0 + 1/λ(r∗), is independent of the number of bidders n.

Thus, in a first- or second-price sealed bid auction the revenue maximizing
reserve price does not depend on the number of bidders. This is because a
reserve price is relevant only when the values of all but one bidder exceed
the reserve.
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Reserves Prices and Entry Fees

Example

Let n = 2, ω = 1, FX (x) = x (uniform). Calculate the revenue maximizing
reserve price assuming that the seller’s value is x0 = 0.

The hazard rate is
λ(x) =

1
1− x .

Hence the optimal reserve solves

r = 1− r .

i.e.,

r∗ =
1
2
.
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Reserves Prices and Entry Fees

Example
The seller expected payoff (which is equal to the expected seller revenue)
with this reserve price is

V̄ (r∗) = R̄(r∗) = nE[m(X , r∗)]

= nr∗ (1− FX (r∗))F
Y (1)1

(r∗)

+n
∫ ω

r∗
y (1− FX (y)) f

Y (1)1
(y)dy

= 2
(
1
2

)(
1
2

)(
1
2

)
+ 2

∫ 1

1
2

y (1− y) dy =
5
12
.
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Entry Fees
In a first or second price auction, a reserve price r excludes from the
auction all bidders with a value x < r .

Removing the reserve price r and imposing instead an entry fee

e = F
Y (n)1

(r)r

that each bidder must pay in order to participate in the auction effectively
has the same effect; that is, in a symmetric equilibrium, the bidders whose
realized value is above r participate in the auction and bid, and the bidders
whose realized value is below r do not to participate in the auction.

Hence, by Prop. 6 bidders’expected payoff and seller expected revenue is
the same.
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Reserves Prices and Entry Fees

Remarks

Reserve prices and/or entry fees allow the seller to increase its payoff
(revenue), but produce ineffi cient outcomes with positive probability:
even though the total surplus is less than the maximum surplus, the
distribution of surplus is more favorable to the seller. However,
reserve prices/entree fees do not eliminate bidders information rents.

Reserve prices and/or entry fees would destroy the strategic
equivalence between SPA and EA, and between FPA and DA, if
bidders observed the bidders that effectively participate in the auction
and those who do not (because their values are below r).
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