Stability of Competitive Equilibrium

I. Definitions.

1. A price adjustment rule is a function $f: S^l \to S^l$ such that $f_k(p) > p_k$ whenever $z_k(p) > 0$, and $f_k(p) < p_k$ whenever $z_k(p) < 0$, for $k \in \{1, \ldots, l\}$.

2. An equilibrium price vector p^* is *locally stable* if there are a price adjustment rule f and a positive number ε such that for any $p \in B_{\varepsilon}(p^*)$ the sequence $\{p(n)\}_{n=1}^{\infty}$, where p(1) = p and p(n) = f(p(n-1)), converges to p^* .

3. It is globally stable if there is a price adjustment rule f such that for any $p \in S^l$ the sequence $\{p(n)\}_{n=1}^{\infty}$, where p(1) = p and p(n) = f(p(n-1)), converges to p^* .

II. Exercise. (Due to D. Gale).

There are two persons, two goods, and no production is possible. Consumer 1 owns the bundle (1,0) and her preferences are described by the utility function $u_1(x,y) = \min\{x,2y\}$. Consumer 2 owns the bundle (0,1) and her preferences are described by the utility function $u_2(x,y) = \min\{2x,y\}$. Calculate the set of competitive equilibrium price vectors in $S = \{(p, 1 - p), p \in [0, 1]\}$, and determine which of the equilibria are locally and/or globally stable.