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ABSTRACT

The focus of genetics is shifting its contribution to common, complex dis-
orders. New genetic risk factors will be discovered, which if undisclosed
may allow adverse selection. However, this should happen only if low-risk
individuals would reduce their expected utility by insuring at the average
price. We explore this boundary, focusing on critical illness insurance and
heart attack risk. Adverse selection is, in many cases, impossible. Otherwise,
it appears only for lower risk aversion and smaller insured losses, or if the
genetic risk is implausibly high. We find no strong evidence that adverse
selection from this source is a threat.

INTRODUCTION
Risk and Insurance

The principle behind underwriting is to identify key risk factors that stratify ap-
plicants into reasonably homogeneous groups, for each of which the appropriate
premium rate can be charged. The risk of death or ill health is affected by, among
other things, age, gender, lifestyle, and genotype. However, the use of certain risk
factors is sometimes controversial. In particular, this is true of factors over which
individuals have no control, such as genotype. As a result, in many countries a ban
has been imposed, or moratorium agreed, limiting the use of genetic information. In
one country, the United Kingdom, a government-appointed Genetics and Insurance
Committee (GAIC) is providing guidance to insurers on the acceptable use of genetic
test results.

Disorders caused by mutations in single genes, which may be severe and of late
onset, but are rare, have been quite extensively studied in the insurance literature
(see Macdonald, 2004), for a review. One reason is that the epidemiology of these
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disorders is relatively advanced because biological cause and effect could be traced
relatively easily. The conclusion has been that single-gene disorders, because of their
rarity, do not expose insurers to serious adverse selection in large enough markets. |

The vast majority of the genetic contribution to human disease, however, will arise
from combinations of gene varieties (called “alleles”) and environmental factors,
each of which might be quite common, and each alone of small influence but together
exerting a measurable effect on the molecular mechanism of a disease. Some combi-
nations may be protective, others deleterious. These are the multifactorial disorders,
and they are the future of genetics research. Their epidemiology is not very advanced
but should make progress in the next 5-10 years through the very large prospective
studies now beginning in several countries. One of the largest is the Biobank project in
the United Kingdom, with 500,000 subjects, described in Macdonald, Pritchard, and
Tapadar (2006). UK Biobank will recruit 500,000 people aged 40 to 69 from the general
population of the United Kingdom, and follow them for up for 10 years. The aim
is to capture both genetic and environmental variations and interactions, and relate
them to the risks of common diseases. If successful, the outcome will be much better
knowledge of the risks associated with complex genotypes. Thus, the genetics and
insurance debate will, in the fairly near future, shift from single-gene to multifactorial
disorders.

Any model used to study adverse selection risk must incorporate the behavior of
the market participants. Most of those applied to single-gene disorders in the past
did so in a very simple and exaggerated way, assuming that the risk implied by an
adverse genetic test result was so great that its recipient would quickly buy life or
health insurance with very high probability. These assumptions were not based on
any quantified economic rationale, but since they led to minimal changes in the price
of insurance this probably did not matter. The same is not true if we try to model
multifactorial disorders. Then “adverse” genotypes may imply relatively modest
excess risk but may be reasonably common, so the decision to buy insurance is more
central to the outcome.

Subramanian et al. (1999) used a continuous-time discrete-state Markov model to
estimate adverse selection costs for term insurance contracts resulting from nondis-
closure of BRCA mutation test results and/or a family history of breast and ovarian
cancer. This was the first study explicitly to link adverse selection and genetic epi-
demiology. They assumed that cover would be increased if a genetic test reveals
higher risk and reduced if it does not. The cost of adverse selection was defined as the
across-the-board increase in premiums needed for an insurer who did not observe the
genetic test results to absorb the extra cost. These increases could reach 120 percent
in scenarios where women disclosed family histories but not test results. However,
they could exceed 200 percent, approaching 600 percent in extreme scenarios, when
family histories were not disclosed either. The authors concluded that if companies
do not identify applicants’ family histories, adverse selection costs could become
unbearable.

Information asymmetry and adverse selection have also been considered in an equi-
librium setting. Doherty and Thistle (1996) pointed out that under symmetric infor-
mation, insurance deters diagnostic testing. This is because the premium is a lottery
whose value is revealed by the test, and risk-averse individuals will prefer a pooled
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premium. Asymmetric information alters or abolishes the equilibrium, depending on
the cost of being tested and whether or not low-risk individuals may choose to re-
veal beneficial test results. Hoy and Polborn (2000), following also Villeneuve (1996),
analyzed the same problem in a life insurance model, in which lost income due to pre-
mature death is replaced. They constructed scenarios where a new test could increase
or decrease the social value of information.

Hoy and Witt (2007) applied the results from Hoy and Polborn (2000) to the specific
case of the BRCA1/2 breast cancer genes. They simulated the market for 10-year term
life insurance policies targeted at women aged 35 to 39. They stratified the consumer
base into 13 risk categories based on family background information. This information
is also available to insurers. Then, within each risk group, they checked the impact of
test results for BRCA1/2 genes on welfare effects, using iso-elastic utility functions.
The authors showed that in the presence of a high-risk group, and in the presence of
information asymmetry, the equilibrium insurance premium can be as high as 297
percent of the population weighted probability of death, but this was very much a
worst-case scenario.

Polborn, Hoy, and Sadanand (2006) developed a model where individuals, early in
their lives, know neither the levels of insurance they will demand later in life nor their
mortality risk, which they learn over time. Under this setup, the characteristics of the
equilibrium level of initial insurance purchase are derived, assuming both symmetric
and asymmetric information. The authors show that under certain assumptions, reg-
ulations prohibiting the use of genetic test information will increase welfare despite
creating adverse selection. This implies that individuals would prefer to face adverse
selection costs rather than premium risks.

Hoy (2006) concentrated on the social welfare issues related to risk classification.
In particular, he asked whether regulations that create adverse selection improve
or worsen expected welfare. Social welfare is affected by adverse selection costs on
one hand and protection against premium risk on the other. The author concludes
that, on balance, if the proportion of high-risk types within the population exceeds a
certain threshold, then regulatory adverse selection unambiguously reduces expected
welfare. However, if the proportion of high-risk individuals is sufficiently small, then
welfare can be enhanced by banning risk classification. Although we do not address
social welfare issues in this article, we will obtain the threshold proportion of high-
risk types, above which the pooled insurance premium will become unacceptably
high for low-risk individuals.

All these papers assume that the genetic epidemiology implies that genetic tests carry
very strong information about risk, true of some single-gene disorders but unlikely
to be so true of multifactorial disorders. They concentrate primarily on providing a
proper economic rationale for the impact, on the insurance market, of genetic tests
for, mainly, rare diseases. In this article, we try to bring together plausible quantitative
models for the epidemiology and the economic issues, with respect to more common
disorders, therefore affecting a much larger proportion of the insurer’s customer base.
We wish to find out under what circumstances adverse selection is likely to occur with
sufficient force to be problematic.

We suppose that individuals are risk averse, have wealth W, and aim to buy insurance
with sum assured L < W. Their decision is governed by expected utility, conditioned
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on the information available to them. Insurers, in a competitive market, charge an
actuarially fair premium P, equal to the expected present value of the insured loss,
conditioned on the information available to them. See, for example, Hoy and Polborn
(2000) for a similar market model. Because they are risk averse, individuals will be
willing to pay a premium up to a maximum of P* > P, provided that they and
the insurer have the same information. We can then consider the effect of genetic
information that is available only to applicants.

We propose a simple model of a multifactorial disorder, with two genotypes and two
levels of environmental exposure, and either additive or multiplicative interactions
between them. These factors affect the risk of myocardial infarction (heart attack),
therefore the theoretical price of critical illness (CI) insurance. However, these price
differences are not very large. To begin with, the risk factors are not observable
because the epidemiology is unknown or the necessary genetic tests have not yet
been developed. Insurers therefore charge everyone the same premium, which is the
appropriate weighted average of the genotype and environment-specific premiums.
Subsequently, genetic tests that accurately predict the risk become available, but only
to individuals; insurers are barred from asking about genotype. Adverse selection
therefore becomes a possibility.

UTiuty FUNCTIONS
Utility of Wealth

We assume that all individuals who may buy insurance have the same utility function,

namely, an increasing concave function U(w) of wealth w (so U'(w) > 0 and U"(w) <

0). Current wealth, which is deterministic, is compared with wealth after the outcome

of a probabilistic experiment via the expected utility of the outcome. Since the nature |
of the probabilistic experiment underlying insurance involves the timing as well as |
the occurrence of the insured event, we will measure wealth in present value terms

when necessary. For a full exposition of utility theory, see Binmore (1991).

Suppose the individual with utility function U(w) has initial wealth W but with

probability g will lose L. Their ultimate wealth is the random variable X, where

X = W — L with probability g and X = W with probability 1 — g. If they choose, they

can insure the risk for premium P, and accept W — P with certainty. They should do |
so if:

U(W — P) > E[U(X)] = qU(W — L) + (1 — g)UW). @)

In particular they should insure if the premium is equal to the expected loss gL since
for a risk-averse individual:

UW-gL)=U@W-L)+ (1 -q)W) >qUW -L)+ 1 -qUW). (2
So in a market where competition drives insurers to charge the actuarially “fair”

premium gL, insurance will be bought, but this is not the limiting case; insurance will
be bought as long as the premium is less than P* where:

P*=W—U"[qU(W — L)+ (1 — g)UW)]. €)
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Hence, P* is the maximum willingness to pay, and P* — gL is the risk premium.

Coefficients of Risk Aversion

The Arrow-Pratt measure of (absolute) risk aversion of a utility function U(w) is
defined as:

u’ (w)

Aulw) = 50

4)

It is well known that two utility functions represent the same preference relation if
and only if they have the same absolute risk-aversion function. A related quantity is
the measure of relative risk aversion, defined as:

u”(w)w
U'(w)

R(w) = Auy(w)w = — (5)

Families of Utility Functions

We introduce two families of utility functions, which we will use in examples through-
out the rest of the article.

(1) The iso-elastic utility functions are defined by:

(w—=1)/r ir<1 and A#0

Uroy(w) = log(w) A=0. ©

The condition A < 1 ensures concavity. Log-utility is the limiting case as » — 0.
The absolute risk-aversion function of Uj(w) is:

Aw) = 1_;5 )

and the relative risk-aversion function is constant, R(w) = R =1 — A. Hence,
higher A means less risk aversion.

(2) The negative exponential family of utility functions is parameterized by a constant
absolute risk-aversion function A(w) = A, as follows:
Un(a(w) = —exp(—Aw), where A>0. (8)

Clearly, a higher value of A implies more risk aversion.

Estimates of Absolute and Relative Risk Aversion

To parameterize these utility functions, we need estimates of absolute or relative risk-
aversion coefficients. Eisenhauer and Ventura (2003) pointed out that past research
was inconclusive; estimates of average relative risk-aversion coefficients ranged from
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less than 1 to well over 40. Hoy and Witt (2007) illustrated their model using iso-elastic
utilities with R = 0.5, 1, and 3. We will adopt a similar strategy, as follows.

Eisenhauer and Ventura (2003) estimated the risk-aversion function based on a
thought experiment conducted by the Bank of Italy for its 1995 Survey of Italian
Households’ Income and Wealth. Under certain assumptions, they estimated that a
person with an average annual income of 46.7777 million lira had an absolute risk-
aversion coefficient 0.1837 and a relative risk-aversion coefficient 8.59. (Guiso and
Paiella, 2006, based on the same study, estimated the relative risk-aversion coefficient
to be 1.92 for the 10th percentile and 13.25 for the 90th percentile.)

Allowing for the sterling/lira exchange rate in 1995 (average £1 = 2570.60 lira
http:/ /fx.sauder.ubc.ca/) and price inflation in the United Kingdom between July
1995 and June 2006 (Retail Price Index 149.1 and 198.5, respectively) an average in-
come of 46.7777 million lira in 1995 equates to about £24,226 in 2006, not very different
from the actual average of £25,810 (Jones, 2005).

We need utility functions of wealth, so an estimate of the wealth-income ratio is
required. Estimates of this ratio in the literature are quite varied. According to Her
Majesty’s Treasury (2005) in the United Kingdom, it varies between 5 and 7 for total
wealth and between 2 and 4 for net financial wealth.

The Inland Revenue in the United Kingdom also publishes figures on personal wealth
distribution http:/ /www.hmrc.gov.uk/stats/ personal_wealth/menu.htm. Their lat-
est figure (for 2003) shows that 53 percent of the population has less than £50,000 and
83 percent has less than £100,000. As the distribution of wealth is positively skewed,
we will assume a total wealth of W = £100,000. This gives a wealth—income ratio of
4, which is consistent with the figures published by Her Majesty’s Treasury (2005).

(1) The absolute risk-aversion function depends on the unit of wealth. Given utility
functions U(w) and V(w) related by U(cw) = V(w) for some constant c, their ab-
solute risk-aversion functions are related by Ay(cw) = Ay(w)/c. Using exchange
and inflation rates above, we suppose that a Briton in 2006 has an absolute risk-
aversion coefficient 8.967 x 10~° ~ 9 x 10~%, denominated in 2006 pounds.

(2) The relative risk-aversion function does not depend on the unit of wealth and so
the estimate of 8.59 can be used without any adjustment. We will use a rounded-off
value of 9 in the remainder of the article.

The formulation of utility functions with nonconstant relative risk aversion is an
active area of research. Meyer and Meyer (2005) specified a form of marginal utility
function that gives decreasing relative risk aversion. Xie (2000) proposed a power
risk-aversion utility function, which can produce increasing, constant, or decreasing
risk aversion depending on its parameterization. These specialized utility functions
are not yet in widespread use and we will not consider them further.

We will use the following utility functions for the purposes of illustration:
(1) Iso-elastic utilities with parameter A = 0.5, 0, and —8, which correspond to con-
stant relative risk aversion of 0.5, 1, and 9, respectively.

(2) Negative exponential utility with absolute risk-aversion coefficient A =9 x 10>.
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FIGURE 1
A Two-State Model

As(z)

Since iso-elastic utility with A = —8 has an absolute risk-aversion coefficient equal
to 9 x 10~° when wealth is £100,000, our assumption of W = £100,000 allows us to
compare the two utility functions.

-—

A SIMPLE GENE-ENVIRONMENT INTERACTION MODEL

We will illustrate the principles of underwriting long-term insurance in the presence
of a multifactorial disorder in the simple setting of the two-state continuous-time
model in Figure 1. The insured event could be death or illness, and it is represented
by an irreversible transition from state A to state B. The probability of transition is
governed by the transition intensity As(x), which depends on age x, and the values
of various risk factors that are labeled s (for “stratum”). In essence, As(x) dx is the
probability that a person in stratum s who is healthy at age x should suffer the insured
event during the next small time interval of length dx.

The risk factors arise from a 2 x 2 gene—-environment interaction model. That is, there
are two genotypes, denoted G and g, and two levels of environmental exposure,
denoted E and e. We assume that G and E are adverse exposures while g and e are
beneficial. Therefore, there are four risk groups, or strata, that we label ge, gE, Ge, and
GE. Let the proportion of the population at a particular age (at which an insurance
contract is sold) in stratum s be w;. The epidemiology is defined as follows.

(1) We assume proportional hazards, so for each stratum s there is a constant ks,
independent of age, such that As(x)/Age (x) = ks for all ages x. Clearly, kge = 1, and
ks > 1fors # ge.

(2) We assume symmetry between genetic and environmental risks, as follows:

(a) The probability of possessing the beneficial gene g is the same as the proba-
bility of exposure to the beneficial environment e, each denoted w. Assuming
independence, wg, = w?, weg = wGe = ®(l —w)and wgeg = (1 — w)?.

(b) We assume that kg = ke = k.

(3) The gene-environment interaction is represented by either an additive or a mul-
tiplicative model, as follows:

(a) Additive model: kGg = kge + kg — kge =2k — 1.
(b) Multiplicative model: kg = kgekgr/kge = k2.

See Woodward (1999) for a discussion of additive and multiplicative models.
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Therefore, the epidemiology is fully defined by the parameters Ag¢(x), w, and k along
with the choice of interaction.

This model could also be used to represent other forms of interacting risk factors, such
as fixed, nonmodifiable influences on the genetic risk. For example, instead of envi-
ronment, e and E could represent maternal and paternal transmission, respectively, of
the gene responsible for Huntington’s disease. As economic modeling of multifacto-
rial disorders advances from hypothetical to actual cases, the most distinctive feature
of environmental factors may be that individuals can choose to modify them.

INSURANCE PREMIUMS
Single Premiums

For simplicity, let the force of interest be § = 0. (This is consistent with the assumptions
of Doherty and Thistle, 1996; Hoy and Polborn, 2000; Hoy and Witt, 2007.) Then the
single premium for an insurance contract of term ¢ years, with sum assured £1, sold
to a person aged x who belongs to stratum s is:

t
gs =1—exp [—](; As(x—f-y)dy] =1—(1—qge)k5. )

If the proportion of insurance purchasers aged x is the same as the proportion in
the population, ws (e.g., if the stratum is not known to applicants or to insurers)
observation of claim statistics will lead the insurer to charge a weighted average
premiumrate § = ), wsqs = Y c ws[1 — (1 — qge)kS] per unit sum assured. Given our
assumption that the k; can all be expressed as simple functions of k, the stratum-
specific and average premium rates can also be expressed as g5 (k) and g (k).

Threshold Premium

Suppose all individuals have initial wealth W and that the net effect of suffering the
insured event in the next 7 years is a loss of L. Define the loss ratio f = L/W. If no
one knows to which stratum they belong, everyone will be willing to pay a single
premium of up to:

P* = W— U [gRUW - L) + (1 - gkNUW)]. (10)

However, someone who knows they are in stratum s will be willing to pay a single
premium of up to:

P} =W — U [gs(U(W — L) + (1 - gs(k)UW)]. 1

Py is smallest for stratum ge. So if the insurer, ignorant of the stratum, continues to
charge premium 7(k)L, adverse selection will first appear if 7(k)L > Pg,. That is, if:

U(W —g(k)L) < gge(K)U(W — L) + (1 — gge (k))U(W). (12)
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To be ignorant of the stratum in which an applicant exists, the insurer must be unable
to observe both genotype and environment. In practice, the insurer may have partial
knowledge, even if regulations bar the use of genetic information, because important
environmental risk factors such as smoking may be freely observable.

The Additive Epidemiological Model

Replace the inequality in Equation (12) with an equality and solve for k; this represents
the relative risk (of each risk factor) with respect to stratum ge, above which persons
who know they are in stratum ge will cease to buy insurance. Doing this with iso-
elastic utility with A # 0 we obtain:

. (=30 f) =gge(l = ) + (1~ 4ge). (13)
In the special case of logarithmic utility (iso-elastic utility with A = 0) we obtain:

1-q)f =0 - f)ls (14)

and under negative exponential utility:
e10AL — qgeeAL + (1 —4gge), (15)

in which wealth W does not appear. Using w = 0.5 (a uniform distribution across
strata) and an additive model, we solve Equations (13)-(15) for k, given certain values
of baseline risk ¢, and loss L, assuming an initial wealth of W =£100,000. The results
are in Table 1. We observe the following:

(1) For low loss ratios, even small relative risks k will cause people in the baseline
stratum to opt against insurance. This is as expected as small losses are relatively
tolerable.

(2) As the loss ratio f increases, so does the relative risk at which adverse selection
appears. This is simply risk aversion at work.

(3) The higher the baseline risk g, for a given loss ratio f, the lower the relative risk
at which adverse selection appears.

(4) Lower risk aversion, under iso-elastic utility, (A = 0.5) means that smaller relative
risks would discourage members of the baseline stratum to buy insurance at the
average premium, and for higher risk aversion (A = —8) the reverse is true.

Comparing iso-elastic and negative exponential utilities, we see that the limiting
relative risks are broadly similar for smaller losses. For larger losses, however, iso-
elastic utility functions have much greater limiting relative risks. This is because
risk aversion increases as wealth falls under iso-elastic utility, while for negative
exponential utility it is constant. As the fair actuarial premium for bigger losses
increases and depletes wealth, risk aversion under iso-elastic utility climbs above
that under negative exponential utility, with the result shown.
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TABLE 1
The Relative Risk k Above Which Persons in Stratum ge With Initial Wealth W =
£100,000 Will Not Buy Insurance, Using w = 0.5 and an Additive Model

Utility Loss L in £000
Function g, 10 20 30 40 50 60 70 80 90

01 1.025 1053 1.085 1.122 1165 1217 1284 1373 1513
02 1.024 1050 1.081 1116 1158 1209 1274 1364 1.506
1(0.5) 03 1.022 1.047 1076 1110 1150 1200 1263 1352 1.497
04 1.021 1.044 1072 1103 1142 1189 1.251 1.339  1.486
05 1.019 1.041 1.066 1.09% 1132 1178 1238 1324 1472

01 1051 1110 1.180 1264 1368 1504 1.691 1976 2524
02 1048 1104 1170 1250 1350 1479 1659 1939 2488
Log 03 1.045 1.098 1.160 1235 1330 1453 1.626 1.898 2451
04 1.042 1.091 1149 1220 1308 1425 1590 1.854 2413
05 1.039 1.084 1.138 1203 128 1395 1551 1.805 2372

0.1 1598 2755 4947 8831 15.950 - — = =
02 1546 2512 4153 6972 14.430 - = = =
1(-8) 03 1498 2322 3.664 6.148 - - = = =
04 1451 2163 3313 5810 = - - N -
05 1405 2023 3.035 6.107 - - - — =

01 1566 2504 3917 5793 8036 10574 13428 16.739 20.862
02 1516 2292 3337 4617 6119 7911 10226 13.900 -
N(9e-5) 03 1468 2126 2963 3972 5204 6.857 9812 N -
04 1423 1987 2684 3536 4655 6.519 = = =
05 1379 1.864 2457 3206 4305 7.636 - - -

Immunity From Adverse Selection

The missing entries in Table 1 mean that adverse selection never appears, whatever
the relative risk k. Clearly, this must be related to the size of the high-risk strata, and
their ability, or otherwise, to move the average premium enough to affect the baseline
stratum. We may ask: given g¢. and f, is there some proportion wg, in the lowest
risk stratum above which members of that stratum will always buy insurance at the
average premium rate? Begin by noting that:

Jim 7() = lim 3 Sws[1-(1 — )] = wgege + Y ws = 1 — wee(1 — gge)
~—00 ~>00 B s#ge (16)

and that this limit is not a function of the ks and thus holds for additive and multi-
plicative models. Substituting this limiting value in Equations (13)—(15), we can solve
for Wee aS follows, for iso-elastic utility with A # 0:

w ge

i 1—(gge(1 — f)* + (1 — gge))/*
= 1- i 1%
1- qge |: f 17)

s ________________________________________________________ _J
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TABLE 2

The Proportions w Exposed to Each Low-Risk Factor Above Which Persons in the Base-
line Stratum Will Buy Insurance at the Average Premium Regardless of the Relative Risk
k, Using Different Utility Functions

Utility Loss L in £000
Function g 10 20 30 40 50 60 70 80 90

01 0999 0997 099 0.994 0991 0989 098 0981 0974
02 0997 0994 0991 0987 0983 0977 0970 0961 0.947
1(0.5) 03 09% 0992 0987 0981 0974 0966 0.955 0941 0.919
04 0995 0989 0982 0974 0965 0954 0940 0.920 0.890
05 0993 098 0978 0968 0956 0942 0924 0.899 0.860

01 0997 0994 0991 098 0981 0974 0965 0951 0.926
02 0995 0989 0981 0973 0962 0949 0932 0906 0.859
Log 03 0992 0983 0972 0960 0945 0925 0900 0.863 0.798
04 098 0977 0963 0947 0927 0902 0870 0.823 0.743
! 05 0987 0972 0954 0934 0910 0880 0.841 0786 0.693

01 0969 0916 0.830 0719 0603 049 0398 0304 0.203
02 0943 0857 0747 0632 0525 0431 0345 0264 0.176
I(-8) 0.3 0919 0812 0.693 0580 0480 0393 0315 0241 0.161
04 0897 0776 0.653 0543 0448 0367 0294 0225 0.150
05 0.878 0746 0.622 0515 0424 0347 0279 0213 0.142

01 0971 0927 0868 0802 0738 0.682 0635 059 0.562
02 0946 0875 0797 0723 0.660 0.607 0564 0528 0.498
N(9e-5) 03 0923 0835 0748 0673 0.612 0562 0.522 0488 0.461
04 0903 0.802 0712 0637 0577 0530 0492 0460 0434
05 0884 0775 0682 0608 0551 0505 0468 0439 0414

for logarithmic utility:
1 1—(1— f)is

Wee = 1- 18
. [ z (18)

and for negative exponential utility:

1 log [ggee " + (1 — 4ge)]

= 1- v 19
Wge = 7 T l: i (19)

Values of w = w;,éz are given in Table 2. Values of w < 0.5 in Table 2 correspond to

missing entries in Table 1. Table 2 shows just how uncommon an adverse exposure
has to be to avoid adverse selection.

Assuming o = 0.5 is perhaps extreme; it means that half the population possess
a significant genetic risk factor (modulated by environment) yet to be discovered.
This is by no means impossible, but we might expect most as-yet unknown risk
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TaBLE 3
The Relative Risk k Above Which Persons in Stratum ge With Initial Wealth W =
£100,000 Will Not Buy Insurance, Using w = 0.9 and an Additive Model

Utility Loss L in £/000
Function g 10 20 30 40 50 60 70 80 90

01 1.126 1269 1433 1.625 1.855 2140 2511 3.033 3.899
02 1.120 1258 1419 1613 1.852 2158 2577 3212 4419
1(0.5) 03 1113 1246 1404 1599 1.847 2180 2.668 3.502 5.689
04 1.106 1.233 1387 1582 1.841 2210 2.807  4.108 -
05 1.099 1218 1367 1562 1.833 2250 3.055 - -

01 1257 1563 1934 2399 3.004 3839 5.101 7.368 13.841
02 1.246 1546 1923 2418 3.107 4170 6.164 13.981 -
Log 03 1.233 1526 1910 2444 3268 4.844 - - -
04 1.220 1504 1.894 2482 3555 8317 - = =
05 1.205 1479 1876 2542 4.296 - - - -

0.1 4.458 18.642 - - - - — - -

02 4.823 - - = = = = - =
I(-8) 03 5.705 - - - - - e = =
0.4 - - - - - - = = =
0.5 - - - - - - - = -
01 4246 13.531 - - - - = = -
02 4514 - - - - - - - —
N(%e-5) 03 5.109 - - - - = - N =
04 7984 - - - - = = = s
0.5 - - - = - = = = =

factors to affect a smaller proportion of the population, simply because they are as-
yet unknown. So, we increase w to 0.9, so that only 10 percent of individuals are
exposed to the adverse environment or possess the adverse gene. The relative risks k
at which adverse selection appears are given in Table 3. They are larger than in Table 1
because the relative risk experienced by the smaller number of high-risk individuals
has to be much higher to have the same impact on the average premium.

The Multiplicative Epidemiological Model

Table 4 shows relative risks above which adverse selection appears, assuming w = 0.9
and a multiplicative model. They can be compared with the values in Table 3. We
observe the following:

(1) The missing entries are the same as in the additive model. This is because the
limiting values of 4 (k) and w do not depend on the model structure.

(2) The relative risk in stratum GE is higher in the multiplicative model (k2 >2k—1)
so persons in the baseline stratum will be less tolerant toward any given value of
k. This is why the values in Table 4 are smaller than those in Table 3.

Rt
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TABLE 4
The Relative Risk k Above Which Persons in Stratum ge With Initial Wealth W =
£100,000 Will Not Buy Insurance, Using » = 0.9 and a Multiplicative Model

Utility Loss L in £000
Function g 10 20 30 40 50 60 70 80 90

01 1125 1265 1424 1608 1.825 2.090 2431 2907  3.701
02 1.119 1255 1412 1598 1.825 2115 2511 3.119 4.315
1{(0.5) 03 1113 1.243 1398 1.586 1.824 2144 2.617 3447  5.660
04 1106 1230 1381 1571 1.822 2181 2773  4.086 -
0.5 1.098 1216 1.362 1553 1.817 2229 3.037 - -

0.1 1.254 1549 1899 2328 2880 3.645 4.839 7107 13.706
02 1.243 1533 1.892 2360 3.018 4.065 6.086 13.967 -
Log 03 1231 1516 1.884 2399 3212 4805 - - =
04 1.218 1495 1873 2449 3527 8314 - - -
0.5 1.203 1472 1859 2521 4.288 = - - -

01 4.223 18561 - - - = = = i

02 4723 - - - - = = = e
1(-8) 03 5.676 - . - - - = = -
0.4 - - - - - = = = -
0.5 - - - - - = - = =
01 4024 13391 N - - = = = =
02 4410 - - = = - = = _
N(9e-5) 03 5.073 - - - - = = = -
04 7.981 - - - - = o & =5
0.5 - - - - = = - = =

(3) However the differences between the additive and multiplicative models are not
very large. If k ~ 1, then k? ~ 2k — 1, and for large values of » (which arguably
is most realistic) the impact of stratum GE is relatively small. In view of this, we
will use only the additive model from now on.

Loss Versus Coverage

Our simple model assumes that everyone risks the same loss L and chooses to in-
sure it 100 percent if they insure at all. A more realistic model, as pointed out by a
referee, might assume that persons knowing themselves to be in stratum s choose
insurance cover of Cs, not necessarily equal to L (indeed not necessarily bounded
by L unless the insurer limits the coverage by reference to some objective measure
of L or W). Assuming the insurer charges an average premium rate §(k) as before,
Cs will be chosen to maximize gsU(W — L 4+ Cs — §(k)Cs) + (1 — gs)U(W — g (k)Cs).
This extension of the model would be of interest in its own right; however, some
experiments (not shown) confirm that it does not change the qualitative nature of our
conclusions.

R N
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Genetic Information and Behavior

The introduction of new genetic information—ability to learn one’s own
genotype—may lead high-risk people in particular to alter their behavior to ame-
liorate the risk. Thus, the composition of the risk groups may not be the same before
and after genetic testing (say) becomes available. This possibility is more plausible
for multifactorial diseases than for single-gene disorders, since there will often be
modifiable environmental or lifestyle interactions. For example, if our environmental
variable was E = “smoker” and ¢ = “nonsmoker,” persons initially in stratum GE
might be particularly likely to stop smoking, and (perhaps after some time) move to
stratum Ge. The low-risk strata will be enlarged, which will: (1) cause the weighted
average premium to fall, and (2) as in Table 2, make it more likely that low-risk indi-
viduals will buy insurance regardless of the relative risks. Therefore, our results err
on the pessimistic side.

Such behavioral effects can, in principle, be modeled by allowing transitions between
strata, after genetic testing and before insurance is purchased. For example, suppose
w = 0.9 and 1 percent of the population is initially in stratum GE, but that after genetic
tests become available, half of those in stratum GE move to stratum Ge. Table 3 shows
the relative risk thresholds before, and Table 5 after, the introduction of genetic tests.
There is an appreciable difference, even though only 0.5 percent of the population
has changed its behavior. However, since we have no greater insight than this into
how behavior might change, we interpret all our results except those in Table 5 as
being after any behavioral changes have taken effect. When real epidemiological
studies eventually become available, the effect of modified behavior should not be
overlooked.

CRITICAL ILLNESS INSURANCE
A Heart Attack Model

We now model the specific example of CI insurance. We will focus on heart attack
risk, building upon two earlier papers, in which the reader can find full details.

(1) Gutiérrez and Macdonald (2003) parameterized the CI model shown in
Figure 2, using medical studies and population data. Therefore, in particular,
A12(x) denotes the rate of onset of heart attacks in the general population (differ-
ent for males and females).

(2) Macdonald, Pritchard, and Tapadar (2006) assumed that a 2x2 ‘
gene—environment interaction affected heart attack risk, with genotypes G |
and g, and environmental exposures E and e, upper case representing higher risk.
So there are four strata for each sex—ge, gE, Ge, and GE. The authors showed ‘
that it is possible to hypothecate assumptions on strata-specific relative risks in
a way that is consistent with the rate of onset in the general population. We will
use a similar technique here.

Consider all healthy individuals aged x. If § denotes the probability that a healthy
person aged x has a heart attack before age x + ¢, it can be calculated from the heart

R
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TABLE 5

The Relative Risk k Above Which Persons in Stratum ge With Initial Wealth W =
£100,000 Will Not Buy Insurance, Using wge = 0.81, wge = 0.095, wge = 0.09, and
! wge = 0.005 and an Additive Model

Utility Loss L in £000
Function g 10 20 30 40 50 60 70 80 90
0.1 1.167 1.356 1571 1.821 2118 2482 2949 3.597 4.649
0.2 1.159 1,339 1548 1.794 2.092 2468 2971 3.714 5.078
1(0.5) 03 1150 1.321 1523 1.765 2.067 2462 3.023 3.951 6.272
0.4 1.140 1302 1496 1.734 2.040 2463 3.125 4.508 -
05 1.129 1282 1466 1.699 2012 2478 3.339 - -
0.1 1.341 1741 2219 2808 3561 4576 6.071 8.662 15.674
0.2 1.324 1.7090 2180 2781 3.593 4.801 6974 15.032 -
Log 03 1.306 1.675 2142 2767 3.693 5.389 - - -
04 1.286 1.640 2102 2768 3.928 8.788 - - -
05 1.265 1.601 2061 2794 4.621 - - - -
01 5315 20677 - - - - - - -
02 5523 - - - - - - - -
1(~8) 03 6288 - - - = - = = -
04 - - = = o - - - -
05 - - - - - - - - -
0.1 5.063 15.347 - - - - - - -
02 5182 - - - - - - - -
N(@9e-5) 03 5666 - - - = - . s -
04 8454 - . - . - - - -
05 - = - - - - - - -
FIGURE 2
A Full Critical lllness Model
Az (z) State 2 Heart Attack
Ai3(x) State 3 Cancer
A
State 1 Healthy 1) [ q12te 4 Stroke
Aus(z) State 5 Other CI
Mis(x) State 6 Dead J
.. e
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attack transition intensity of the general population as follows:
t
q=1-exp [— fo Ma(x +y) dy] : (20)

Now, for males and females separately, let ¢ denote the relative risk in the baseline
stratum ge with respect to the general population, and let ks denote the relative risk
in stratum s with respect to stratum ge, in both cases assumed to be constant at all
ages (in other words, we assume a proportional hazards model). If we denote the rate
of onset of heart attack in stratum s by A1,(x), it is given by:

Ap(%) = ¢ x ks x A1a(x). (21)

Suppose that at age, x, the proportion of healthy individuals who are in stratum s is
ws. In stratum s, let g5 be the probability that a healthy person age x has a first heart
attack before reaching age x + t. Then using Equations (20) and (21), we can show
that:

t
q4s =1 —exp [“_/(; AMa(x+y) d!/] =1-(1~g§)y%. (22)

Equating the weighted average probability over all strata with the population prob-
ability, thatis, § = ) wsgs, we have:

g=> ws[l—(1-g)%] (23)

Given the relative risks, the population proportions and the estimated 115(x), we can
solve this for ¢, which fully specifies the stratum-specific intensities Aj,(x).

Threshold Premium for Critical lliness Insurance

To extend the two-state insurance model of the “A Simple Gene-Environment Inter-
action Model” section to the CI model with six states, we make some simplifying
assumptions. :

(1) We will model gene-environment interactions affecting heart attack risk alone,
leaving other intensities unaffected. This is not completely realistic, since many
known risk factors for heart disease are also risk factors for other disorders.

(2) The heart attack transition intensity is different for males and females. Figure 3
shows theratio A1p(x)/ ZLZ A1 (x) for both sexes. Heart attack is the predominant
CI among middle-aged men, while among women, heart attack is increasingly
prominent from age 30 onward, but cancer is the dominant CI at all ages. The ratio
for males stays significantly higher than the ratio for females, except at very high
ages. Hence, we might expect adverse selection to appear at different relative risk
thresholds for the two sexes.

R -
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FIGURE 3
The Ratio of Heart Attack Transition Intensity to Total Critical Iliness Transition Intensity,
by Gender

1 T T 1 T T T
0.8 + Male —
Female ------
0.6 — 4

Ratio

0 | ! e mn | ! !
0 10 20 30 40 50 60 70 80
Age (years)

TABLE 6
The Premium Rates of Critical lllness Contracts of Duration 15 Years

Age Male Female
25 0.013787 0.018746
35 0.048413

45 0.136363 0.110434

Premium Rates for Critical lllness Insurance

As examples, we model single-premium CI insurance contracts of duration 15 years
sold to males and females aged 25, 35, and 45. First, assuming all transition intensities
are as given in Gutiérrez and Macdonald (2003), we compute the single premiums as
expected present values (EPVs) of the benefit payments by solving Thiele’s differential
equations (see Norberg, 1995) numerically. Again for simplicity, we assume the force
of interest § = 0. Table 6 gives the CI premium rates per unit sum assured for these
contracts.

We make the same epidemiological assumptions as before, namely, that k¢ = kg, =
k, that an additive model (kgg = 2k — 1) applies, and that we, = w?, WeE = WGe =
o(l — w)and wgg = (1 — w)?, where » = 0.9 (the more realistic assumption); and also
that initial wealth is W = £100,000. Given the relative risks, we obtain ¢ and hence the
the heart attack intensity for each sex and stratum as in the “A Heart Attack Model”
section. This allows us to calculate stratum-specific premium rates.

Let Ps denote the single-premium rate for unit CI insurance in stratum s. Note that
apart from the stratum-specific heart attack risk, Ps also covers the risk of all other
CIs, which are assumed to be the same for all strata. Let P denote the population
average premium rate for unit CI insurance (the averaging being over all strata for a

———————————
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given gender). As before, since we are ignoring interest rates and profit margins, the
various premium rates defined above are the same as the probabilities of the event
insured against. Then, define a function Z(P) of a premium P as follows:

Z(P)=U(W — PL)—[PU(W - L)+ (1 - P)U(W)]. (24)

Note that Z(Pg) < 0 is the condition under which adverse selection will appear,
equivalent to Equation (12) of the “Threshold Premium” section. Or, let PT be the
solution of Z(P) = 0. Then, Pg, < P t is the condition for adverse selection to appear.
Tables 7 and 8 show P! for males and females, respectively. It depends on the utility
function but not on the epidemiological model. For the two-state model, Equation (12)
was central in our analysis. Given: (1) a model structure (additive or multiplicative),
the baseline risk ¢, and the proportion w with low values of each risk factor, and (2)
noting that the average risk § was an increasing function of the relative risk parameter
k, we obtained a minimum value of k for which adverse selection first appears.

We would like to do the same for the Cl insurance model. However, there are impor-
tant differences between the two models.

(1) In the two-state model, we specified the baseline risk and relative risks, and these
determined the average risk. In the CI insurance model, we specify the average
risk (given by the population heart attack risk) and the relative risks, and these
determine the baseline risk, in the form of the relative risk c. Clearly increasing
the relative risk k will cause c to fall, hence also the premium Pg,. To make this
dependence clear, we will write c(k) and P, (k) in this section. It will also be useful
to note that the probability q¢. of a heart attack similarly depends on k, and write

Gge (k).

(2) However, unlike in the two-state model, Pge(k) has a lower bound, denoted
Py, given by the population average premium rate for CI insurance as if
heart attack risk were absent (A = 0 and ¢ = 0). These values are shown in
Table 9. They do not depend on the epidemiological model or the utility function.
Clearly Pge(k) > Pp, no matter how high k becomes. Thus we have two possibili-
ties: limg_, o0 Pge(k) = Py (equivalently limg_, oo c(k) = 0); or limg—c0 Pge(k) > Po
(equivalently limg_, o c(k) > 0). We return to this point in “High Relative Risks”
section.

(3) If Pge(k) is a strictly decreasing function, which it is for the utility functions we are
using, adverse selection is possible if limg— oo Pge(k) < Pt, and in such cases we
can solve Pg,(k) = Pt for the threshold value of k above which adverse selection
will appear. Tables 10 and 11 show these values for the various utility functions
and loss levels, for males and females, respectively. The missing values correspond

to combinations of parameters such that limy_, o Pge(k) > P1, for which adverse
selection will not appear.

(4) Another consequence of this is that there is a level of insured loss, which we
denote L, above which adverse selection cannot occur, because fixing L > Lg in
Equation (24) and solving for P t yields a solution P t< Pge (k) for all k. Table 12
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TABLE 9
The Population Average Premium Rate for Cl Insurance, Py, As If Heart Attack Risk
Were Absent (A1 = 0)

Age Male Female

25 0.009821 0.018326
35 0.031290 0.046485
45 0.092818 0.097947
TasLe 10

The Relative Risk k Above Which Males of Different Ages in Stratum ge With Initial
Wealth W = £100,000 Will Not Buy Critical lllness Insurance Policies of Term 15
Years, Where w = 0.9

Utility Loss L in £000

Function Age 10 20 30 40 50 60 70 80 90
25 1484 2111 2960 4.183 6.117  9.698 18.869 105.569 -

1(0.5) 35 1376 1.846 2450 3.262 4.420 6.226 9509 17.715 93.578
45 1389 1.886 2544 3.456 4.808 7.027 11388 24.239 -
25 2062 3783 7.068 15883 122410 - - - -

Log 35 1.808 2998 4917 8530 17.855 98.596 B - -
45 1.843 3.138 5339 9.794 23.063 765.192 - - -
25 = - = - = - = i B

1(-8) 35 - - - - - - - - -
45 = - - - = - = = =
25 - - - - - - - - -

N(%e-5) 35 - - = - - - - ~ =
45 = - - - = - = - =

gives the values of Lg, for the usual utility functions and initial wealth £100,000.
The missing values in Tables 10 and 11 occur for losses L > L.

The general pattern of threshold relative risks for males given in Table 10 is similar to
that in the “Insurance Premiums” section; what is of most interest are their absolute
values, since we have tried to suggest plausible models for both the risk model and
the utility functions.

(1) Foriso-elastic utility with . = —8 and negative exponential utility with parameter
A =9 x 107>, we find no evidence at all of adverse selection.

(2) For all utility functions and at all loss levels, if adverse selection can appear, it
does so at higher levels of relative risk than under the two-state model. This is
because the impact of the gene and environment on heart attack risk is diluted
by the presence of the other Cls, whose risks are assumed to be independent
of the g/G genotypes and e/E environments. Only for the lowest levels of loss
are these relative risks in the range that might be typical of relatively common

N
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TasLe 11

The Relative Risk k Above Which Females of Different Ages in Stratum ge With Initial
Wealth W = £100,000 Will Not Buy Critical lllness Insurance Policies of Term 15
Years, Where w = 0.9

Utility Loss L in £000
Function Age 10 20 30 40 60 70 80 90
25 - - - - - - - -
1(0.5) 35 4.031 18.470 - - - = = s
45 2.293 4.710 10.770 52.668 - - = -
25 - - - - - - - -
Log 35 15.856 - - - - = £ =
45 4.459 26.155 - = = - = =
25 - - - - - - - -
1(-8.0) 35 - - - - - - - -
45 - - - - - - - -
25 - - - - - - - -
N(9e-5) 35 - = = = = = - =
45 - - - - - - - -
TABLE 12

The Loss Lg in £000 Above Which Adverse Selection Cannot Occur (Initial Wealth
W = £100,000)

Utility Function
Gender Age 1(0.5) Log I(-8) N(9e-5)
25 82.3 51.8 7l 7.2
Male 35 92.3 62.6 9.2 9.5
45 89.9 60.4 89 9.2
25 8.9 45 05 0.5
Female 35 25.3 13.3 1.5 1.6
45 434 239 29 29

multifactorial disorders; by definition, we do not expect studies like UK Biobank
to lead to the discovery of hitherto unknown high risk genotypes.

(3) When adverse selection can appear, the relative risk threshold first decreases and
then increases with age. This is because among Cls the importance of heart attack
peaks at around age 45 as can be seen from Figure 3.

The threshold relative risks for females are given in Table 11. We observe the following:

(1) The threshold relative risks are much higher than those for males in all cases.
This is because heart attacks form a smaller proportion of all CIs for females, so a
larger increase in heart attack risk is needed to trigger adverse selection.

. m(
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(2) As for males, at levels of absolute and relative risk aversion that we regard as
most plausible (consistent with the Bank of Italy study) we find no evidence that
adverse selection is likely.

(3) In contrast to males, the threshold relative risks decrease with age. The reason is
clear from Figure 3; for females, the relative importance of heart attack increases
with age.

(4) Adverse selection appears to be possible only for: (a) smaller losses and (b) ex-
tremely low levels of risk aversion.

High Relative Risks

In the “Immunity From Adverse Selection” section, we considered relative risks that
increased without limit, for the simple two-state insurance model. We saw that, even
in this extreme case, if stratum ge was large enough, adverse selection would not
appear. In this section, we consider high relative risks (of heart attack) in the CI
insurance model.

We assume the heart attack rates in the general population A12(x) are fixed at their
estimated values (Gutiérrez and Macdonald, 2003). From Equation (23), we obtain:

1-7=1-) ws[1—(1—q) ®k
S

= wge(1 =) + ) ws(l—7)%. (25)
s#ge

Differentiation shows the right-hand side to be a decreasing function of ¢ and of each
ks(s # ge), all other quantities held constant in each case. Also, if ¢ =1 the right-
hand side is less than (1 — 7) while if ¢ = 0 it is greater than (1 — ). Hence, as we
increase the ks without limit, c must decrease, and being bounded below it must have
a limit. The limit could be zero or nonzero. We can easily see that if ¢ has a nonzero
| limit (necessarily positive), then the last term on the right-hand side of Equation (25)
! vanishes and the limit must be:

. log wee
limc=1- —2 8 26
fe ‘ log(1 —17) o

which in turn implies (1 — §) < wge. On the other hand if (1 — §) > wyge, then ¢ cannot
have nonzero limit, so the equation:

lim Y ws(l—7)% = (1-7) — wee 27)

| ks—00

l s#ge SF#ge

holds. Since the left-hand side is finite, at least one of the products cks tends to a
| finite limit as the ks — co. However, we have not specified here how the quantities
ks (s # ge) jointly approach infinity, so the behavior of c is not easy to analyze in
general. It is greatly simplified if the ks are simple functions of a single parameter

~ R
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k, which is the case in our assumed epidemiological model (in which case, we again
make explicit the dependence of ¢ by writing c(k)). For example, under an additive
model with symmetry between genetic and environmental risks, Equation (25) can
be written as:

1-7 = o(1-9) +20(1 — o)1 - 1) ®* + (1 - )1 - gy O
=1 -7) W[+ 1 - )1 - g)@E-D]2 (28)

therefore:

log[(1 — g)1=¢®)/2 — »] — log(1 — w)

=ikt O log( — )

(29)

fw?>(1- g), then as k — oo, the limiting value of c(k) is nonzero. Otherwise, when
w? < (1-4),c(k) — 0, and Equation (29) yields the finite limiting value:

log[(1 — q)l/z —w] —log(l — w)

kh—{goc(k)k - log(1 —7) (30)
So, in summary:
0 ifwge <(1—-19)
o c® =11 blz%”_&;—) if wge > (1 — ). o0

We want to find out if the baseline stratum ge can ever be large enough that adverse
selection will never appear, no matter how large k becomes. Hence, we want to
understand the behavior of limk_, o Pge(k) as a function of wg,. Equation (31) shows
that we must treat separately the cases wge < (1 —7) and wge > (1 —4). Values of
g are given in Table 13. (Note that Py + J # P, because in a competing risks model
removing one cause of decrement increases the probabilities of the other decrements

occurring.)

TasLe 13
g, the Probability That a Healthy Person Aged x Has a Heart Attack Before Age x + 1,
for Policy Duration t = 15 Years

Age Male Female
25 0.004743 0.000541
35 0.021454 0.004299
45 0.059959 0.017616

R R R R E——————————————
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(1) If Py > P' the result s trivial, since limg_, oo Pg,(k) = Py for any value of wg,, and
adverse selection can never occur.

) If Py < P! adverse selecion will occur if wge <(1—7), since then
limg s 00 Pge(k) = Py.

(3) The nontrivial case is Py < PT and wge > (1 —7), since then limg_; oo Pge(k) >
Py. We can show that limy_, o Pge(k) is an increasing function of wge in this
range, because the limit of the heart attack probability limg_, o 4ge (k) is (use Equ-
ation (26) to write:

(-9

; — 1 —(1—a707 =
Jim gge(®) = fim [1 - (- q) B =1- ==

(32)

and differentiate). The function limk_, o Pge (k) is continuous and increases from
Py to P as wge increases from (1 — 7) to 1, the upper limit being attained when all
the strata have collapsed into one, and ¢ = 1. Since Pt < P for any concave utility
function, the intermediate value theorem guarantees that there exists a unique
value of wg, such that limy_, o0 Pge(k) = Pt; that is, such that adverse selection
can never appear if wge exceeds this value.

Tables 14 and 15 give the threshold values of w = wééz above which no adverse
selection takes place, in the additive model with gene-environment symmetry, for
males and females, respectively. Missing values indicate that adverse selection will
never appear. When it is possible, the threshold value of w ranges from 0.970 to 1 for

TasLE 14

The Proportions w Exposed to Each Low-Risk Factor Above Which Persons in the Base-
line Stratum Will Buy Insurance at the Average Premium Regardless of the Relative Risk
k, Using Different Utility Functions, for Males Purchasing Cl Insurance

Utility Loss L in £000
Function Age 10 20 30 40 50 60 70 80 90

25 1.000 1.000 0999 0999 0999 0998 0998 0.998 -
1{0.5) 35 0999 0998 0998 0997 099 099 0993 0992 0.990
45 0998 0995 0993 0990 0987 0984 0980 0.975 -

25 1.000 0999 0999 0.998 0.998 .
Log 35 0999 0997 0995 0.994 0992 0.990 = B -
45 099 0991 0986 0981 0976 0.970 - . =

5 - - - - - - - - -
1(-8) 3B - - - - - - - - -
5 - - - - - - - - -

25 = = = = - - = = =
N@9e-5) 35 - - - - - - = = ~
45 - - - - - = - = -

- I g
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TaBLE 15

The Proportions w Exposed to Each Low-Risk Factor Above Which Persons in the Base-
line Stratum Will Buy Insurance at the Average Premium Regardless of the Relative Risk
k, Using Different Utility Functions, for Females Purchasing Cl Insurance

Utility Loss L in £000

Function Age 10 20 30 40 50 60 70 80 90
25 - - - - - - - - -

10.5) 35 0.999 0.998 - B = = _ _ _
45 0.998 0.996 0.994 0.992 - - - - -
25 - = - - - - - - =

Log 35 0.998 - - - = - — = -
45 0.996 0.993 - - - - - - -
25 - = - - - - - - =

I(-8) 35 - - - - - - - - -
45 - = - - - = - - -
25 - = - - B - - - -

N(%e-5) 35 - - - — - - - - -
45 - - - - - - - - -

males and 0.992 to 0.999 for females. As the relative risks in Tables 10 and 11 are based
on w = 0.9, this explains the missing values in those tables.

This pattern is quite unexpected. If adverse selection can occur, then a large enough
baseline stratum does confer immunity from it, but it has to be very large indeed,
all but a few percent of the population. But once the threshold is crossed, adverse
selection cannot appear at all, even if very few people are in the baseline stratum.
This had no counterpart in the two-state model, and it is caused by the presence of
substantial other risks not affected by the gene—environment variants.

CONCLUSIONS

Until now, genetical research on information asymmetry and adverse selection has
taken one of two routes—models of single-gene disorders and work on the economic
welfare effects of genetic testing. In this article, we have represented multifactorial
disorders using standard epidemiological models and analyzed circumstances lead-
ing to adverse selection, taking economic factors into account in a simple way through
expected utility.

We used a range of iso-elastic utilities (including the special case of logarithmic
utility) and a negative exponential utility, to represent constant relative and absolute
risk aversion, respectively. They were parameterized to be reasonably consistent with
some estimates based on survey data, but also to allow comparability, given our
chosen level of wealth of £100,000.

We used a simple 2 x 2 gene—environment interaction model, assuming that infor-
mation on status within the model was available only to the consumers and not to
the insurer. Competition leads insurers to charge actuarially fair premiums, based on
expected losses given the information they have. Adverse selection will not occur as

L
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long as members of the least risky stratum (who know their status) can still increase
their expected utility by insuring at the average price.

First, we studied a simple two-state insurance model, with constant relative risks in
different risk strata defined by the gene—environment model. We found that adverse
selection does not appear unless purchasers are not very risk averse and insure only
a small proportion of their wealth, or unless the elevated risks implied by genetic
information are implausibly high, bearing in mind the nature of multifactorial risk.
In many cases adverse selection is impossible if the low-risk stratum is large enough,
these levels being quite compatible with plausible multifactorial disorders.

We applied the same gene—environment interaction model assumed to affect the risk
of heart attacks to CI insurance. As heart attack risk is just part of the risk of all
CIs, the impact of the gene-environment risk factor was diluted, compared with the
two-state insurance model where the total risk was influenced. Our results showed
complete absence of adverse selection at realistic risk-aversion levels, irrespective of
the stratum-specific risks, for males and females. Moreover, the existence of risks other
than of heart attack, and the constraint of differential heart attack risk having to be
consistent with the average population risk, introduced a threshold effect absent from
the two-state model. When adverse selection was possible at all (low risk aversion,
low loss ratios) only an unfeasibly high proportion of the population in the low-
risk stratum would avoid it, but when the threshold was crossed adverse selection
vanished no matter what the size of the low-risk stratum.

The results from both two-state and Cl insurance models suggest that in circumstances
that are plausibly realistic, private genetic information, relating to multifactorial risks,
that is available only to customers does not lead to adverse selection. This conclusion
is strongest in the more realistic CI insurance model.

We have not considered what might happen if insurers were allowed access to this
genetic information. The opportunity would then exist to underwrite using that in-
formation. If one believed that social policy is best served by solidarity, the important
question is whether insurers would find it worthwhile to use the genetic information.
Further research would be useful to investigate the costs of acquiring and interpret-
ing genetic information relating to common diseases, compared with the benefits in
terms of possibly more accurate risk classification, in both cases in the context of
multifactorial risk.
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