MATHEMATICS FOR ECONOMICS II (2018-19)

ECONOMICS, LAW-ECONOMICS, INTERNATIONAL STUDIES-ECONOMICS

SHEET 4. PRIMITIVES AND INTEGRALS 2

(1) Find:

$$a) \int_{0}^{1} \frac{1}{\sqrt{x}} dx \quad b) \int_{0}^{3} \frac{1}{x^{3}} dx \quad c) \int_{1}^{\infty} \frac{1}{x^{2}} dx$$

$$d) \int_{1}^{\infty} e^{-x} dx \quad e) \int_{-\infty}^{\infty} \frac{dx}{1+x^{2}} \quad f) \int_{-2}^{4} \frac{dx}{x^{2}}$$

Answer: a) 2; b) ∞ , c) 1; d) 1; e) π ; f) ∞ .

(2) Find
$$\int_0^\infty \frac{dx}{\sqrt{x}(1+x)}$$
.

Answer: π .

(3) Compute
$$\int_{1}^{\infty} (1-x)e^{-x} dx.$$

Answer: $-\frac{1}{e}$.

(4) Let $f: \mathbb{R} \to \mathbb{R}$ a function with a continuous derivative f' defined on \mathbb{R} . Given an interval [a, b], consider the body of revolution S obtained by rotating the graph of f about the X-axis. The surface area and volume of S can be computed with the formulas,

$$\operatorname{area}(S) = 2\pi \int_a^b f(x) \sqrt{1 + \left(f'(x)\right)^2} \, dx, \quad \operatorname{volume}(S) = \pi \int_a^b \left(f(x)\right)^2 \, dx$$

Compute the surface area and the volume obtained by revolving the graph of the function $f(x) = \frac{1}{x}$ about the X-axis in the interval $[1, \infty)$.

Answer: The volume is π but the surface area is ∞ .

(5) Let

$$I(\alpha) = \int_0^\infty e^{-t} \frac{\sin \alpha t}{t} dt$$

- (a) Show that I(0) = 0.
- (b) Compute $I'(\alpha)$.
- (c) Use the previous parts to compute $I(\alpha)$.

Answer: $I'(\alpha) = \frac{1}{1+\alpha^2}$, $I(\alpha) = \arctan \alpha$.

- (6) Let $I(\alpha) = \int_0^\infty \frac{e^{-\alpha t}}{t} dt$, $\alpha > 0$.
 - (a) Compute $I'(\alpha)$.
 - (b) Compute $I(\alpha)$.

(c) Compute
$$J(\alpha, \beta) = \int_0^\infty \frac{e^{-\alpha t} - e^{-\beta t}}{t} dt$$
, $\alpha, \beta > 0$.

Answer:
$$I'(\alpha) = -\frac{1}{\alpha}$$
, $I(\alpha) = -\ln \alpha + C$, C constant, $J(\alpha, \beta) = I(\alpha) - I(\beta) = \ln \frac{\beta}{\alpha}$.

(7) Let
$$I(t) = \int_0^\infty e^{-tx} dx$$
, $t > 0$.

(a) Prove that
$$I(t) = \frac{1}{t}$$

(a) Prove that
$$I(t) = \frac{1}{t}$$
.
(b) Prove that $\int_0^\infty x^n e^{-tx} dt = \frac{n!}{t^{n+1}}$.

(c) Prove that
$$n! = \int_0^\infty x^n e^{-x} dt$$
.

Answer:

(8) Let
$$I(\alpha) = \int_0^\infty e^{-\alpha t} \frac{\sin t}{t} dt$$
, $\alpha > 0$.
(a) Compute $\lim_{\alpha \to \infty} I(\alpha)$.

- (b) Compute $I'(\alpha)$.
- (c) Use the previous parts to compute $I(\alpha)$.

(d) Compute
$$\int_0^\infty \frac{\sin t}{t} dt$$

(d) Compute
$$\int_0^\infty \frac{\sin t}{t} dt$$
.
(e) Compute $\int_{-\infty}^\infty \frac{\sin t}{t} dt$.

Answer: (a) 0; (b)
$$I'(\alpha) = -\frac{1}{1+\alpha^2}$$
; (c) $I(\alpha) = \frac{\pi}{2} - \arctan \alpha$; (d) $\frac{\pi}{2}$; (e) π .