MATHEMATICS FOR ECONOMICS II (2018-19)

ECONOMICS, LAW-ECONOMICS, INTERNATIONAL STUDIES-ECONOMICS

SHEET 4. PRIMITIVES AND INTEGRALS 2

(1) Find:

$$a) \int_0^1 \frac{1}{\sqrt{x}} dx \quad b) \int_0^3 \frac{1}{x^3} dx \quad c) \int_1^\infty \frac{1}{x^2} dx$$

$$d) \int_1^\infty e^{-x} dx \quad e) \int_{-\infty}^\infty \frac{dx}{1+x^2} \quad f) \int_{-2}^4 \frac{dx}{x^2}$$

(2) Find
$$\int_0^\infty \frac{dx}{\sqrt{x}(1+x)}.$$

(3) Compute $\int_{1}^{\infty} (1-x)e^{-x} dx$.

(4) Let $f: \mathbb{R} \to \mathbb{R}$ a function with a continuous derivative f' defined on \mathbb{R} . Given an interval [a, b], consider the body of revolution S obtained by rotating the graph of f about the X-axis. The surface area and volume of S can be computed with the formulas,

$$\operatorname{area}(S) = 2\pi \int_a^b f(x) \sqrt{1 + (f'(x))^2} \, dx, \quad \operatorname{volume}(S) = \pi \int_a^b (f(x))^2 \, dx$$

Compute the surface area and the volume obtained by revolving the graph of the function f(x) = $\frac{1}{x}$ about the X-axis in the interval $[1, \infty)$. (5) Let

$$I(\alpha) = \int_0^\infty e^{-t} \frac{\sin \alpha t}{t} dt$$

- (a) Show that I(0) = 0.
- (b) Compute $I'(\alpha)$.
- (c) Use the previous parts to compute $I(\alpha)$.

(6) Let
$$I(\alpha) = \int_0^\infty \frac{e^{-\alpha t}}{t} dt$$
, $\alpha > 0$.

- (a) Compute $I'(\alpha)$.
- (b) Compute $I(\alpha)$.

(c) Compute
$$J(\alpha, \beta) = \int_0^\infty \frac{e^{-\alpha t} - e^{-\beta t}}{t} dt$$
, $\alpha, \beta > 0$.

(7) Let
$$I(t) = \int_0^\infty e^{-tx} dx$$
, $t > 0$.

- (a) Prove that $I(t) = \frac{1}{t}$.
- (b) Prove that $\int_0^\infty x^n e^{-tx} dt = \frac{n!}{t^{n+1}}$.
- (c) Prove that $n! = \int_0^\infty x^n e^{-x} dt$.

(8) Let
$$I(\alpha) = \int_0^\infty e^{-\alpha t} \frac{\int_0^{t}}{t} dt$$
, $\alpha > 0$.

- (a) Compute $\lim_{\alpha\to\infty} I(\alpha)$.
- (b) Compute $I'(\alpha)$.

- (c) Use the previous parts to compute $I(\alpha)$. (d) Compute $\int_0^\infty \frac{\sin t}{t} dt$. (e) Compute $\int_{-\infty}^\infty \frac{\sin t}{t} dt$.