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ECONOMICS, LAW-ECONOMICS, INTERNATIONAL STUDIES-ECONOMICS
SHEET 2. DIAGONALIZATION AND QUADRATIC FORMS

(1) Given the matriz

(3 1)

compute its eigenvalues, eigenvectors and diagonalize A.

Solution: The characteristic polynomial is

1 2=A 4 2
|[A— M| = 3 1_)\‘_/\3)\10
The roots are
3++v9+40
A:72+ — 25

There are two different eigenvalues. The matrix is diagonalizable.
The eigenspace S(5) is the solution to the system of linear equations

-3 4 x
(3 3)(5)-
which is equivalent to the following one

3z —4y = 0.

Therefore, S(5) < (4,3) >.
The eigenspace S(—2) is the solution to the system of linear equations

4 4 T
(55)(3)
which is equivalent to the following one

z+y=0.

Therefore, S(—2) =< (1, —-1).
We conclude that A = PDP~! with

p-(i =) (5 4)

(2) Given the following matrices

4 6 0 1 0 -2 4 5 =2
A= -3 -5 0 B = 0 0 0 c=1| -2 -2 1
-3 -6 1 -2 0 4 -1 -1 1

(a) Compute its eigenvalues, eigenvectors and the eigenspaces.
(b) Diagonalize them, whenever possible.

Solution:
First, we find the eigenvalues of A. The characteristic polynomial is
4— ) 6 0
|A— M| = -3 —5-X 0 =—-(A+2)(A—1)?

-3 —6 1-A
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so the eigenvalues ar Ay = —2 with multiplicity ny = 1 and Ay = 1 with multiplicity no = 2.
Now we compute the eigenspace S(1). We solve the following system of linear equations
3 6 0
A-D(z y z)=| -3 =6 0 |(z y 2)=0
-3 -6 0
o sea,
3r+6y =0
-3z —6y =0

using y as the parameter, the solution is S(1) = {—2y,y, 2) : y,z € R} =< (-2,1,0),(0,0,1) >
so dim S(1) = 2.

On the other hand, S(—2) is the set of solutions to the system of linear equations

6 6 0
(A+2l)(z y z)=| 3 =3 0 |)(z y z)=0
-3 -6 3
0 sea,
6z + 6y =0
—3x — 3y =

—3z—-6y+z =0
s0 S(—2) ={—%,2,2) : z e R} =< (—1,1,1) >.
The matrix A is diagonalizable and A = PDP~! with

10 0 0 2 -1
D=1 0 1 0 P=10 -1 1
00 -2 1 0 1
The characteristic polynomial of B is
1-Xx 0 -2
|B— M| = 0 =X 0 =-\(A\—5)

-2 0 4-2AX

so its eigenvalues are A\; = 0 with multiplicity n; = 2 and \e = 5 with multiplicity ns = 1.
We compute S(0) by solving the linear system of equations

1 0 -2
b-0)(z y z)=| 0 0 0 |(z y 2)=0
-2 0 4
that is,
r—2z =0
—2x+4z =0

We use y and z as parameters. The solution is © = 2z. Hence, S(0) = {2z,y,2) : y,z €
R} =< (2,0,1),(0,1,0) >, so dim S(0) = 2.
Now, S(5) is the set of solutions to the system of linear equations

-4 0 -2
(B=5I)(z y z)= 0 -5 0 (z y 2)=0
-2 0 -1
that is,
—4x -2z =0
—by =0
—2x—2z =0
Using x as the parameter, we find that y = 0, 2 = —2z. Hence, S(5) = {z,0,—2z) : = €
R} =< (1,0,-2) >.
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The matrix B is diagonalizable and B = QDQ ™! with

0 0 0 0 2 1
D=0 0 0 Q=110 0
0 0 5 01 -2
The characteristic polynomial of C. is
4—- A 5 -2
|C — M| = -2 —2-)x 1 =—(A=1)3
-1 -1 1—A

so there is only one eigenvalue A\; = 1 with multiplicity n; = 3. The space S(1) is the set of
solutions to the system of linear equations
3 5 =2
Cc-DN(z y z)=| -2 -3 1 (¢ y z)=0
-1 -1 0
that is,
3r+5y—2z =0
—2xr—3y+z =0
—x—y =0
the solution is y = —x, 2 = —z. Using z as the parameter S(0) = {—z,z,2) : z € R} =<
(=1,1,1) > so dim S(1) = 1 < ny = 3 and the matrix C is not diagonalizable.

What are the values of a for which the matriz
1 0 0
A= a 1 0
1 1 2
18 diagonalizable?

Solution: The characteristic polynomial is
1—A 0 0
JA=M|=| a 1-X 0 |=(1-X)*%2-)
1 1 2—A
There are two eigenvalues A\; = 1, with multiplicity 2 and Ay = 2 with multiplicity 1.
The matrix is diagonalizable if and only if dim S(1) = 2. The space S(1)is the set of
solutions to the system of linear equations

T 0 0 O T
A=A vy |=| a 0 0 y | =0
z 1 1 1 z
which is the same as
ar =0
r+y+z =0

If a # 0 the solutions are x = 0, y = —z. Hence, S(1) = {(0, —z,2) : z € R} and we see that
dim S(1) = 1. Hence, if @ # 0 A is not diagonalizable.
But, if @ = 0, the system becomes
r+y+2=0
so S(1) ={(z,y,—z —y) : z,y € R} and dim S(1) = 2. In this case, A is diagonalizable.
Show that

(a) If A is a diagonalizable matriz, so is A™ for each n € N.
(b) A diagonalizable matriz A is reqular if and only if none of its eigenvalues vanishes.
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(c) If A has an inverse, then both A and A=! have the same eigenvectors and the eigenvalues
of A are the reciprocal of the eigenvalues of A~1.
(d) A and A! have the same eigenvalues.

Solution: Since, |[A* — | = ‘(A — )

and A! are the same. Therefore, the eigenvalues are the same.

= |A — M| the characteristic polynomials of A

5 0 0
(5) Study for which values of a and b the matric A=| 0 -1 a is diagonalizable.
3 0 b
Solution: The characteristic polynomial is
5—A 0 0 1 a
|A— M| = 0 —1-A a |=(5-X) 0 b_\ =GB-=-NA+XN)0b-X
3 0 b— A

So, the eigenvalues are Ay =5, A\o = =1y A3 =b. If b # 5 y b # —1 there are three different
eigenvalues and the matrix is diagonalizable.

If b =5 then A\; = 5 has multiplicity n; = 2 and the other eigenvalue has multiplicity 1.
The matrix is diagonalizable or not depending on the dimension of S(5). This space is the
set of solutions to the system of linear equations

T 0 0 O x
(A-5D)| v | =10 -6 a y | =0
z 3 0 0 z
which is the same as
—6y+az =0
3x =0

Clearly, dim S(5) =1 < n; = 2, so A is not diagonalizable.
On the other hand, if b = —1 the eigenvalues are A\; = 5, with multiplicity n; = 1 and

Ao = —1 with multiplicity ne = 2. Now The matrix is diagonalizable or not depending on
the dimension of S(—1). This space is the set of solutions to the system of linear equations
T 6 0 O T
(A+D)[ v |=10 0 a y | =0
z 3 00 z
that is,
6z =0
az =0
3z =0

and we see that
. |1, sia#0;
dim §(—1) = { 2, sia=0.

We could have done this in an easier way, by noting that
6 0 0 x 6 0 0 x

dimS(-1)=rg(A+I)=1rg| 0 0 a y | =rg| 0 0 a Yy :{ é’ ;753;0
3 00 z 0 00 z ’ e
Thus, if
b=25, then A is not diagonalizable;
b= -1, then A is diagonalizable and only if a = 0;

b#5yb+# —1, then A is diagonalizable.
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(6) Which of the following matrices are diagonalizable?
1 2 0

A= -1 3 1 B:<_12(1)> C(é})
0 1 1
Solution: The characteristic polynomial of A is
1—A 2 0
(A-X)=| -1 3-x 1 =-(A-1)(\-2)?
0 1 1—A

so the eigenvalues are A\; = 1 with multiplicity ny = 1 and Ay = 2 with multiplicity no = 2.
The space S(2) is the set of solutions to the system of linear equations

x -1 2 0 T
A-2) y |= -1 1 1 y | =0
z 0 1 -1 z
that is,
—z4+2y =0
—xz+y+z =0
Yy—z =0

The solution is y = z, © = 2y = 2z (z is the parameter). Hence, S(2) = {(22,2,2) : z €
R} =< (2,1,1) > so dim S(2) =1 < ny = 2 and A is not diagonalizable.
The characteristic polynomial of B is

o -2=X 1 | s
|B/\I|‘ 1 _)\‘)\ +22-1
so the eigenvalues are
A = 72+2\/4+4 — 1442
Ny = —2% VEES S NN6)

all of the with multiplicity 1. Hence, B is diagonalizable.
The space S(—1 + +/2) is the set of solutions to the system of linear equations

(A—(—1+\/§)I)<z)—<_1;\/§ 1_1\@) :;O

that is,
~(1+V2)z+y =0
z+(1-v2)y =0
the solution is 2 = y/(1 4+ v/2). Hence, S(—1 + v2) = {(y/(1 +V2),y) : y € R} =<
(1/(1 +v2),1) >=< (1,1 4+ v/2) >. Likewise, S(—1 4+ v2) = {(y/(1 = V2),y) : y € R} =<
(1/(1 —v/2),1) >=< (1,1 —/2) >.
The diagonal form of B is B = PDP~! with

(e ta) o= L)

Finally, the characteristic polynomial of C' is

S 1=x 1 >
=1 1 )=
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so there is a unique eigenvalue A = 1 with multiplicity 2. The eigenspace S(1) is the set of
solutions to the system of linear equations

01 x
(60)(3)
so y = 0. Hence, S(1) = {(z,0) : z € R} =< (1,0) > and dim S(1) = 1. Therefore, the C is
not diagonalizable.

1 0 0
The matriz | o+ 1 2 0 is diagonalizable if and only « is...
0 a+l 1

Solution: The characteristic polynomial of

1 0 0
A= a+1 2 0
0 a+1 1

is (A — 1)2(A — 2). The eigenvalues are \; = 1 with multiplicity n; = 2 and Ay = 2 with
multiplicity no = 1. The matrix A is diagonalizable if and only if dimS(1) = 2. The
subspace S(1) is the set of solutions to the system of linear equations

(a+Dz+y =0
(a+1)y =0

If a # —1 the solution is z = y = 0. That is, S(1) = {(0,0, 2) : z € R} and dim S(1) = 1.

Therefore, if o # —1 then A is not diagonalizable.

If o = —1 the linear system above reduces to y = 0.In this case, S(1) = {(x,0,z2) : z,z €
R} and dim S(1) = 2. So, if & = —1 the matrix A is diagonalizable.

Consider the matrices
3 20 2 0 0 1 0 0
A= -1 0 0 B = 1 1 -1 C=(011
0 0 1 1 -1 1 0 0 2

Find whether they are diagonalizable and, whenever they are, compute their n-th power.
Solution: Let
3 20
A= -1 0 O
0 0 1
The eigenvalues are \; = 1 with multiplicity n; = 2 and Ay = 2 with multiplicity ny = 1.

The eigenspaces are S(1) =< (0,0,1),(-1,1,0) >y S(2) =< (—2,1,0) >. The matrix A is
diagonalizable A = PDP~! with

10 0 0 -1 —2
D=]01 0 P=|o0o 1 1
00 2 1 0 0
So,
0 -1 -2 10 0 0 -1 —2\ "
A=l o0 1 1 01 0 0 1 1 —
1 0 0 00 2° 1 0 0
0 —1 -2 10 0 0 0 1 1ol 9 polin
0o 1 1 01 0 1 2 0 |= 1—2n 29" 0
1 0 0 00 2» 1 -1 0 0 0 1
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Let
2 0 0
B = 1 1 -1
1 -1 1

The eigenvalues are A\; = 0 with multiplicity n; = 1 and A2 = 2 with multiplicity ny = 2.
The eigenspaces are S(0) =< (0,1,1) > and S(2) =< (1,0,1),(1,1,0) >. The matrix B is
diagonalizable: B = PDP~! with

00 0 0 1 1
D=]0 2 0 P=|10 1
00 2 110
S0,
01 1 0 0 0 01 1\ *
B =10 1 0 2" 0 10 1
110 0 0 20 110
[0 11 0 0 0 101 1 on 0 0
=51 o1 0 2" 0 1 -1 1 |=|[ 201 on-1  _gn-1
110 0 0 2 1 1 -1 gn—1 _gn-1  gn-1

The eigenvalues of

are A\ = 1 with multiplicity n; = 2 and Ay = 2 with multiplicity no = 1. The eigenspaces
are S(1) =< (1,0,0),(0,1,0) > and S(2) =< (0,1,1) >. The matrix C is diagonalizable:
C = PDP~! with

100 100
D=0 10 p=|0 11
00 2 00 1
S0,
1 0 10 0 100\ "
cr=10 11 01 0 01 1
0 1 00 2" 00 1
10 0 10 0 10 0 10 0
— o 11 01 0 01 -1 |=[01 2021
00 1 0 0 on 00 1 00 o»

(9) The following are the characteristic polynomials of some square matrices. Determine which
of them correspond to diagonalizable matrices.

p(A) =2 +1 p(A) =A% -1

p(A) =\ + « p(A) =22 +2ar+1
PN =A2+22+1 pA)=(A—1)3
) =2 -1

Solution:
1) p(A) = A2+1. The matrix is not diagonalizable because not all the roots are real numbers.

2) p(A\) = A% + a. If a > 0 the matrix is no diagonalizable because not all the roots are real
numbers. If a < 0 the characteristic polynomial has two different real roots, so the matrix
is diagonalizable. If o = 0 there is a unique eigenvalue 0 with multiplicity 2. Hence, either
all the entries in the matrix are 0, or else the matrix is no diagonalizable.
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3) p(A) = A2 +2)X +1 = (A+ 1)%2. We see that —1 is a double root. Therefore, either the

matrix is —I , or else the matrix is no diagonalizable.

4) p(A\) = X3 —1=(A—1)(A2 + X+ 1) has no real roots. The matrix is no diagonalizable.

5) p(A) = A2 — 1 has two distinct real roots. The matrix is diagonalizable.

6) p(\) = A\? + 2a\ + 1. The roots are A = —a & v/a? — 1. Thus,
e If || > 1, the matrix is diagonalizable.
o If || < 1, the matrix is not diagonalizable.
o If |a| = 1, we are in case 3).

(10)
ever they are diagonalizable.

a 0

“(30) (s

Solution:

1) o=
(6%

o O =
O = N
=N W

Determine whether the following matrices are diagonalizable. Compute the n-th power when-

1) The matrix A is of order 2 and its unique eigenvalue is a of multiplicity 2. Therefore, A

is not diagonalizable.

2) The characteristic polynomial of B is (A — a)? — 1. The roots are a & 1 so B is diagonal-

izable. The eigenvalues are
Sla—1)=<(-1,1) >,
and B = PDP~! con

Sla+1) =< (1,1) >

P=(3) e (W)
Thus, -
p-( (" W) () -
(3 D w2y ) (1) - (S

3) The eigenvalues of
C =

are \; = 1 with multiplicity n; = 3. Since,
S(1) =< (1,0,0) >

the matrix is not diagonalizable.

~(@= D"+ (a1
(0= 1)+ (a+1)"

(11) Study for what values of the parameters the following matrices are diagonalizable. Find the

eigenvalues and eigenvectors.

a b 0 1 -2 -2—-«
A= 0 -1 0 B=1]10 1 @
0 0 1 0 0 1
(12) The matriz
a 1 p
b 2 ¢
c =1 r

has (1,1,0), (—1,0,2) and (0,1,

—1) as eigenvectors. Compute its eigenvalues.

)
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(13) Determine whether the following matrices are diagonalizable. If possible, write their diagonal

form.
5 4 3 -2 -1 -1 5 7 5
A= -1 0 -3 B = 1 0 1 C = -6 -5 -3
1 -2 1 0 0 -1 4 1 0
3 20 -1 2 =2 5 —-10 8
D = -1 2 0 E = 0 2 0 F = -10 2 2
0 0 3 0 3 -2 8 2 11
1 -1 2 2 0 3 3 -1 0
G = 0 3 2 H = 0 1 0 I = -1 3 0
0 1 4 -1 0 -2 0 0 2
1 0 O -1 2 =2 -9 1 1
J = 1 2 0 K= 0 2 0 L= —-18 0 3
1 0 2 0 3 -2 -21 4 0
Solution:

1) The eigenvalues of

are —2,4,4. Also, S(—2) =< (-1,
izable.
2) The eigenvalues of

-2 -1 -1

B = 1 0 1

0 0 -1
are —1,—1,—1. Since, B is not already in diagonal form, it is not diagonalizable.
5) The eigenvalues of

-1 2 =2
FE = 0 2 0
0 3 -2
are —2, —1,2. Since they are all distinct then E is diagonalizable. Also, E = PDP~! with
2 1 2 -2 0 0
P = 0 0 12 D= 0O -1 0
1 0 9 0 0 2
12) The eigenvalues of
-9 1 1
L= —-18 0 3
-21 4 0

are —3, —3, —3. Since L is not already in diagonal form, it is not diagonalizable.

(14) For what values of the parameter a is the quadratic form Q (z,y,2) = x> — 2azy — 2x2 +
y? + dyz + 522 positive definite?

Solution: Q(x,vy,z2) = 22 — 2axy — 2wz + y? + dyz + 522
It will be positive definite if Dy > 0, Do > 0, D3 > 0. Let us compute these.
D=1
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DQ:'_la —1a =1—a%> 0 if and only if |a| < 1.
1 —a -1

Dy=|—-a 1 2 |=-5a%+4a=a(4—5a)>0 if and only if a € (0,4/5).
-1 2 5

Therefore, the quadratic form is positive definite if a € (0,4/5). When a =0 or a = 4/5,
we have that Dy > 0, Dy > 0, D3 = 0. So, the quadratic form is positive semidefinite, but
not positive definite. When a € (—00,0) U (£, +00) we see that Dy > 0, D3 < 0 so the
quadratic form is indefinite.

Study the signature of the following quadratic forms.
(a) Q1 (z,y,2) = 2% + Ty? 4+ 822 — 6y + 4xz — 10y=.
(b) Q2 (x,y,2) = —2y* — 2° + 2uy + 2x2 + 4yz.

1 -3 2
Solution: a) The matrix associated to @ is -3 7 =5 |. Let us compute D; =
2 -5 8
1 _3 1 -3 2
1>0, Dy = =—-2and D3=| =3 7 =5 | =—9. Therefore, the quadratic
‘ 37 ‘ 2 -5 8

form is indefinite. (Note that it was not necessary to compute D3)

0 1 1
b) The matrix associated to @ is 1 -2 2 . We see that D; = 0. Can we
1 2 -1

still apply the method of principal minors? To do so we perform the following change of
variables: T = z, Z = x. We see that

Q2 (%,y,2) = —2y* — 2% + 22y + 2272 + 4yT

-1 2 1
whose associated matrix is 2 =2 1 |. The principal minors are D1 = —1, Dy =
1 1 0
-1 2 . - .
‘ 9 9 ‘ = —2. Therefore, the quadratic form is indefinite.
0 1 1
Here is another way to do this exercise. Since, D3 = | 1 =2 2 | =7 # 0. But,
1 2 -1

D, =0, D, = —1, so by Proposition 3.13, the quadratic form is indefinite.

Study for what values of a the quadratic form Q (z,vy, z) = axr®+4ay?+4az’+4zy+2axz+4yz
18

(a) positive definite.

(b) negative definite.

Solution: The matrix associated to the quadratic form Q(z,y, z) = ax?® 4 4ay® + 4az® +
dxy + 2axz + 4yz is

a 2 a
2 4a 2
a 2 4a

(a) We study conditions under which the principal minors satisfy the following
(l) Di=a>0.
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(i) Dy = ; 42(1 =4a? —4 = 4(a® — 1) > 0. This condition is satisfied if and only
if |a| > 1
a 2 a
(iii) Ds=| 2 4a 2 |=12a*—12a =12a(a®* —1) > 0.
2 4da

Assuming a > 0, the condition a(a? —1) > 0 simplifies to (a® — 1) > 0 which is satisfied

if and only if |a| > 1. Therefore, @ es positive definite if a > 1.
(b) We study conditions under which the principal minors satisfy the following

(1) D1 =a<0.
(ii) Dy = ‘ (21 42a = 4a% — 4 = 4(a® — 1) > 0 This condition is satisfied if and only
if |a] > 1.

Assuming, a < 0, the equation 4(a® — 1) > 0 implies that a < —1. In the previous part
we have seen that D3 = 12a(a? — 1) < 0 if a < —1. Therefore, Q is definite negative if

a< —1.
The above remarks show that @ is indefinite if a € (—1

)U(0,1). If a = 0, the quadratic

,0 .
form is Q(z,y, z) = 4dzy +4yz and we see that Q(1,1,0) =4 > 0, Q(1,—1,0) = -4 < 0,

so @ is indefinite.
To study the cases a = +1 we do the following change of variables

r=z, Y=y, zZ=x

and we obtain the quadratic form

Q(Z,7,2) = az® + 4aj® + 4az® + 477 + 2027 + 45T = 4aT? + 4a® + aZ® + 4Ty + 20T + Ay

whose associated matrix is

4a 2 a
2 4a 2
a 2

For this matrix we see that that
Dy =4a,Dy = 16a®> — 4, D3 = 12a(a® —1)
And, for a = 1 we obtain that
Dy =4,Dy =8, D3=0
so (@ is positive semidefinite. Finally, for a = —1 we obtain that
Dy =-4,Dy=8, D3=0

so (@ is negative semidefinite.
(17) Classify the following quadratic forms, depending on the parameters.
a) Q(z,vy,2) = 92 + 3y* + 2° + 2axz
b) Q(x1, 20, x3) = 7 + 423 + bai + 2ax 20 + 22073

9

Solution: a) The matrix associated to Q(z,y, z) = 922 +3y?+22+2azzis [ 0

a
9 0 9 0 a

The principal minors are D; = 9, Dy = ‘ 0 3 ’ =27y D3=|0 3 0] =
a 0 1

Therefore, the quadratic form is
(a) definite positive if 27 — 3a? > 0 that is if, =3 < a < 3.
(b) cannot be negative definite since D; =9 > 0.

o w o

27 —

— O Q

3a?.
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(c) cannot be negative semidefinite either.
(d) is positive semidefinite if 27 — 3a? = 0. That is, if a = —3 a = 3.
(e) is indefinite if 27 — 3a® < 0. That is, if |a| > 3.

1 a O
b) The matrix associated to Q(z1, T2, z3) = 23 +4x3+bri+2az 1 09+270231s [ a 4 1
0 1 b
1 a 1 a O
The principal minors are D; = 1 > 0, Dy = =4—-a’yD3s=|a 4 1|=
a 4
0 1 b
4b—1—ab =b(4 —a?) — 1.
Hence,
(a) the quadratic form is positive definite if
4—a2>0
db—1-0a%>0 }

From the first inequality we obtain the condition —2 < a < 2. De la segunda b > ﬁ.

That is, if

b>#

4—a?
(b) the quadratic form cannot be negative definite or semidefinite because D1 =1 >0
(c) Ifa € (—2,2) y b= 1, then D3 = 4b— 1 — a’b = 0 so the quadratic form is positive

—2<a<2}

semidefinite.
(d) If |a] > 2 (so, 4 — a® < 0), then the quadratic form is indefinite.
1 a O
(e) Finally, if |a] =2, we get that [ @ 4 1 |. The principal minors are
01 b

D=1, Dy=4—-a>=0, D3=4b—1-a’b=—1

and the quadratic form is indefinite.

(18) Let u : R™ — R be a concave function so that for
every vy, v € R™ and X € [0, 1], we have that u( vy +
(1 —XNwv2) > Au(v1) + (1 — MNu(ve). Show that S =
{veR": u(v) >k} is a convezr set. For a concave
u : R? — R, the figure represents its graph S =
{(z,y) e R?: u(w,y) > k}

Solution: Let S = {z € R™ : u(z) > k}. Let z,y € S, so ulx) > k and also u(y) > k.
Given a convex combination of these two points, . = Az + (1 — \)y we have that

u(ze) =u(Az + (1 = A)y)
> du(z) + (1 — Nu(y) since u is concave
>Xe+(1-Nk=k

Therefore, . € S and S is convex.

(19) State the previous problem for a convex function u : R™ — R.

Solution: Let u : R™ — R be a convex function. Then, the set S = {z € R": u(z) < k}
is convex.
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fla,y) = (x = 1)° + 2.
g(z,y) = % —day + 12z + 92,
hiz,y) =e " +ev.

k(z,y) = e*V.

l(z,y) =In/zy.

Solution:

(a)

First, note that if = 0 then f(0,y) = 1 is constant. Hence, f is concave and convex
in the set {(0,y) : y € R}. The Hessian matrix of f(z,y) = (z — 1)? + 2y? is

2 2y
2y 2z

We see that D; =2 > 0, Dy = 4(x — y?). Since, D; > 0 the function is not concave in
any non-empty subset of R2. We see that Dy > 0 if and only if x > y?. The function
is convex in the set {(z,y) € R? : x > y?}.

The Hessian matrix of

3
X
fla,y) = 5 — 4wy + 12z +y°

(%)

We see that Dy = 2x, Dy = 4x — 16. The function is concave in the convex sets in
which D; < 0 (so < 0) and Dy > 0 (that is, z > 4). Since, both conditions are not
compatible, the function is not concave in any non-empty set of R2.

Ifz >0y x>4then D; >0y Dy > 0 and we see that the function is convex in the
set {(z,y) € R? : & > 4}.

The Hessian matrix of h(z,y) = e @ +e ¥ is

e ” 0
0 e¥

Both second derivatives are positive. Hence, the function is convex in R2.
The Hessian matrix of k(x,y) = e*¥ is

v y? ay+1
zy +1 x2
Since, e¥® > 0 for every (z,y) € R?, the signature of the above matrix is the same as
the signature of the following one

y2 zy+1
zy+1 z2
For this matrix we obtain that D; = y? > 0, Dy = —1 — 2zy. The function is convex if

Dy > 0. That is, if 2zy < —1. Therefore, the function is convex in the set
A={(z,y) eR*: 2y < —1/2,2 > 0}

is

and also in the set
B={(z,y) eR*: 2y < —1/2,2 < 0}

The union AUB is not a convex set. Finally, in the convex sets C' = {(x,y) € R? : z = 0}
and D = {(z,y) € R? : y = 0} the function is constant and hence, both concave and
convex.
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(e) The Hessian matrix of

B [ f(nz+ny), if 2,y > 0;
Hy) = In(vay) = { Lin(—2) + In(—y)), if 2y <0;

1/ -% 0
2\ 0 -

Clearly, this matrix is negative definite and, therefore, function is concave in R, and
in R2 _.

is

(21) Determine the values of the parameters a and b so that the following functions are convex
in their domains.
(a) f(l’,y,Z) = (LLC2 + y2 + 22’2 — 4a;vy —+ 2yz
(b) g(x,y) = 4ax® + 8xy + by?

Solution:
(a) The Hessian of f(z,y,z) = ax? + y? + 22 — daxy + 2yz is
2a —4a 0
—4a 2 2
0 2 4
Note that
D1 =2a
. 2@ —4& o . 2 _
Dy = ’ 4 2 |7 4a — 16a° = 4a(1 — 4a)
2a —4a 0
D3=| —4a 2 2 |=8a—64a® = 8a(l — 8a)
0 2 4

Thus, Dy > 0 is equivalent to @ > 0. Assuming this, the condition D3 > 0 is equivalent
to a < 1/8. Furthermore, if 0 < a < 1/8 then Dy > 0, so the function is strictly
convex if 0 < a < 1/8. On the other hand, if @ = 0 or @ = 1/8, the Hessian positive
semidefinite. Therefore, the function is convex if 0 < a < 1/8.

(b) The Hessian of g(z,y) = 4ax? + 8zy + by? is

8a 8
8 2b
Note that

D1 =8a

8a 8

DQ:’ 8 2b

’ = 16(ab —4)

The function is convex if a > 0 and ab > 4. This is equivalent to a > 0 and b > 4/a.
If a = 0, then D; = 0, Dy = —64 # 0. Hence, Hh(z,y) is indefinite for every (z,y) € R?
and the function is not convex in R2.

If a < 0, then Dy < 0, so Hh(x,y) cannot be positive definite or positive semidefinite
at any (z,y) € R? and the function is not convex in R2.

(22) Discuss the concavity and convexity of the function f(x,y) = —6x2 + (2a + 4)xy — y* + day
according to the values of a.
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Solution: The Hessian of f(z,y) = —62° + (2a + 4)xy — y* + 4ay is

—12 2a+14
2a + 4 -2

We have that

Di=-12<0
-2 2a+4 ) o o
D2—‘2a+4 _9 ‘_8 4a 16a

Since D7 < 0 the function cannot be convex. It would be concave if Dy = 8 — 4a? — 16a > 0.
The roots of 8 — 4a? — 16a = 0 are —2 + /6. Thus, Dy > 0 is equivalent to —2 — V6<a<
—2 + /6. Therefore f is concave if a € [-2 — /6, —2 4+ V/6].

Find the largest convex set of the plane where the function f(x,y) = 2? —y? —xy — 2% is

concave.

Solution: The Hessian of f(z,y) = 2% — y? —zy — 23 is
2—6x -1
—1 -2

Dl =2 — 6x
D2 =12x — 5
The condition Dy > 0 is equivalent to « > 5/12. Since 5/12 > 1/3, the previous inequality

also guarantees that D; < 0. Therefore, the largest set of the plane in which f is concave is
the set {(z,y) € R? : & > 5/12}.

We have that



