(a) (10 points) It is known that

$$
\left|\begin{array}{rrrr}
1 & 0 & 1 & a \\
2 & -1 & 1 & b \\
3 & 4 & 0 & c \\
1 & -1 & 0 & d
\end{array}\right|=10
$$

Find the value of the determinant

$$
\left|\begin{array}{rrcc}
1 & 0 & 2 a+6 & 1 \\
2 & -1 & 2 b & 1 \\
3 & 4 & 2 c & 0 \\
1 & -1 & 2 d & 0
\end{array}\right| .
$$

(b) (10 points) Find an echelon matrix equivalent to the 4×5 matrix A below.

$$
A=\left(\begin{array}{rrrrr}
1 & -1 & 2 & 2 & 1 \\
3 & 3 & 0 & 2 & -1 \\
2 & -4 & 6 & 1 & -1 \\
-1 & -3 & 2 & -3 & -2
\end{array}\right)
$$

Use the echelon matrix to calculate the rank of A.

Solution:

(a) By the properties of the determinant

$$
\begin{aligned}
\left|\begin{array}{rrcl}
1 & 0 & 2 a+6 & 1 \\
2 & -1 & 2 b & 1 \\
3 & 4 & 2 c & 0 \\
1 & -1 & 2 d & 0
\end{array}\right| & =-\left|\begin{array}{rrrc}
1 & 0 & 1 & 2 a+6 \\
2 & -1 & 1 & 2 b \\
3 & 4 & 0 & 2 c \\
1 & -1 & 0 & 2 d
\end{array}\right|=-\left(\left|\begin{array}{rrrr}
1 & 0 & 1 & 2 a \\
2 & -1 & 1 & 2 b \\
3 & 4 & 0 & 2 c \\
1 & -1 & 0 & 2 d
\end{array}\right|+\left|\begin{array}{rrrr}
1 & 0 & 1 & 6 \\
2 & -1 & 1 & 0 \\
3 & 4 & 0 & 0 \\
1 & -1 & 0 & 0
\end{array}\right|\right) \\
& =-2\left|\begin{array}{rrrr}
1 & 0 & 1 & a \\
2 & -1 & 1 & b \\
3 & 4 & 0 & c \\
1 & -1 & 0 & d
\end{array}\right|-(-6)\left|\begin{array}{rrr}
2 & -1 & 1 \\
3 & 4 & 0 \\
1 & -1 & 0
\end{array}\right|=-20-(-6) \times(-7)=-62 .
\end{aligned}
$$

(b) We use Gaussian elimination to find an echelon form equivalent to the given matrix.

- row $2-3 \times($ row 1$)$, row $3-2 \times$ row 1), and row $4+$ row 1 .

$$
\left(\begin{array}{rrrrr}
1 & -1 & 2 & 2 & 1 \\
0 & 6 & -6 & -4 & -4 \\
0 & -2 & 2 & -3 & -3 \\
0 & -4 & 4 & -1 & -1
\end{array}\right)
$$

Exchange rows.

$$
\left(\begin{array}{rrrrr}
1 & -1 & 2 & 2 & 1 \\
0 & -2 & 2 & -3 & -3 \\
0 & -4 & 4 & -1 & -1 \\
0 & 6 & -6 & -4 & -4
\end{array}\right)
$$

- Subtract row 2 multiplied by 2 to row 3 , and add row 2 multiplied by 3 to row 4 .

$$
\left(\begin{array}{rrrrr}
1 & -1 & 2 & 2 & 1 \\
0 & -2 & 2 & -3 & -3 \\
0 & 0 & 0 & 5 & 5 \\
0 & 0 & 0 & -13 & -13
\end{array}\right)
$$

- We arrive to the echelon form where only the bottom row is null, thus the rank of the matrix is 3 .

$$
\left(\begin{array}{rrrrr}
1 & -1 & 2 & 2 & 1 \\
0 & -2 & 2 & -3 & -3 \\
0 & 0 & 0 & 5 & 5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Consider the following matrix.

$$
A=\left(\begin{array}{rr}
2 / 3 & -1 / 3 \\
-1 / 3 & 2 / 3
\end{array}\right) .
$$

(a) (10 points) Calculate de eigenvalues and eigenvectors of A and prove that A is diagonalizable. Find a diagonal form D of A and an associated matrix P. Justify your answers.
(b) (10 points) Using the results obtained in part (a) above, calculate the n th-power of A, that is, calculate

$$
\left(\begin{array}{rr}
2 / 3 & -1 / 3 \\
-1 / 3 & 2 / 3
\end{array}\right)^{n}
$$

where n is an arbitrary positive integer. Justify your answer.

Solution:

(a) $p_{A}(\lambda)=|A-\lambda I|=(2 / 3-\lambda)^{2}-1 / 9$. The roots (eigenvalues) are $\lambda=1$ and $\lambda=1 / 3$, thus A is diagonalizable since all the eigenvalues are real and distinct.
The eigenspace $S(1)$ is obtained from solving $\left\{\begin{array}{l}-(1 / 3) x-(1 / 3) y=0 \\ -(1 / 3) x-(1 / 3) y=0\end{array}\right.$, that is, $S(1)=\{(x,-x): x \in \mathbb{R}\}$, thus $(1,-1)$ is an eigenvalue associated to $\lambda=1$.
The eigenspace $S(1 / 3)$ is obtained from solving $\left\{\begin{array}{cc}(1 / 3) x-(1 / 3) y & =0 \\ -(1 / 3) x+(1 / 3) y & =0\end{array}\right.$, that is, $S(1 / 3)=\{(x, x): x \in$ $\mathbb{R}\}$, thus $(1,1)$ is an eigenvalue associated to $\lambda=1 / 3$.
Hence

$$
D=\left(\begin{array}{rr}
1 & 0 \\
0 & 1 / 3
\end{array}\right), \quad P=\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right) .
$$

(b) From $D=P^{-1} A P$ we obtain $A=P D P^{-1}$ and then $A^{n}=P D^{n} P^{-1}$ as it is shown in the class notes.

The inverse of P is $P^{-1}=\left(\begin{array}{cc}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right)$.
Thus

$$
\left(\begin{array}{rr}
2 / 3 & -1 / 3 \\
-1 / 3 & 2 / 3
\end{array}\right)^{n}=\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & 0 \\
0 & 1 / 3
\end{array}\right)^{n}\left(\begin{array}{cc}
1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right),
$$

obtaining

$$
\left(\begin{array}{rr}
2 / 3 & -1 / 3 \\
-1 / 3 & 2 / 3
\end{array}\right)^{n}=\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & 0 \\
0 & 1 / 3^{n}
\end{array}\right)\left(\begin{array}{cc}
1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right) .
$$

Finally

$$
\left(\begin{array}{rr}
2 / 3 & -1 / 3 \\
-1 / 3 & 2 / 3
\end{array}\right)^{n}=\left(\begin{array}{rr}
1 / 2+(1 / 2)\left(1 / 3^{n}\right) & -1 / 2+(1 / 2)\left(1 / 3^{n}\right) \\
-1 / 2+(1 / 2)\left(1 / 3^{n}\right) & 1 / 2+(1 / 2)\left(1 / 3^{n}\right)
\end{array}\right)
$$

(a) (10 points) Classify the quadratic form $Q(x, y, z)=\frac{a}{3} x^{2}+a y^{2}+\frac{27}{a} z^{2}+a x y+3 y z$, where $a \neq 0$ is a parameter.
(b) (10 points) Draw the plane set $D=\{(x, y): 0 \leq x \leq 2, y \leq x, y \leq 2-x\}$ and find the value of the double integral

$$
\iint_{D} \sqrt{x+y} d x d y
$$

Solution:

(a) The matrix associated to the quadratic form is

$$
A=\left(\begin{array}{ccc}
\frac{a}{3} & \frac{a}{2} & 0 \\
\frac{a}{2} & a & \frac{3}{2} \\
0 & \frac{3}{2} & \frac{27}{a}
\end{array}\right)
$$

with principal minors $A_{1}=\frac{a}{3}, A_{2}=\frac{a^{2}}{12}$ and $A_{3}=|A|=\frac{3}{2} a$. Thus, Q is definite positive if $a>0$ and definite negative if $a<0$.
(b) The set D is the infinite region represented in the figure below

To calculate the integral, note that integrand function $\sqrt{x+y}$ is defined only when $x+y \geq 0$, thus the effective region of integration is the subset of D given by

$$
D^{\prime}=\{(x, y): 0 \leq x \leq 2, y \leq x, y \leq 2-x, x+y \geq 0\}
$$

The subset D^{\prime} is represented here

To integrate, we write $D^{\prime}=D_{1} \cup D_{2}$, where D_{1} is the triangle of vertexes $(0,0),(1,1)$ and $(2,0)$ and D_{2} is the triangle of vertexes $(0,0),(2,-2)$ and $(2,0)$.

$$
\begin{aligned}
\iint_{D_{1}} \sqrt{x+y} d x d y & =\int_{0}^{1} d y \int_{y}^{2-y} \sqrt{x+y} d x \\
& =\left.\int_{0}^{1} \frac{2}{3}(x+y)^{3 / 2}\right|_{x=y} ^{x=2-y} d y \\
& =\frac{2}{3} \int_{0}^{1}\left(2^{3 / 2}-(2 y)^{3 / 2}\right) d y \\
& =\frac{2}{3} 2^{3 / 2} \int_{0}^{1}\left(1-y^{3 / 2}\right) d y \\
& =\frac{2}{3} 2^{3 / 2}\left(\left.y\right|_{y=0} ^{y=1}-\left.\frac{2}{5} y^{5 / 2}\right|_{y=0} ^{y=1}\right) \\
& =\frac{2}{3} 2^{3 / 2}\left(1-\frac{2}{5}\right) \\
& =\frac{2 \sqrt{8}}{5}\left(=\frac{4 \sqrt{2}}{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
\iint_{D_{2}} \sqrt{x+y} d x d y & =\int_{-2}^{0} d y \int_{-y}^{2} \sqrt{x+y} d x \\
& =\left.\int_{-2}^{0} \frac{2}{3}(x+y)^{3 / 2}\right|_{x=-y} ^{x=2} d y \\
& =\frac{2}{3} \int_{-2}^{0}\left((2+y)^{3 / 2}-(-y+y)^{3 / 2}\right) d y \\
& =\frac{2}{3} \int_{-2}^{0}(2+y)^{3 / 2} d y \\
& =\left.\frac{2}{3} \frac{2}{5}(2+y)^{5 / 2}\right|_{y=-2} ^{y=0} \\
& =\frac{4}{15}\left(2^{5 / 2}-(2-2)^{5+2}\right) \\
& =\frac{16}{15} \sqrt{2}
\end{aligned}
$$

Hence

$$
\iint_{D} \sqrt{x+y} d x d y=\iint_{D_{1}} \sqrt{x+y} d x d y+\iint_{D_{2}} \sqrt{x+y} d x d y=\frac{4}{5} \sqrt{2}+\frac{16}{15} \sqrt{2}=\frac{28}{15} \sqrt{2}
$$

(a) (10 points) Study the convergence of the improper integral

$$
\int_{3}^{4} \ln (x-3) d x
$$

and find its value if it results to be convergent.
Hint: Calculate $\lim _{x \rightarrow 3^{+}}(x-3) \ln (x-3)$ using L'Hopital's Rule.
(b) (10 points) Study the convergence of the improper integral

$$
\int_{5}^{\infty} \frac{1}{25+x^{2}} d x
$$

and find its value if it results to be convergent.

Solution:

(a) We first find a primitive of the integrand. Let $u=\ln (x-3)$ and $d v=d x$, so $d u=\frac{1}{x-3} d x$ and $v=x$. By parts,

$$
\int \ln (x-3) d x=x \ln (x-3)-\int \frac{x}{x-3} d x
$$

Now, $\frac{x}{x-3}=1+\frac{3}{x-3}$, hence

$$
\int \frac{x}{x-3} d x=\int\left(1+\frac{3}{x-3}\right) d x=x+3 \ln (x-3) \text { (plus an arbitrary constant that we do not consider). }
$$

Hence

$$
\int \ln (x-3) d x=x \ln (x-3)-x-3 \ln (x-3)=(x-3) \ln (x-3)-x
$$

Thus

$$
\begin{aligned}
\int_{3}^{4} \ln (x-3) d x & =\lim _{a \rightarrow 3^{+}} \int_{a}^{4} \ln (x-3) d x \\
& =\left.\lim _{a \rightarrow 3^{+}}((x-3) \ln (x-3)-x)\right|_{x=a} ^{4} \\
& =\lim _{a \rightarrow 3^{+}}((4-3) \ln (4-3)-4-(a-3) \ln (a-3)-a) \\
& =(4-3) \ln (4-3)-4-\lim _{a \rightarrow 3^{+}}((a-3) \ln (a-3)-a) \\
& =1 \times 0-4+3=-1,
\end{aligned}
$$

once we have calculated that $\lim _{x \rightarrow 3^{+}}(x-3) \ln (x-3)=0$ using the hint:

$$
\lim _{x \rightarrow 3^{+}}(x-3) \ln (x-3)=\lim _{x \rightarrow 3^{+}} \frac{\ln (x-3)}{\frac{1}{x-3}}=\lim _{x \rightarrow 3^{+}} \frac{\frac{1}{x-3}}{-\frac{1}{(x-3)^{2}}}=\lim _{x \rightarrow 3^{+}}-\frac{(x-3)^{\not ㇒}}{(x-3)}=0
$$

(b) Since $25+x^{2} \geq x^{2}$, we have $\frac{1}{25+x^{2}} \leq \frac{1}{x^{2}}$. Since $\int_{5}^{\infty} \frac{1}{x^{2}} d x$ is convergent, we have, by the comparison principle, that the requested integral converges. Let us find its value.

$$
\begin{aligned}
\int_{5}^{\infty} \frac{1}{25+x^{2}} d x & =\frac{1}{25} \int_{5}^{\infty} \frac{1}{1+(x / 5)^{2}} d x \\
& =\frac{1}{25} \int_{1}^{\infty} \frac{5}{1+t^{2}} d t \quad\left(t=\frac{x}{5}, d t=\frac{d x}{5}\right) \\
& =\frac{5}{25} \int_{1}^{\infty} \frac{1}{1+t^{2}} d t \\
& =\left.\frac{1}{5} \arctan t\right|_{t=0} ^{t=1}=\frac{1}{5}(\arctan 1-\arctan 0)=\frac{1}{5} \frac{\pi}{4}=\frac{\pi}{20}
\end{aligned}
$$

5
(a) (10 points) Calculate the following limit

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}+7}-n}{\sqrt{n^{2}+13}-n}
$$

Justify your answer.
(b) (10 points) State the Theorem of Leibniz about alternating series.

Check that the series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\sqrt[3]{n}}
$$

fulfils all the hypotheses of the Theorem of Leibniz. If S is the sum of the above series, and S_{26} denotes the partial sum of the first 26 terms of the series,

$$
\frac{1}{\sqrt[3]{1}}-\frac{1}{\sqrt[3]{2}}+\cdots+\frac{1}{\sqrt[3]{25}}-\frac{1}{\sqrt[3]{26}}
$$

which is the bound to $\left|S-S_{26}\right|$ provided by the Theorem of Leibniz?

Solution:

(a)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}+7}-n}{\sqrt{n^{2}+13}-n} & =\lim _{n \rightarrow \infty} \frac{\left(\sqrt{n^{2}+7}-n\right)\left(\sqrt{n^{2}+7}+n\right)\left(\sqrt{n^{2}+13}+n\right)}{\left(\sqrt{n^{2}+13}-n\right)\left(\sqrt{n^{2}+13}+n\right)\left(\sqrt{n^{2}+7}+n\right)} \\
& =\lim _{n \rightarrow \infty} \frac{7\left(\sqrt{n^{2}+13}+n\right)}{13\left(\sqrt{n^{2}+7}+n\right)} \\
& =\frac{7}{13} \lim _{n \rightarrow \infty} \frac{\sqrt{1+\frac{13}{n^{2}}}+1}{\sqrt{1+\frac{7}{n^{2}}}+1} \\
& =\frac{7}{13}
\end{aligned}
$$

(b) For the statement of the Theorem of Leibniz for alternating series, see the class notes.

Let us denote $a_{n}=\frac{1}{\sqrt[3]{n}}$. Then $\left|S-S_{26}\right|<a_{27}=\frac{1}{\sqrt[3]{27}}=\frac{1}{3}$.

