January 24, 2020

IV.2 PARAMETRIC INTEGRALS

1. FUNCTIONS DEFINED BY INTEGRALS

Definition 1.1. Let $A \subseteq \mathbb{R}$ and let $f : A \times [a, b] \to \mathbb{R}$. Suppose that the function $f_{\lambda} : [a, b] \to \mathbb{R}$ defined by

$$f_{\lambda}(x) = f(\lambda, x)$$

is integrable for all $\lambda \in A$. We say that

$$\int_{a}^{b} f_{\lambda}(x) dx = \int_{a}^{b} f(\lambda, x) dx$$

is a parametric integral with fixed limits of integration.

Remark 1.2. Note that $F(\lambda) = \int_a^b f(\lambda, x) dx$ defines a function from A to \mathbb{R} .

Definition 1.3. Let $A \subseteq \mathbb{R}$. Let the functions $a, b : A \to \mathbb{R}$ be such that $a(\lambda) \leq b(\lambda)$ for all $\lambda \in A$. Consider the set

$$S(a,b) = \{(\lambda, x) \in A \times [a,b] : a(\lambda) \le x \le b(\lambda)\},\$$

and the function $f: S(a, b) \to \mathbb{R}$. Suppose that the function $f_{\lambda}: [a(\lambda), b(\lambda)] \to \mathbb{R}$ defined by $f_{\lambda}(x) = f(\lambda, x)$ is integrable for all $\lambda \in A$. We say that

$$\int_{a(\lambda)}^{b(\lambda)} f_{\lambda}(x) dx = \int_{a(\lambda)}^{b(\lambda)} f(\lambda, x) dx$$

is a parametric integral with variable limits of integration.

Remark 1.4. Note that $F(\lambda) = \int_{a(\lambda)}^{b(\lambda)} f(\lambda, x) dx$ defines a function from A to \mathbb{R} .

2. Continuity of the parametric integrals

Theorem 2.1. Let $A \subseteq \mathbb{R}$ be a compact set and let $f : A \times [a, b] \to \mathbb{R}$ be continuous. Then the function

$$F(\lambda) = \int_{a}^{b} f(\lambda, x) dx$$

is continuous.

Theorem 2.2. Let $A \subseteq \mathbb{R}$. Let the functions $a, b : A \to \mathbb{R}$ be continuous, such that $a(\lambda) \leq b(\lambda)$ for all $\lambda \in A$. Consider the set

$$S(a,b) = \{(\lambda, x) \in A \times [a,b] : a(\lambda) \le x \le b(\lambda)\},\$$

and the continuous function $f: S(a, b) \to \mathbb{R}$. Then the function $F: A \to \mathbb{R}$ defined by

$$F(\lambda) = \int_{a(\lambda)}^{b(\lambda)} f(\lambda, x) dx$$

is continuous.

Remark 2.3. The importance of the theorems above is that, under the hypotheses, to exchange the limit with the integral sign is allowed. Let $\lambda_0 \in A$. Then

$$\lim_{\lambda \to \lambda_0} \int_a^b f(\lambda, x) dx = \int_a^b \lim_{\lambda \to \lambda_0} f(\lambda, x) dx,$$
$$\lim_{\lambda \to \lambda_0} \int_{a(\lambda)}^{b(\lambda)} f(\lambda, x) dx = \int_{a(\lambda_0)}^{b(\lambda_0)} \lim_{\lambda \to \lambda_0} f(\lambda, x) dx$$

3. DIFFERENTIATION UNDER THE INTEGRAL SIGN

Theorem 3.1 (Leibniz's Rule). Let $A \subseteq \mathbb{R}$ be an open set. Let $f : A \times [a,b] \to \mathbb{R}$ be continuous and such that $\frac{\partial f}{\partial \lambda}(\lambda, x)$ exists and is continuous. Then the function $F : A \to \mathbb{R}$ defined by

$$F(\lambda) = \int_{a}^{b} f(\lambda, x) dx$$

is derivable in A and the derivative is

$$F'(\lambda) = \frac{\partial}{\partial \lambda} \int_{a}^{b} f(\lambda, x) dx = \int_{a}^{b} \frac{\partial f}{\partial \lambda}(\lambda, x) dx.$$

Theorem 3.2 (Generalized Leibniz's Rule). Let $A \subseteq \mathbb{R}$ be an open set. Let the functions $a, b: A \to \mathbb{R}$ be of class C^1 in A, such that $a(\lambda) \leq b(\lambda)$ for all $\lambda \in A$. Consider the set

$$S(a,b) = \{(\lambda, x) \in A \times [a,b] : a(\lambda) \le x \le b(\lambda)\},\$$

and an open set U such that $S(a,b) \subseteq U$. Let the function $f: U \to \mathbb{R}$ be continuous, such that $\frac{\partial f}{\partial \lambda}(\lambda, x)$ exists and is continuous. Then the function $F: A \to \mathbb{R}$ defined by

$$F(\lambda) = \int_{a(\lambda)}^{b(\lambda)} f(\lambda, x) dx$$

is derivable in A and the derivative is

$$F'(\lambda) = \frac{\partial}{\partial \lambda} \int_{a(\lambda)}^{b(\lambda)} f(\lambda, x) dx$$

=
$$\int_{a(\lambda)}^{b(\lambda)} \frac{\partial f}{\partial \lambda}(\lambda, x) dx + f(\lambda, b(\lambda))b'(\lambda) - f(\lambda, a(\lambda))a'(\lambda).$$

4. GAMMA AND BETA FUNCTIONS

Definition 4.1 (Gamma function). The gamma function $\Gamma : (0, \infty) \to \mathbb{R}$ is defined as

$$\Gamma(p) = \int_0^\infty e^{-x} x^{p-1} dx$$

Remark 4.2. Note that Γ is an improper integral, which converges for all p > 0.

4.1. Properties of Γ .

- (1) $\Gamma(1) = 1$.
- (2) $\Gamma(p+1) = p\Gamma(p)$, for all p > 0.
- (3) $\Gamma(n) = (n-1)!$, for all p = 1, 2, ...
- (4) $\Gamma(\frac{1}{2}) = \sqrt{\pi}.$

(5)
$$\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin(p\pi)}$$
, for all $0 .$

Definition 4.3 (Beta function). The beta function $\beta : (0, \infty) \times (0, \infty) \to \mathbb{R}$ is defined as

$$\beta(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx.$$

Remark 4.4. Note that β is an improper integral, which converges for all p > 0, q > 0.

4.2. Properties of β .

- (1) $\beta(p,q) = \beta(q,p)$, for all p > 0 and q > 0.
- (2) $\beta(p,q) = 2 \int_0^{\pi/2} \sin^{2p-1} x \cos^{2q-1} dx$, for all p > 0 and q > 0.
- (3) $\beta(p,q) = \frac{\Gamma(p)}{\Gamma(q)}\Gamma(p+q)$, for all p > 0 and q > 0.
- (4) $\beta(p,q) = \frac{(m-1)!(n-1)!}{(m+n-1)!}$, for all $p,q = 1, 2, \dots$