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IV.1 MULTIPLE INTEGRALS

The Multiple integral of Riemann is a straightforward extension of the simple integral.

1. Integration in intervals of Rp.

Definition 1.1. A compact interval of Rp is a set I = [a1, b1] × · · · × [ap, bp], where each

[ai, bi] is a compact interval of R, for i = 1, . . . ,m.

The measure of the compact interval I is µ(I) = (b1 − a1) · · · (bp − ap).

A finite collection P = {I1, . . . , In} of compact intervals is a partition of I if (i) I =

I1 ∪ · · · ∪ In and (ii)
◦
Ii ∩

◦
Ij= ∅ for i 6= j.

Given two partitions P ′ and P of I, P ′ is finer than P if every interval of P ′ is contained

in some interval of P.

The diameter of the partition P of I is the larger of the lengths bi − ai, for i = 1, . . . , n,

and will denoted by |P|.

Definition 1.2. Let f : I → R be a bounded function defined in the compact interval

I ⊆ Rp. Given a partition P = {I1, . . . , In}, let

mi = inf f(Ii), Mi = sup f(Ii)

and let µ(Ii) be the measure of Ii, for i = 1, . . . , n. The lower and the upper (Darboux)

sums of f in the partition P are

s(f,P) =

p∑
i=1

miµ(Ii), S(f,P) =

p∑
i=1

Miµ(Ii),

respectively.

Proposition 1.3 (Properties of Darboux sums). Let f : I → R be a bounded function

defined in the compact interval I ⊆ Rp. Let

m = inf f(I), M = sup f(I).

Let P, P ′ two partitions of I.

(1) mµ(I) ≤ s(f,P) ≤ S(f,P) ≤Mµ(I).

(2) If P ′ is finer than P, then

s(f,P) ≤ s(f,P ′) ≤ S(f,P ′) ≤ S(f,P).
1
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(3) s(f,P ′) ≤ S(f,P).

(4) The sets

{s(f,P) : P is a partition of I} and {S(f,P) : P is a partition of I}

are bounded.

Definition 1.4. Let f : I → R be a bounded function defined in the compact interval

I ⊆ Rp.

The lower integral of f in I is defined as the number

L

∫
I
f = sup{s(f,P) : P is a partition of I}.

The upper integral of f in [a, b] is defined as the number

U

∫
I
f = inf{S(f,P) : P is a partition of I}.

Proposition 1.5. Let f : I → R be a bounded function defined in the compact interval

I ⊆ Rp. Then

L

∫
I
f ≤ U

∫
I
f.

Definition 1.6. Let f : I → R be a bounded function defined in the compact interval

I ⊆ Rp.

We say that the function is Riemann integrable (or simply integrable) in the interval I ⊆ Rp

iff

L

∫
I
f = U

∫
I
f.

In this case, this number is the integral of f in I (or defined integral of f in I) and is

denoted ∫
I
f,

∫
I
f(x)dx =

∫
p
· · ·
∫
[a1,b1]×···×[ap,bp]

f(x1, . . . , xp)dx1 · · · dxp.

Not every bounded function is integrable.

Theorem 1.7. Let f : I → R be a bounded function defined in the compact interval I ⊆ Rp.
Thenf is integrable iff for all ε > 0, there exists a partition P of I such that

S(f,P)− s(f,P) < ε.

Proposition 1.8. If f is continuous in I, then f is integrable in I.

This result admits a useful generalization.
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Proposition 1.9. If f is bounded in I and has a finite number of discontinuities, then f

is integrable in I.

2. Properties of the Riemann Integral

Proposition 2.1 (Properties of the integral). Let f, g : I → R be integrable, where I ⊆ Rp

is a compact interval. Let α ∈ R.

(1) Linearity.

(a)
∫
I(f + g) =

∫
I f +

∫
I g.

(b)
∫
I αf = α

∫
I f .

(2) Monotonicity.

f(x) ≥ g(x) for all x ∈ I, implies

∫
I
gf ≥

∫
I
g.

(3)

∣∣∣∣∫
I
f(x)dx

∣∣∣∣ ≤ ∫
I
|f(x)|dx.

(4) Additivity with respect to the interval. Let {I1, . . . , In} be a partition of I. Then f

is integrable in I if and only if f is integrable in I1, . . . , In, and in this case∫
I
f =

∫
I1

f + · · ·+
∫
In

f.

Proposition 2.2 (Theorem of the mean). Let f : I → R be a bounded function defined in

the compact interval I ⊆ Rp.

(1) If f is integrable in I and if m and M are lower and upper bounds of f in I,

respectively (they could be the infimum and the supremum), then there is α ∈ [m,M ]

such that ∫
I
f(x) = αµ(I).

(2) If f is continuous in I, then there exists c ∈ I such that∫
I
f(x) = f(c)µ(I).

Remark 2.3. Let f : I → R be a bounded function defined in the compact interval I ⊆ R2

such that f(x, y) ≥ 0 for all (x, y) ∈ I. Let the hypograph of f

H(f) = {(x, y, z) ∈ R3 : (x, y) ∈ I, 0 ≤ z ≤ f(x, y)}.

The lower (uuper) Darboux sum s(f,P) (S(f,P)) is the sum of volumes of rectangular

prisms with basis Ii and height mi (Mi). Hence, the lower (upper) Darboux sum is an
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underestimation (overestimation) of the volume of the set H(F ). Since both Darboux sums

tend to the same number when the diameter of the partitions tend to zero, we say that the

integral of f in I is the volume of H(f).

3. Iterated integrals

In this section we show how the integral of a function f : I → R on a compact in-

terval I = [a1, b1] × · · · × [ap, bp] can be expressed as p simple integrals in the intervals

[a1, b1], . . . , [ap, bp].

Remark 3.1. Given x = (x1, . . . , xp), and i ∈ {1, . . . , p}, x−i denotes the vector of di-

mension p − 1 obtained from x after eliminating the coordinate xi. In the same way, for

a compact interval I = [a1, b1]× · · · × [ap, bp], I−i denotes the Cartesian product of all the

individual intervals that form I, except the interval [ai, bi]. We will write x = (xi|x−i) and

I = (Ii|I−i).

For instance, if x = (0,−1, 5), then x−1 = (−1, 5), x−2 = (0, 5) and x−3 = (0,−1). If

I = [0, 1]× [−2,−1], then I1 = [0, 1] and I−1 = [−2,−1].

Theorem 3.2 (Fubini’s Theorem in compact intervals). Let f : I → R be bounded in I,

and suppose that for all x−i ∈ I−i, the function xi 7→ f(xi|xi) is integrable in [ai, bi], for all

i = 1, . . . , p. Then f : I → R is integrable in I and∫
I
f(x1, . . . , xp)dx1 . . . dxp =

∫ b1

a1

dx1

(∫ b2

a2

dx2

(
· · ·

(∫ bp

ap

f(x1, . . . , xp)dxp

)))
.

Remark 3.3. The theorem assert that the order of computation of the iterated integrals

does not matter to find the integral. In the case p = 2, the theorem means that∫∫
I
f(x, y)dxdy =

∫ b1

a1

dx

∫ b2

a2

f(x, y)dy =

∫ b2

a2

dy

∫ b1

a1

f(x, y)dx.

Example 3.4. Calculate∫∫
I
e−xyxdxdy, I = [0, 1]× [−1, 0].

Solution: Applying Fubini’s Theorem, we can compute the integral by iterated integration.∫∫
I
e−xyxdxdy =

∫ 1

0
dx

∫ 0

−1
e−xyxdy =

∫ 1

0

(
−e−xy

) ∣∣∣0
−1
dx =

∫ 1

0
(ex−1)dx = ex−x

∣∣∣1
0

= e−2.

Also, ∫∫
I
e−xyxdxdy =

∫ 0

−1
dy

∫ 1

0
e−xyxdx.

The inner integral is not immediate. It can be calculated by using parts.
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Theorem 3.5 (Fubini’s Theorem in simple regions of R2). (1) (type 1 regions). Let ϕ1, ϕ2

be two continuous functions in [a, b] such that ϕ1(x) ≤ ϕ2(x) for all x ∈ [a, b]. Let

the compact set

S = {(x, y) : a ≤ x ≤ b, ϕ1(x) ≤ y ≤ ϕ2(x)}

If f is integrable in S, then∫
S
f(x, y)dxdy =

∫ b

a
dx

(∫ ϕ2(x)

ϕ1(x)
f(x, y)dy

)
.

(2) (type 2 regions) Let φ1, φ2 be two continuous functions in [c, d] such that φ1(y) ≤
φ2(y) for all y ∈ [c, d]. Let the compact set

T = {(x, y) : c ≤ y ≤ d, φ1(y) ≤ x ≤ φ2(y)}

If f is integrable in T , then∫
T
f(x, y)dxdy =

∫ d

c
dy

(∫ φ2(y)

φ1(y)
f(x, y)dx

)
.

Example 3.6. Calculate∫∫
S

(x2 + y)dxdy, S = {(x, y) : −1 ≤ x ≤ 1, x2 ≤ y ≤ 1}.

Solution: ∫∫
S

(x2 + y)dxdy =

∫ 1

−1
dx

∫ 1

x2
(x2 + y)dy =

∫ 1

−1

(
x2y +

y2

2

)∣∣∣∣1
x2
dx

=

∫ 1

−1

[(
x2 +

1

2

)
−
(
x4 +

x4

2

)]
dx =

16

15

Example 3.7. Calculate
∫∫
A f(x, y)dxdy, where A is the triangular region of vertex (0, 0),

(1, 0) and (1, 1) and f(x, y) = e
x
y if y > 0, f(x, 0) = 0 for all 0 ≤ x ≤ 1.

Solution:

Note that f is continuous in A− {(0, 0)}. Since that there is only a point of discontinuity

in the region A, f is integrable.

Note that A = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x} = {(x, y) : 0 ≤ y ≤ 1, y ≤ x ≤ 1}

First method: fix x and integrate firstly in y and then in x.∫∫
A
e

y
xdxdy =

∫ 1

0
dx

∫ x

0
e

y
xdy =

∫ 1

0
xe

y
x

∣∣∣x
0
dx =

∫ 1

0

x2

2
(e− 1)dx =

e− 1

2

Second method: fix y and integrate firstly in x and then in y.
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∫∫
A
e

y
xdxdy =

∫ 1

0
dy

∫ 1

y
e

y
xdx

is impossible to compute

4. Areas and volumes

Definition 4.1. Let ϕ1, ϕ2 be two continuous functions in [a, b] such that ϕ1(x) ≤ ϕ2(x)

for all x ∈ [a, b]. Let the compact set

S = {(x, y) : a ≤ x ≤ b, ϕ1(x) ≤ y ≤ ϕ2(x)}.

The area of S is∫∫
S
dxdy =

∫ b

a
dx

(∫ ϕ2(x)

ϕ1(x)
dy

)
=

∫ b

a
(ϕ2(x)− ϕ1(x))) dx.

Definition 4.2. Let φ1, φ2 be two continuous functions in [c, d] such that φ1(y) ≤ φ2(y)

for all y ∈ [c, d]. Let the compact set

T = {(x, y) : c ≤ y ≤ d, φ1(y) ≤ x ≤ φ2(y)}.

The area of T is∫∫
T
dxdy =

∫ d

c
dy

(∫ φ2(y)

φ1(y)
dx

)
=

∫ d

c
(φ2(y)− φ1(y)) dy.

Definition 4.3. Let A be a subset of R2 of type 1 or type 2, that is A = S or A = T .

Let f : A → R+ be integrable and nonnegative. The volume of the solid of R3 limited by

the plane z = 0, the cylinder generated by the generatrix parallel to the vertical axis z and

directrix the boundary of the set A, and the surface of equation z = f(x, y) is∫∫
A
f(x, y)dxdy.

5. Change of variable

The formula of change of variable in simple integrals is an straightforward application of

the chain rule. The generalization of the formula to two or more variables is not easy. We

will establish only the formula for double integrals.
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Theorem 5.1. Let D be a subset of R2 which is of type 1 or of type 2. Let U be an open

set such that D ⊆ U , and let g : U → R2 be a transformation of class C1, one to one and

such that the Jacobian of g is non null for all (x, y) ∈
◦
D.

Let f : A→ R be a continuous function in A = g(D). Then

∫∫
A
f(x, y)dxdy =

∫∫
D
f(g(u, v))| det Jg(u, v)|dudv.

Remark 5.2. The transformation g is the change of variable. It is often used for g the

notation (x, y) = g(u, v), where

x = x(u, v),

y = y(u, v),

(u, v) ∈ U . The Jacobian matrix of g is the matrix

Jg(u, v) =

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
.

Note that the Jacobian determinant enters the integral in absolute value.

Example 5.3. Calculate the integral

∫∫
A

(2y − x)dxdy,

where A is the region of the plane enclosed by the lines y = x + 1, y = x + 5, y = −x + 1

and y = −x+ 3.

Solution: Let the change of variables u = y − x and v = y + x. Then x = 1
2(v − u) and

y = 1
2(u+ v). The transformation is thus g(u, v) = (12(v− u), 12(u+ v)). Note that if we let

D = [1, 5]× [1, 3], then g(D) = A. Moreover, g is clearly one-to-one. The Jacobian of g is

det Jg(u, v) =

∣∣∣∣∣ −1
2

1
2

1
2

1
2

∣∣∣∣∣ = −1

2
.



8 IV.1 MULTIPLE INTEGRALS

Finally, note that 2y − x = u+ v − 1
2(v − u) = 3

2u+ 1
2v, hence∫∫

A
(2y − x)dxdy =

∫∫
D

1

2

(
3

2
u+

1

2
v

)
dudv

=
3

4

∫∫
D
ududv +

1

4

∫∫
D
vdudv

=
3

4

∫ 5

1
2udu+

1

4

∫ 3

1
4vdv

=
3

4
u2
∣∣∣5
1

+
1

2
v2
∣∣∣3
1

=
3

4
(25− 1) +

1

2
(9− 1) = 22.

5.1. Polar coordinates. Let g : (0,∞)×[0, 2π)→ R2 be the transformation (ρ, θ) 7→ (x, y)

be defined by

x = ρ cos θ, y = ρ sin θ,

which is of class C∞ and the Jacobian is

det Jg(u, v) =

∣∣∣∣∣ cos θ −ρ sin θ

sin θ ρ cos θ

∣∣∣∣∣ = ρ cos2 θ + ρ sin2 θ = ρ(cos2 θ + sin2 θ) = ρ.

Let two sets A and D such that A = g(D) and g is a bijection. Let f : A → R such that

the conditions of the Theorem of the change of variable are fulfilled. Then∫∫
A
f(x, y)dxdy =

∫∫
D
f(ρ cos θ, ρ sin θ)ρdρdθ.

Example 5.4. Calculate the volume V of the sphere of R3 of radius r > 0.

Solution. By symmetry, the volume V is twice the volume of the set

B = {(x, y, z) : 0 ≤ z ≤
√

(r2 − x2 − y2), x2 + y2 ≤ r2} ⊆ R3.

The volume of B is ∫∫
A

√
(r2 − x2 − y2)dxdy,

where A = {(x, y) ∈ R2 : x2 + y2 ≤ r2}. Change to polar coordinates to see that the set A

in polar coordinates is D = {(ρ, θ) : 0 ≤ ρ ≤ r, 0 ≤ θ < 2π}. Then

V = 2

∫∫
[0,r]×[0,2π]

ρ
√
r2 − ρ2dρdθ

= 2

∫ r

0
2πρ

√
r2 − ρ2dρ

= 2π

(
−2

3
(r2 − ρ2)

3
2

∣∣∣r
0

)
=

4

3
πr3.


