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III SEQUENCES AND SERIES

1. Mathematical Induction

To show that an statement Pn is true for any natural number n beginning with n0, it is

sufficient to prove that

(1) the statement is true for n = n0;

(2) if the statement is true for some natural number k ≥ n0, then it is also true for the

next natural number k + 1.

This principle is known as the Principle of Mathematical Induction.

Example 1.1. Prove that 1 + 2 + · · ·+ n = 1
2n(n+ 1) for all n ∈ N.

We shall use induction. If n = 1, then it is true. We assume that it holds true for a natural

number k

1 + 2 + · · ·+ k =
1

2
k(k + 1).

adding k + 1 to both side to this equality, we obtain

1 + 2 + · · ·+ k + (k + 1) =
1

2
k(k + 1) + (k + 1) = (k + 1)

(
1

2
k + 1

)
=

1

2
(k + 1)(k + 2).

We have proved that the equality holds true for k + 1, hence it is valid for all n ∈ N.

Example 1.2. Discover what is wrong in the following argument: “{1} is a finite set, and,

if {1, . . . , n} is a finite set, so is {1, . . . , n+ 1}. Therefore the positive integers form a finite

set.”

2. Bounded and unbounded sequences

Definition 2.1. A sequence is an enumeration x1, x2, . . . , xn, . . . of real numbers. It is

denoted by the symbol {xn} or (xn), where the subindex n = 1, 2, . . .. The number xn is a

term or element of the sequence and n is the number of the element.

Definition 2.2. Given two sequences {xn} and {yn}, the sequences {xn + yn}, {xn − yn},
{xnyn} and {xn/yn} (yn 6= 0) are the sum, the difference, the product and the quotient of

the sequences, respectively.
1
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Definition 2.3. The sequence {xn} is bounded if there is M > 0 such that |xn| ≤ M for

all n.

Definition 2.4. It is said that sequence {xn} converges to a ∈ R, and that a is the limit

of the sequence {xn}, written

lim
n→∞

xn = a,

if and only if for all ε > 0, there is N ≥ 1 such that for all n > N , |xn − a| < ε.

Remark 2.5. This means that every interval with center at the point a, contains all terms

of the sequence beginning with a certain number. A sequence with a limit is called a

convergent sequence and a sequence that has not limit is called a divergent sequence.

Example 2.6. The sequence {1/n} converges to 0. To prove this, let ε > 0. Since N is

not bounded from above, there is N ∈ N such that N > 1/ε (for instance, if ε is 10−6, it

suffices to take N = 107). Then n > N implies 0 < 1/n < 1/N < ε. This proves that the

sequence {1/n} converges to 0.

The sequence {cos (nπ)} does not converge. Note that the sequence is in fact {−1, 1,−1, . . .}.
To prove this, let ε = 1. Let N ∈ N. Then | cos ((N + 1)π) − cosNπ)| = 2 > ε, thus the

sequence is not convergent.

Proposition 2.7. The limit of a convergent sequence is unique.

Proposition 2.8 (Necessary condition of convergence). A convergent sequence is bounded.

Definition 2.9. It is said that the sequence {xn} diverges to∞ if and only if for all M > 0,

there exists N such that for all n > N , xn > M . It is said that the sequence {xn} diverges

to −∞ if and only if the sequence {−xn} diverges to ∞. It is designated

lim
n→∞

xn =∞, and lim
n→∞

xn = −∞,

respectively.

Example 2.10. The sequence {−n} diverges to −∞. To prove this, let M < 0 be arbitrary.

Pick N = M + 1. Then for all n > N , −n < −N < M . Thus, the sequence {−n} diverges

to −∞.

The sequence {(−1)nn} is not convergent and does not diverge neither to ∞ nor to −∞.
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3. Properties of convergent sequences

Theorem 3.1. Let limn→∞ xn = a and limn→∞ yn = b. Then

(1) limn→∞(xn ± yn) = a± b.

(2) limn→∞(xnyn) = ab.

(3) If b 6= 0, then limn→∞(xn/yn) = a/b.

Remark 3.2. If limn→∞ xn = limn→∞ yn = 0, then limn→∞(xn/yn) is an indeterminate

form 0/0. If limn→∞ xn = limn→∞ yn =∞, then limn→∞(xn−yn) is an indeterminate form

∞−∞. The indeterminate forms ∞/∞, 0 · ∞ are defined similarly.

Example 3.3. Calculate the limit of the sequence {xn}, where xn =
√
n2 + 4n− n.

Note that the limit

lim
n→∞

(
√
n2 + 4n− n)

is indeterminate, of the form ∞−∞. We have

lim
n→∞

(
√
n2 + 4n− n) = lim

n→∞

(
√
n2 + 4n− n)(

√
n2 + 4n+ n)√

n2 + 4n+ n

= lim
n→∞

4n√
n2 + 4n+ n

= lim
n→∞

4√
1 + 4

n + 1
= 2.

Theorem 3.4. If limn→∞ xn = a and, beginning with a certain number n, xn ≥ b, then

a ≥ b.

Theorem 3.5 (Three sequences theorem). If limn→∞ xn = a, limn→∞ yn = a and, begin-

ning with a certain number n, the inequalities xn ≤ zn ≤ yn hold true, then limn→∞ zn = a.

Example 3.6. Calculate

lim
n→∞

√
n sinn

n2 + 1
.

Let zn =
√
n sinn
n2+1

, xn = −
√
n

n2+1
and yn =

√
n

n2+1
. Since −1 ≤ sinn ≤ 1 for all n ∈ N, we have

xn ≤ zn ≤ yn,

for all n ∈ N. Moreover,

lim
n→∞

−
√
n

n2 + 1
= − lim

n→∞

√
n

n2 + 1
= 0,
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hence by the Three sequences Theorem, limn→∞
√
n sinn
n2+1

= 0.

4. Monotone sequences

Definition 4.1. A sequence {xn} is nonincreasing (nondecreasing) if and only if xn+1 ≤ xn
(xn+1 ≥ xn), for all n. A sequence {xn} is decreasing (increasing) if and only if xn+1 < xn

(xn+1 > xn), for all n.

Nonincreasing and nondecreasing sequences are known as monotone sequences.

Remark 4.2. A nonincreasing sequence is always bounded from above and a nondecreasing

sequence is always bounded from below by the first term. If a monotone sequence is also

bounded by the other side, then it is convergent.

Theorem 4.3. A monotone bounded sequence converges.

Example 4.4.

(1) Let the sequence {1/n}. The sequence is bounded, since 0 < 1/n < 1 for all n, and it

is decreasing, since 1/(n + 1) < 1/n, for all n. Hence, the sequence is convergent (as we

already know, in fact this sequence converges to 0).

(2) Let the sequence {2n/(1 + n)}. This sequence is bounded, since 0 < 2n/(1 + n) < 2 is

equivalent to 0 < n and 2n < 2n + 2 which are obviously true. Moreover, the sequence is

increasing, for

xn+1 − xn = 2(n+ 1)/(2 + n)− 2n/(1 + n) = 2/((2 + n)(1 + n)) > 0.

Hence, the sequence is convergent (as we already know, in fact this sequence converges to

2).

(3) Let a sequence {xn} which is defined by the recurrence relation

(4.1) xn+1 = xn(2− xn), n ≥ 1,

where x1 is an arbitrary number satisfying 0 < x1 < 1. Let us see that the sequence {xn}
is bounded. We shall prove by induction that

(4.2) 0 < xn < 1, for all n ≥ 1.

For n = 1 the inequality is satisfied. Suppose that the inequalities are true for the number n.

We shall prove that then they are true for the number n+1. Note that the maximum of the

function x 7→ x(2−x) in the interval [0, 1] is attained at x = 1, and the minimum is attained
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at 0. Hence, 0 < xn < 1 implies 0 < xn(2 − xn) < 1 · (2 − 1) = 1, Thus, 0 < xn+1 < 1.

We have thus proved inequalities (4.2). We shall now prove that the sequence is increasing.

Since xn < 1, 2− xn > 1. Dividing (4.1) by xn we have

xn+1

xn
= 2− xn > 1.

Then, xn+1 > xn, for all n ≥ 1. Thus, the sequence {xn} is monotone and bounded. In

consequence, it has a limit a. To find a, we pass to the limit in (4.1), to get

lim
n→∞

xn = lim
n→∞

xn(2− xn), or a = a(2− a).

Since a = 0 is not possible because x1 > 0 and {xn} is increasing, we have a = 1.

Definition 4.5. Let {xn} be a sequence. Let k1 < k2 < · · · < kn < · · · , be an arbitrary

increasing sequence of positive integers (note that kn ≥ n). The sequence {xkn}, obtained

from {xn} by choosing terms with numbers k1, k2, . . . , kn, . . ., is called a subsequence of

{xn}.

Theorem 4.6. If lim→∞ xn = a, then any subsequence {xkn} converges to a as n→∞.

5. Series

Definition 5.1. Let {an} be a sequence. The formal expression

a1 + a2 + · · ·+ an + · · · =
∞∑
k=1

ak

is called a series and the numbers ak are the terms of the series. The number

Sn =

n∑
k=1

ak

is the nth partial sum of the series.

Note that

S1 = a1,

S2 = a1 + a2,

...

Sn = a1 + a2 + · · ·+ an.
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Definition 5.2. It is said that the series
∑∞

k=1 ak is convergent and its sum is S if and

only if there is the limit

lim
n→∞

Sn = S.

If the limit does not exist or it is ±∞, we say that the series diverges.

Example 5.3. Let q 6= 0. The series

1 + q + q2 + · · ·+ qn + · · ·

is the sum of geometric sequence with initial term 1 and ratio q. When q 6= 1

Sn =
1− qn

1− q
.

If |q| < 1, then |q|n → 0 as n→∞, hence qn → 0 as n→∞ and

lim
n→∞

Sn = lim
n→∞

1− qn

1− q
=

1

1− q
.

Hence, when |q| < 1,
∑∞

k=1 q
k−1 = 1

1−q .

If |q| > 1, then |qn| → ∞ as n → ∞, hence 1−qn
1−q converges to ∞ as n → ∞ when q > 1,

and has no limit when q < 0. Thus, the series geometric diverges when |q| > 1.

If q = 1, then Sn = n, limn→∞ Sn =∞, and the series diverges.

If q = −1, then the series is alternate, with Sn = 1 if n is odd, and Sn = −1 if n is

even, hence {Sn} has not limit (since two subsequences have different limits), and the series

diverges.

5.1. Necessary condition of convergence.

Theorem 5.4. If a series
∑∞

k=1 ak converges, then the sequence {an} tends to 0.

Proof. Let S = limn→∞ Sn. Then S = limn→∞ Sn−1. Also, Sn − Sn−1 = an, hence

lim
n→∞

an = lim
n→∞

(Sn − Sn−1) = lim
n→∞

Sn − lim
n→∞

Sn−1 = S − S = 0.

�

Corollary 5.5. If {an} does not converge to 0, then the series
∑∞

n=1 an diverges.

Example 5.6. The series

1

3
+

2

5
+

3

7
+ · · ·+ n

2n+ 1
+ · · ·

diverges, since limn→∞
n

2n+1 = 1
2 6= 0.
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Example 5.7. The harmonic series

1 +
1

2
+

1

3
+ · · ·+ 1

n
+ · · ·

has general term that converges to 0 but the series diverges.

5.2. Comparison of series of positive terms. Let two series
∑∞

k=1 ak and
∑∞

k=1 bk,

with ak, bk ≥ 0.

Theorem 5.8. Suppose that ak ≤ bk for all k = 1, 2, . . ..

(1) If
∑∞

k=1 bk converges, then
∑∞

k=1 ak converges.

(2) If
∑∞

k=1 ak diverges, then
∑∞

k=1 bk diverges.

Example 5.9. Let the series

1 +
1

22
+

1

33
+ · · ·+ 1

nn
+ · · · .

Since 1
nn ≤ 1

2n for all n ≥ 2 and that the series
∑∞

k2
1
2k

is geometric of ratio 1
2 , the series

above is convergent.

Example 5.10. Let the series

1 +
1√
2

+
1√
3

+ · · ·+ 1√
n

+ · · · .

Since 1
n ≥

1√
n

for all n ≥ 1 and that the harmonic series
∑∞

k=1
1
k diverges, we have that the

series above diverges.

5.3. d’Alembert Criterion.

Theorem 5.11. Let a series
∑∞

k=1 ak of positive terms such that the limit of the ratio of

two consecutive terms is finite, that is,

lim
n→∞

an+1

an
= L <∞.

(1) If L < 1, then the series converges.

(2) If L > 1, then the series diverges.

Example 5.12. Consider the series
∞∑
k=1

1

k!
.

Since n!
(n+1)! = 1

n+1 tends to 0 as n→∞, the series converges.
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Example 5.13. Consider the series
∞∑
k=1

2k

k2
.

Since
2n+1

(n+1)2

2n

n2

= 2 n2

(n+1)2
tends to 2 > 1 as n→∞, the series diverges.

5.4. Cauchy Criterion.

Theorem 5.14. Let a series
∑∞

k=1 ak of positive terms such that

lim
n→∞

n
√
an = L <∞.

(1) If L < 1, then the series converges.

(2) If L > 1, then the series diverges.

Example 5.15. Consider the series

∞∑
k=1

(
k

2k + 1

)k
.

Since

lim
n→∞

n

√(
n

2n+ 1

)n
= lim

n→∞

n

2n+ 1
=

1

2
< 1,

the series converges.

5.5. Integral Criterion.

Theorem 5.16. Let a series
∑∞

k=1 ak of positive terms, such that

a1 ≥ a2 ≥ · · · ≥ ak ≥ ak+1 ≥ · · · ,

and let f : [1,∞)→ [0,∞) be a continuous and nonincreasing function such that

f(1) = a1, f(2) = a2, . . . , f(n) = an, . . . .

(1) If the improper integral ∫ ∞
1

f(x)dx

converges, then the series converges.

(2) If the improper integral ∫ ∞
1

f(x)dx

diverges, then the series diverges.
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Example 5.17. Let the series
∞∑
k=1

1

kp
, p > 0.

It is of positive terms and { 1
kp } decreases, since p > 0. We can apply the integral criterion

with the function f(x) = 1
xp . As we know, the improper integral∫ ∞

1

1

xp
dx

converges if and only if p > 1. Hence the series converges if and only p > 1.

5.6. Alternate series.

Definition 5.18. A series

a1 − a2 + a3 − a4 + · · · ,

where ak > 0, for all k ≥ 1 is an alternate series.

Theorem 5.19 (Theorem of Leibniz). Let an alternate series

a1 − a2 + a3 − a4 + · · · ,

such that

a1 > a2 > · · · > ak > · · ·

and

lim
n→∞

an = 0.

Then the series converges, its sum S is positive, and S < a1.

Remark 5.20. Let an alternate series satisfying the assumptions of Leibniz’s Theorem,

a1 − a2 + a3 − a4 + · · · .

Let N ≥ 1 be an integer and consider the alternate series

aN+1 − aN+2 + · · · .

By the theorem above, the series converges. If TN+1 denotes its sum, then TN+1 > 0 and

TN+1 < aN+1. Since

a1 − a2 + a3 − a4 + · · · = SN + (−1)N+2 (aN+1 − aN+2 + · · · ) ,

we have that

S − SN = (−1)N+2TN .
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If N is odd, then

0 > S − SN = −TN > −aN+1,

and if N is even, then

0 < S − SN = TN < aN+1.

Hence the error in the approximation of the alternate series by truncating the series to N

summands is less than aN+1, that is,

|S − SN | < aN+1.

Moreover, if N is odd, the approximation is from above, and if N is even it is from below.

Example 5.21. The series

1− 1

2
+

1

3
− 1

4
+ · · ·

is alternate, and convergent according to Leibniz’s Theorem. Its sum, S, is positive and

less than 1. What is the error if the correct sum of the series is estimated as

1− 1

2
+

1

3
− 1

4
+

1

5
= 0.7080 . . .?

Use |S − S5| < 1
5+1 = 0.1666. Since N = 5 is odd, we get 0.7080− 0.1666 = 0.5414 < S <

0.7080.

5.7. Series of positive and negative terms.

Definition 5.22. The series
∑∞

k=1 ak is absolutely convergent iff
∑∞

k=1 |ak| converges. If∑∞
k=1 ak converges but

∑∞
k=1 |ak| diverges, then the series

∑∞
k=1 ak converges conditionally

(or it is conditionally convergent).

Example 5.23. The series
∑∞

k=1
(−1)n
n converges conditionally.

The series
∑∞

k=1
(−1)n
n2 converges absolutely.

Theorem 5.24. If
∑∞

k=1 ak converges absolutely, then it converges.

With finite sums, the order of the summands does not influence the result. We wonder

whether this is also true with infinite sums.

Definition 5.25. Given the series
∑∞

k=1 ak and a bijective mapping σ de {1, 2, . . .} to

{1, 2, . . .}, we say that the series
∑∞

k=1 aσ(k) is a rearrangement of
∑∞

k=1 ak.
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Example 5.26. The mapping σ given by

1 7→ 1

2 7→ 3

3 7→ 2

4 7→ 5

5 7→ 4

...

rearranges the series a1 + a2 + a3 + · · · into a1 + a3 + a2 + a5 + a4 + · · · . For instance,

1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + 1

7 −
1
8 + · · · transforms into 1 + 1

3 −
1
2 + 1

5 −
1
4 + 1

7 − · · · .

Note however that a1 + a2 + a4 + a6 + · · · is not a rearrangement, since some terms are

missing not it is a1 + a2 + a2 + a3 + a3 + · · · , since some terms are repeated (in both case

σ is not bijective).

Considering again the series
∑∞

k=1 ak = 1− 1
2 + 1

3 −· · · , divide its term by 2 and intercalate

zeroes, so we get a new series
∑∞

k=1 bk. If the initial series converges to S, then clearly the

new series converges to S
2 . Adding both series, we get another one which sum is S+ S

2 = 3S
2 .

Here is a scheme of the operations:

∞∑
k=1

ak = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+ · · ·

∞∑
k=1

bk = 0 +
1

2
+ 0− 1

4
+ 0 +

1

6
+ 0− 1

8
+ 0 · · ·

∞∑
k=1

(ak + bk) = 1 + 0 +
1

3
− 1

2
+

1

5
+ 0 +

1

7
− 1

4
+ · · ·

= 1 +
1

3
− 1

2
+

1

5
− 1

4
+

1

7
− · · · .

The last line is a rearrangement of the intial series 1− 1
2 + 1

3 − · · · , chich we have proved to

converge to a different limit, 3S
2 .

Rearrangements have no effect when the series is absolutely convergent.

Theorem 5.27. Let
∑∞

k=1 ak an absolutely convergent series with sum S. Then the series∑∞
k=1 aσ(k) converges to S for any rearrangement σ.


