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I.3 MATRIX DIAGONALIZATION

1. Diagonalization of matrices

Definition 1.1. Two matrices A and B of order n are similar if there exists a matrix P

such that

B = P−1AP.

Definition 1.2. A matrix A is diagonalizable if it is similar to a diagonal matrix D, that

is, there exists D diagonal and P invertible such that D = P−1AP .

Of course, D diagonal means that every element out of the diagonal is null

D =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

 , λ1, . . . , λn ∈ R.

Proposition 1.3. If A is diagonalizable, then for all m ≥ 1

(1.1) Am = PDmP−1,

where

Dm =


λm1 0 . . . 0

0 λm2 . . . 0
...

...
. . .

...

0 0 . . . λmn

 .

Proof. Since A is diagonalizable

Am = (PDP−1)(PDP−1)
m· · · (PDP−1)

= PD(P−1P )D · · ·D(P−1P )DP−1

= PDInD · · ·DInDP−1 = PDmP−1.

The expression for Dm is readily obtained by induction on m. �

Definition 1.4. Let A be a matrix of order n.

• We say that u ∈ Rn, u 6= 0, is an eigenvector or proper vector of A if and only if

there is λ ∈ R such that Au = λu.
1
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• We say that λ ∈ R is an eigenvalue or proper value of A if and only if there is

u ∈ Rn, u 6= 0, such that Au = λu.

Remark 1.5. If u ∈ Rn, u 6= 0 and Au = λu, we say that u is an eigenvector of A associated

to the eigenvalue λ.

Definition 1.6. For a matrix A ∈Mn×n and a real number λ, let the set

V(λ) = {u ∈ Rn : Au = λu}.

Note that 0 ∈ V(λ) for all λ ∈ R.

Remark 1.7. (1) V(λ) is the set of solutions of the linear homogenous system

(A− λIn)u = 0.

(2) When λ is an eigenvalue of A, V(λ) is the set of all the eigenvectors associated to

λ, together with the null vector 0, and it is called the proper subspace associated to

λ.

(3) If λ is not a proper value of A, then V(λ) = {0}.

The following result shows that an eigenvector can only be associated to a unique eigen-

value.

Proposition 1.8. Let A ∈Mn×n and let λ, µ ∈ R two eigenvalues of A.

(1) For all u ∈ V(λ), Au ∈ V(λ).

(2) If λ 6= µ, then V(λ) ∩V(µ) = ∅.

Proof. (1) For u ∈ V(λ), A(Au) = A(λu) = λAu, thus Au ∈ V(λ).

(2) Suppose 0 6= u ∈ V(λ) ∩V(µ). Then

Au = λu

Au = µu.

Subtracting both equations we obtain 0 = (λ− µ)u and, since 0 6= u, we must have

λ = µ.

�
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Recall that for an arbitrary matrix A, the rank of the matrix is the number of linearly

independent columns or rows (both numbers necessarily coincide). It is also given by the

order of the largest non null minor of A.

Theorem 1.9. The real number λ is an eigenvalue of A if and only if

|A− λIn| = 0.

Moreover, V(λ) is the set of solutions (including the null vector) of the linear homogeneous

system

(A− λIn)u = 0,

and hence it is a vector subspace, which dimension is

dim V(λ) = n− rank(A− λIn).

Proof. Suppose that λ ∈ R is an eigenvalue of A. Then the system (A − λIn)u = 0

admits some non–trivial solution u. Since the system is homogeneous, this implies that

the determinant of the system is zero, |A− λIn| = 0. The second part about V(λ) follows

also from the definition of eigenvector, and the fact that the set of solutions of a linear

homogenous system is a subspace (the sum of two solutions is again a solution, as well as

it is the product of a real number by a solution). Finally, the dimension of the space of

solutions is given by the Theorem of Rouche–Frobenius. �

Definition 1.10. The characteristic polynomial of A is the polynomial of order n given by

pA(λ) = |A− λIn|.

Notice that the eigenvalues of A are the real roots of pA. This polynomial is of degree n.

The Fundamental Theorem of Algebra estates that a polynomial of degree n has n complex

roots (not necessarily different, some of the roots may have multiplicity grater than one).

It could be the case that some of the roots of pA were not real numbers. For us, a root of

pA(λ) which is not real is not an eigenvalue of A.

Example 1.11. Find the eigenvalues and the proper subspaces of

A =


0 −1 0

1 0 0

0 0 1

 .
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Answer:

A− λI =


−λ −1 0

1 −λ 0

0 0 1− λ

 ; p(λ) = (1− λ)

∣∣∣∣∣ −λ −1

1 −λ

∣∣∣∣∣ = (1− λ)(λ2 + 1).

The characteristic polynomial has only one real root, hence the spectrum of A is σ(A) =

{1}. The proper subspace V(1) is the set of solutions of the homogeneous linear system

(A− I3)u = 0, that is, the set of solutions of

(A− I3)u =


−1 −1 0

1 −1 0

0 0 0




x

y

z

 =


0

0

0


Solving the above system we obtain

V(1) = {(0, 0, z) : z ∈ R} =< (0, 0, 1) > (the subspace generated by (0, 0, 1)).

Notice that pA(λ) has other roots that are not reals. They are the complex numbers ±i,
that are not (real) eigenvalues of A. If we would admit complex numbers, then they would

be eigenvalues of A in this extended sense.

Example 1.12. Find the eigenvalues and the proper subspaces of

B =


2 1 0

0 1 −1

0 2 4

 .

Answer: The eigenvalues are obtained solving∣∣∣∣∣∣∣∣
2− λ 1 0

0 1− λ −1

0 2 4− λ

∣∣∣∣∣∣∣∣ = 0.

The solutions are λ = 3 (simple root) and λ = 2 (double root). To find V(3) = {u ∈ R3 :

(B − 3I3)u = 0} we compute the solutions to

(B − 3I3)u =


−1 1 0

0 −2 −1

0 2 1




x

y

z

 =


0

0

0

 ,



I.3 MATRIX DIAGONALIZATION 5

which are x = y and z = −2y, and hence V(3) =< (1, 1,−2) >. To find V(2) we solve the

system

(B − 2I3)u =


0 1 0

0 −1 −1

0 2 2




x

y

z

 =


0

0

0

 ,

from which x = y = 0 and hence V(2) =< (1, 0, 0) >.

Example 1.13. Find the eigenvalues and the proper subspaces of

C =


1 2 0

0 2 0

1 1 3


Answer: To compute the eigenvalues we solve the characteristic equation

0 = |C − λI3| =

∣∣∣∣∣∣∣∣
1− λ 2 0

0 2− λ 0

1 1 0− λ

∣∣∣∣∣∣∣∣
=
∣∣∣2− λ∣∣∣ ∣∣∣∣∣1− λ 0

1 3− λ

∣∣∣∣∣ = (2− λ)(1− λ)(3− λ)

So, the eigenvalues are λ1 = 1, λ2 = 2 and λ3 = 3. We now compute the eigenvectors. The

eigenspace V(1) is the solution of the homogeneous linear system whose associated matrix

is C − λI3 with λ = 1. That is, V(1) is the solution of the following homogeneous linear

system 
0 2 0

0 2 0

1 1 2



x

y

z

 =


0

0

0


Solving the above system we find that

V(1) = {(−2z, 0, z) : z ∈ R} =< (−2, 0, 1) >

On the other hand, V(2) is the set of solutions of the homogeneous linear system whose

associated matrix is C − λI3 with λ = 2. That is, V(2) is the solution of the following
−1 2 0

0 0 0

1 1 1



x

y

z

 =


0

0

0


So,

V(2) = {(2y, y,−3y) : y ∈ R} =< (2, 1,−3) >
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Finally, V(3) is the set of solutions of the homogeneous linear system whose associated

matrix is A− λI3 with λ = 3. That is, V(3) is the solution of the following
−2 2 0

0 −1 0

1 1 0



x

y

z

 =


0

0

0


and we obtain

V(3) = {(0, 0, z) : z ∈ R} =< (0, 0, 1) >

We now start describing the procedure to diagonalize a matrix. Fix a square matrix A.

Let

λ1, λ2, . . . , λk

be distinct real roots of the characteristic polynomial pA(λ) an let mk be the multiplicity

of each λk (Hence mk = 1 if λk is a simple root, mk = 2 if it is double, etc.). Note that

m1 +m2 + · · ·+mk = n.

The following result estates that the number of independent vectors in the subspace V(λ)

can never be bigger than the multiplicity of λ.

Proposition 1.14. For each j = 1, . . . , k

1 ≤ dim V(λj) ≤ mj .

The following theorem gives necessary and sufficient conditions for a matrix A to be diag-

onalizable.

Theorem 1.15. A matrix A is diagonalizable if and only if the two following conditions

hold.

(1) Every root, λ1, λ2, . . . , λk of the charateristic polynomial pA(λ) is real.

(2) For each j = 1, . . . , k

dim V(λj) = mj .

Corollary 1.16. If the matrix A has n distinct real eigenvalues, then it is diagonalizable.
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Theorem 1.17. If A is diagonalizable, then the diagonal matrix D is formed by the eigen-

values of A in its main diagonal, with each λj repeated nj times. Moreover, a matrix P

such that D = P−1AP has as columns independent eigenvectors selected from each proper

subspace V(λj), j = 1, . . . , k.

Comments on the examples above.

• Matrix A of Example 1.11 is not diagonalizable, since pA has complex roots.

• Although all roots of pB are real, B of Example 1.12 is not diagonalizable, because

dim V(2) = 1, which is smaller than the multiplicity of the eigenvalue 2.

• Matrix C of Example 1.13 is diagonalizable, since pC has 3 different real roots. In

this case

D =


1 0 0

0 2 0

0 0 3

 , P =


−2 2 0

0 1 0

1 −3 1

 .

Example 1.18. The manager of a certain NGO observes the following behavior in its

affiliates: 80% of affiliates who made donations in a certain year (xt), also contribute to the

following year, while 30% of affiliates who did not contribute in that year (yt), do will do a

contribution the following year. Calculate the percentage of affiliates who make donations

to the NGO in the long term, if it is known that at the present time this percentage is 50%.

Actually, we have the system {
xt+1 = 0.8xt + 0.3yt

yt+1 = 0.2xt + 0.7yt

The matrix associated to the system of difference equations is the matrix A(
xt+1

yt+1

)
=

(
0.8 0.3

0.2 0.7

)(
xt

yt

)

The eigenvalues of A are the solutions of pA(λ) = 0, where

pA(λ) = |A− λI| =

∣∣∣∣∣ 0.8− λ 0.3

0.2 0.7− λ

∣∣∣∣∣ = λ2 − 3

2
λ+

1

2
= 0.

Then λ1 = 1 and λ2 = 1
2 .
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For V (λ1 = 1) we have the following homogeneous system of linear equations(
−0.2 0.3

0.2 −0.3

)(
x

y

)
=

(
0

0

)
,

Then

V (λ1 = 1) =

(
x

y

)
=

(
3

2

)
· t, where t ∈ R.

For V (λ2 = 1
2) we have the following homogeneous system of linear equations(

0.3 0.3

0.2 0.2

)(
x

y

)
=

(
0

0

)
.

Then

V (λ2 =
1

2
) =

(
x

y

)
=

(
1

−1

)
· t, where t ∈ R.

Then

D =

(
1 0

0 1
2

)
, P =

(
3 1

2 −1

)
, P−1 = −1

5

(
−1 −1

−2 3

)
.

lim
t→∞

(
xt

yt

)
=

(
3 1

2 −1

)
·

(
1 0

0 (12)t

)
·
(
−1

5

)(
−1 −1

−2 3

)
·

(
x0

y0

)
=

(
3
5(x0 + y0)
2
5(x0 + y0)

)
=

 3
5

2
5

 .

Thus, (xt, yt) converges to the stationary distribution (35 ,
2
5) independently of the values of

x0 and y0, which means that 60% of affiliates to the NGO make donations in the long run.

Proposition 1.19. Let A ∈ Mn×n be symmetric. Then all the roots of the characteristic

polynomial PA(λ) are real, A is diagonalizable, and there are matrices P,D ∈ Mn×n, with

D diagonal and P orthogonal (P−1 = P t), such that A = P tDP .


