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I.1 MATRICES AND DETERMINANTS

1. General concepts

Definition 1.1. A matrix of m arrows and n columns is a rectangular array of real numbers

A = (aij)i=1,...,m
j=1,...,n

=


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 .

It is said that A is of order m× n.

• The ith arrow of A is formed by elements ai1, ai2, . . . , ain.

• The jth column of A is formed by elements a1j , a2j , . . . , amj .

• The element (i, j) of A is aij . It belongs to the ith row and to the jth column.

• The main diagonal is formed by the elements a11, a22, . . . , app, donde p is the lesser

of n and m.

Notation 1.2. The set of all matrices of order m× n is denoted Mm×n.

Let A,B ∈ Mm×n, A = (aij)i=1,...,m
j=1,...,n

, B = (bij)i=1,...,m
j=1,...,n

. The matrices A and B are equal if

and only if aij = bij for all i ∈ {1, . . . ,m}, for all j ∈ {1, . . . , n}.

2. The algebra of matrices

2.1. Sum of matrices. Let A,B ∈ Mm×n, A = (aij)i=1,...,m
j=1,...,n

, B = (bij)i=1,...,m
j=1,...,n

. The sum

of A and B is A + B = C ∈ Mm×n, with C = (cij)i=1,...,m
j=1,...,n

, where cij = aij + bij for all

i ∈ {1, . . . ,m}, for all j ∈ {1, . . . , n}.

2.2. Properties of the sum of matrices. Let A,B,C ∈Mm×n

(1) A+ (B + C) = (A+B) + C.

(2) A+B = B +A.

(3) There is O = (0ij)i=1,...,m
j=1,...,n

∈Mm×n (null matrix), such that A+O = O +A = A.

(4) A+ (−A) = (−A) +A = O, where −A = (−aij)i=1,...,m
j=1,...,n

.
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2 I.1 MATRICES AND DETERMINANTS

2.3. Product of an scalar and a matrix. Let A ∈ Mm×n, A = (aij)i=1,...,m
j=1,...,n

and let

λ ∈ R. The scalar product of λ and A is λA = C ∈ Mm×n, with C = (cij)i=1,...,m
j=1,...,n

, where

cij = λaij .

2.4. Properties of the product of an scalar and a matrix. Let A,B ∈Mm×n, λ, µ ∈
R

(1) λ(A+B) = λA+ µB.

(2) (λ+ µ)A = λA+ µA.

(3) (λµA) = λ(µA).

(4) 1A = A.

Example 2.1. Let λ = 3 and A =

(
2 1 3

9 6 5

)
. Then 3A =

(
6 3 9

27 18 15

)
.

2.5. Product of matrices. Let A ∈ Mm×n, B ∈ Mn×p, where A = (aij)i=1,...,m
j=1,...,n

, B =

(bij)i=1,...,n
j=1,...,p

. The product of A and B is defined as AB = C ∈Mm×p, where C = (cij)i=1,...,m
j=1,...,p

and

cij = ai1b1j + ai2b2j + · · ·+ ainbnj for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , p}.

That is, the product AB is the matrix whose (i, j) element is the scalar product of the

ith row of the first matrix and the j column of the second matrix, considered these as

vectors.

2.6. Properties of the product of matrices. Let A ∈ Mm×n, B ∈ Mn×p, C ∈ Mp×q,

λ, µ ∈ R.

(1) λ(AB) = (λA)B = A(λB).

(2) (AB)C = A(BC).

(3) If m = n = p = q, then

A(B + C) = AB +AC

(B + C)A = BA+ CA
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(4) AIn = InA = A, where

In =


1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

 .

(5) (λA)(µB) = (λµ)(AB).

Example 2.2. Compute AB and BA, where A =

(
2 1 5

−3 0 2

)
and B =


1 6

7 −4

8 0

.

Answer: AB =

(
49 8= 2 · 6 + 1 · (−4) + 5 · 0
13 −18

)
. BA =


−16 1 17

26 7 27

16 8 40

.

2.7. Matrix transposition. Let A ∈ Mm×n, A = (aij)i=1,...,m
j=1,...,n

. The transpose matrix of

A, denoted At ∈Mn×m, is the matrix A = (a′ij)i=1,...,m
j=1,...,n

with a′ij = aji, that is

At =


a11 a21 · · · am1

a12 a22 · · · am2

...
...

. . .
...

a1n a2n · · · amn

.


2.8. Properties of matrix transposition. Let A ∈Mm×n, λ ∈ R.

(1) (At)t = A.

(2) (λA)t = λAt.

(3) Itn = In.

(4) If B ∈Mm×n, then (A+B)t = At +Bt.

(5) If B ∈Mn×p, then (AB)t = BtAt.

3. Type of Matrices

3.1. Definitions. 1. Row matrix: It has only one row

(a11a12 . . . a1n) ∈M1×n.
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2. Column matrix: It has only one column
a11

a21
...

am1

 ∈Mm×1.

3. A matrix is lower (upper) triangular if and only if all the elements above the diagonal are

null: i < j ⇒ aij = 0 (all the elements below the diagonal are null: i > j ⇒ aij = 0.)

4. Square matrix of order n: it has the same number of rows and columns, m = n.

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 am2 · · · ann

 .

• aii, i = 1, . . . , n, are the diagonal elements.

• A is a diagonal matrix if and only if the non diagonal elements are null: i 6= j ⇒
aij = 0.

• A square matrix is scalar if and only if it is diagonal and all the diagonal elements

are equal to each other.

5. A ∈Mn×n is idempotent if and only if A2 = A.

6. A ∈Mn×n is nilpotent if and only if there is p ∈ N such that Ap = O.

7. A ∈Mn×n is symmetric if and only if At = A, that is, if A = (aij)i=1,...,m
j=1,...,n

, then

aij = aji for all i, j ∈ {1, . . . , n}.

8. A ∈ Mn×n is antisymmetric if and only if At = −A, that is, if A = (aij)i=1,...,m
j=1,...,n

,

then

aij = −aji for all i, j ∈ {1, . . . , n}.

4. Determinants

To a square matrix A we associate a real number called the determinant, |A| or det (A), in

the following way. The determinant is a mapping

det :Mn×n → R

A 7→ det A
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such that

• For a matrix of order 1, A = (a), det (A) = a.

• For a matrix of order 2, A =

(
a11 a12

a21 a22

)
, det (A) = a11a22 − a12a21.

• For a matrix of order 3

det (A) =

∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣ = a11

∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣− a21
∣∣∣∣∣ a12 a13

a32 a33

∣∣∣∣∣+ a31

∣∣∣∣∣ a12 a13

a22 a23

∣∣∣∣∣ .
This is known as the expansion of the determinant by the first column, but it can be

done for any other row or column, giving the same result. Notice the sign (−1)i+j

in front of the element aij .

Before continuing with the inductive definition, let us see an example.

Example 4.1. Compute the following determinant expanding by the second column.∣∣∣∣∣∣∣∣
1 2 1

4 3 5

3 1 3

∣∣∣∣∣∣∣∣ = (−1)1+22

∣∣∣∣∣ 4 5

3 3

∣∣∣∣∣+ (−1)2+23

∣∣∣∣∣ 1 1

3 3

∣∣∣∣∣+ (−1)2+31

∣∣∣∣∣ 1 1

4 5

∣∣∣∣∣
= −2 · (−3) + 3 · (0)− (1) · 1 = 5

4.1. Definitions. 1. A minor of a matrix A is the determinant of a submatrix which are

obtained from A by deleting several rows and the same number of columns.

2. Given a square matrix A = (aij)i=1,...,n
j=1,...,n

, the complementary minor of element aij , denoted

Mij , is the determinant of order n− 1 which results from the deletion of the row i and the

column j containing that element.

3. Given a square matrix A = (aij)i=1,...,n
j=1,...,n

, the adjoint of aij , denoted Aij , is the comple-

mentary minor of aij , multiplied by (−1)i+j , that is, Aij = (−1)i+jMij .

4. The adjoint matrix of the square matrix A = (aij)i=1,...,nm
j=1,...,n

, denoted A∗, is the matrix

whose elements are the adjoints of the elements of A, that is

A∗ = (Aij)i=1,...,n
j=1,...,n

.
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4.2. Expansion of determinants by the elements of a row or a column. Let A =

(aij)i=1,...,n
j=1,...,n

∈Mn×. For n > 3, the determinant is defined as follows.

• Expansion by the elements of the ith row:

det A = ai1Ai1 + ai2Ai2 + · · ·+ ainAin.

• Expansion by the elements of the jth column:

det A = a1jA1j + a2jA2j + · · ·+ anjAnj .

Example 4.2. Find the value of the determinant∣∣∣∣∣∣∣∣∣∣
1 2 0 3

4 7 2 1

1 3 3 1

0 2 0 7

∣∣∣∣∣∣∣∣∣∣
.

Answer: Expanding the determinant by the third column, one gets∣∣∣∣∣∣∣∣∣∣
1 2 0 3

4 7 2 1

1 3 3 1

0 2 0 7

∣∣∣∣∣∣∣∣∣∣
= (−1)3+22

∣∣∣∣∣∣∣∣
1 2 3

1 3 1

0 2 7

∣∣∣∣∣∣∣∣+ (−1)3+33

∣∣∣∣∣∣∣∣
1 2 3

4 7 1

0 2 7

∣∣∣∣∣∣∣∣ .

4.3. Properties of the determinants. Let A,B ∈Mn×n. Let λ ∈ R.

(1) |A| = |At|.

(2) |λA| = λn|A|.

(3) |AB| = |A||B|.

(4) If in a determinant two rows (or columns) are interchanged, then the value of the

determinant is changed in sign.

(5) If two rows (columns) in a determinant are identical, then the value of the determi-

nant is zero.

(6) If all the entries in a row (column) of a determinant are multiplied by a constant λ,

then the value of the determinant is also multiplied by this constant.

(7) In a given determinant, a constant multiple of the elements in one row (column)

may be added to the elements of another row (column) without changing the value

of the determinant.
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(8) If a determinant has a line (row or column) of zeros, then the determinant is null.

5. Inverse matrix

When we want to solve an equation like 5x = 10, we simply divide by 5, 5−15x = 5−110,

and find quite trivially the solution x = 2. If the equation is matricial

AX = B,

where A and B are given matrices and X is the unknown matrix, we wonder whether there

is an object like 5−1 in the scalar example above, so that the matrix equation can be solved.

Obviously, if such a matrix B exists, it must fulfill BA = In.

Definition 5.1. A square matrix A ∈ Mn×n is called regular or invertible if there exists

a matrix B ∈ Mn×n such that AB = BA = In. In this case, the matrix B is called the

inverse of A and it is denoted A−1.

5.1. Properties. Let A,B ∈Mn×n and let λ ∈ R, λ 6= 0.

(1) A is invertible if and only if det A 6= 0.

(2) If A is invertible, then A−1 is unique, and it is given by

A−1 =
1

det A
(A∗)t.

(3) In is invertible, and I−1n = In.

(4) If A is invertible, then A−1 is invertible and (A−1)−1 = A.

(5) If A is invertible, then λA is invertible and (λA)−1 = λ−1A−1.

(6) If A and B are invertible, then AB is invertible and (AB)−1 = B−1A−1.

(7) If A is invertible, then At is invertible and (At)−1 = (A−1)t.

Definition 5.2. A ∈Mn×n is called orthogonal if and only is it is invertible and A−1 = At.

6. Rank and trace

Definition 6.1. The rank of matrix A ∈Mm×n, denoted rank A, is the order of the largest

non–null minor of A.

Example 6.2. Find the rank of A =


−1 2 1 0

0 3 1 1

2 −1 −1 1

 .
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Answer: The rank is at most 3. Instead of finding the echelon form of A let us use minors.

Notice that

∣∣∣∣∣ −1 2

0 3

∣∣∣∣∣ 6= 0 hence, the rank of A is 2 at least. If we find one non–null minor

of order 3, then the rank is 3. We need to check 4 minors of order 3∣∣∣∣∣∣∣∣
−1 2 1

0 3 1

2 −1 −1

∣∣∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣∣∣
−1 2 0

0 3 1

2 −1 1

∣∣∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣∣∣
−1 1 0

0 1 1

2 −1 1

∣∣∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣∣∣
2 1 0

3 1 1

−1 −1 1

∣∣∣∣∣∣∣∣ = 0.

6.1. Properties of the rank of a matrix.

(1) The rank of a matrix is invariant with respect to the following operations

• Exchanging two parallel lines (rows or columns).

• Deleting a line whose elements are all null.

• Deleting a line that is a linear combination of other parallel lines.

• Multiplying all the elements of a line by a number different from zero.

• Adding to a line another parallel line multiplied by a number.

(2) If A ∈Mm×n, then rank A ≤ min{m,n}.

(3) If A ∈Mn×n, then A is invertible if and only if rank A = n.

(4) rank In = n and rank O = 0.

(5) If A ∈Mm×n, then rank A = rank At.

(6) If A ∈Mm×n and B ∈Mn×p, then

rank AB ≤ min{rank A, rank B}.

Definition 6.3. Let A ∈ Mn×n, where (aij)i=1,...,m
j=1,...,n

. The trace of A, denoted by trace A,

is the sum of the diagonal elements of A

trace A = a11 + · · ·+ ann.

6.2. Properties. Let A,B ∈Mn×n, let λ ∈ R.

(1) trace At = trace A.

(2) trace λA = λ trace A.

(3) trace A+B = trace A+ trace B.
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(4) trace AB = trace BA.

7. Elementary operations with matrices

Definition 7.1. The following operations with rows and columns of a matrix A ∈ Mm×n

are called elementary operations.

• Interchange of parallel lines of A (rows or columns).

• Multiplication of a line of A (row or column) by a constant different from zero.

• Addition to a line of A (row or column) a constant multiple of another parallel line.

Definition 7.2. Two matrices A,B ∈ Mm×n are called equivalent if and only if one of

them can be obtained from the other by means of finitely many elementary operations.

We are interested in computing the inverse of a regular matrix by means of elementary

operations.

Theorem 7.3. If A ∈ Mm×n is invertible, then A is equivalent to the identity matrix In.

This says that one can find the inverse of a regular matrix by means of elementary operations

on the identity matrix In. From a practical point of view, the Gauss method considers the

matrix

(A|In) =


a11 a12 . . . a1n | 1 0 . . . 0

a21 a22 . . . a2n | 0 1 . . . 0
...

...
. . .

... |
...

...
. . .

...

an1 an2 . . . ann | 0 0 . . . 1


and performs elementary operations on rows until A is transformed into the identity matrix

In, so that In becomes A−1.

Example 7.4. Find the inverse of the matrix A =


1 1 0

0 1 1

1 0 1

.

Answer: Consider the matrix (A|I3) =


1 1 0 | 1 0 0

0 1 1 | 0 1 0

1 0 1 | 0 0 1

. In the following oper-

ations, ri denotes the ith row vector, and ri−λrj means that we subtracts λ times the row
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rj to the row ri.

(r3 − r1) ∼


1 1 0 | 1 0 0

0 1 1 | 0 1 0

0 −1 1 | −1 0 1

 ; (r3 + r2) ∼


1 1 0 | 1 0 0

0 1 1 | 0 1 0

0 0 2 | −1 1 1



(2r2 − r3) ∼


1 1 0 | 1 0 0

0 2 0 | 1 1 −1

0 0 2 | −1 1 1

 ; (2r1 − r2) ∼


2 0 0 | 1 −1 1

0 2 0 | 1 1 −1

0 0 2 | −1 1 1


(
×1

2

)
∼


1 0 0 | 1/2 −1/2 1/2

0 1 0 | 1/2 1/2 −1/2

0 0 1 | −1/2 1/2 1/2


Hence, the inverse matrix is

A−1 =


1/2 −1/2 1/2

1/2 1/2 −1/2

−1/2 1/2 1/2

 .

Definition 7.5. The upper echelon form of a matrix A ∈ Mm×n is any of the upper

triangular matrices B = (bij)i=1,...,m
j=1,...,n

∈Mm×n which are equivalent to A and such if bii = 0

for some i ∈ {1, . . . ,m− 1}, then bi+1,i+1 = 0.

Theorem 7.6. The rank of a matrix A ∈Mm×n is the number of non–null rows in any of

the echelon forms A.

Example 7.7. Find the rank of the matrix A =


−2 −1 1 2

0 2 2 −3

4 1 −1 0

.

Answer: The rank is at most 3. Let us find the echelon form of A.
−2 −1 1 2

0 2 2 −3

4 1 −1 0

 2r1+r3∼


−2 −1 1 2

0 2 2 −3

0 −1 1 4

 (1/2)r2+r3∼


−2 −1 1 2

0 2 2 −3

0 0 2 5/2

 .

Hence, the rank of A is 3 (three non–null row vectors in the echelon form of A).


