University Carlos III of Madrid

Department of Economics Final Exam. Mathematics II. September 2002.

Surname:		Name:
DNI:	Major:	Group:
(1) Consider the following subspace of \mathbb{R}^3 , 1 p		1 point
$S = \{(x, y, z) \in \mathbb{R}^3 : 2x + y + 3z = 0, x - y + z = 0, 4x - y + 5z = 0\}$		
(a) Find the dimension of S .		
(b) Find a basis of S.		

(2) Consider the system of equations,

$$\left. \begin{array}{ccc} ax+y+z &=& 1\\ x+ay+z &=& b\\ x+y+az &=& 1 \end{array} \right\}$$

1 point

- (a) Discuss the system depending on the values of a and b. (b) Solve the system in case a = -2, b = -2.

 $\mathbf{2}$

(3) Consider the following matrix,

$$A = \left(\begin{array}{rrrr} 3 & 2 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

- (a) Compute the characteristic polynomial and the eigenvalues.
- (b) Show that the matrix A is diagonalizable.
- (c) Compute the diagonal form and the matrix change of basis .

1.5 points

- (4) Consider the set A = {(x, y) : x² + y² ≤ 2, y ≥ √x, x ≥ 0}. 1.5 points
 (a) Draw the set A and its boundary. Compute the intersection points of
 - the curves defining A.

4

- (b) Is the set A convex? Justify your answer.
- (c) Consider the function $f: A \to \mathbb{R}$ defined as

 $f(x,y) = \ln\left((x-2)^2 + (y-2)^2\right)$

Discuss if f reaches a maximum or a minimum on A. State the theorems you use.

- (5) Consider the function $f(x, y) = ax^2 + by^2 + cxy + d$. **1 point**
 - (a) Assuming that $\nabla f(1,0) = (2,4)$, compute the values of $a \neq c$.
 - (b) Assuming, in addition, that the directional derivative at the point (0, 1) according to the vector $u = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ is $D_u f(0, 1) = 4\sqrt{2}$, compute, if possible, the values b and d.

(6) Let $f(x,y) = e^{a(x+y)} + e^{b(x-y)}$.

$1.5 \ points$

- (a) Find the Hessian, H f(0,0) of f at the point (0,0).
- (b) Discuss for what values of a and b the Hessian matrix $\operatorname{H} f(0,0)$ of f at the point (0,0), is positive definite.
- (c) Compute the second order Taylor polynomial of f around the point (0,0), for the values a = b = 1.

6

(7) Consider the function $f(x, y) = x^2 + y^3 - 14x - 27y$.

1'5 points

- (a) Find the critical values of f and classify them.
- (b) Find the largest open set A in which f is strictly convex and the largest open set B in which f is strictly concave.
- (c) Consider $f: A \to \mathbb{R}$. Does f attain a global maximum or minimum on A?

- (8) Consider the function f(x, y) = e^{xy}. 1 point
 (a) Write the Lagrange equations that determine the extreme points of f in the set A = {(x, y) ∈ ℝ² : x² + y² = 8}.
 - (b) Compute and classify the extreme points of f in the set A.