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(1) Consider the following system of linear equations ax+ y = 3
x− az = 2
y + z = b

where a, b ∈ R.
(a) Classify the system according to the values of a and b.
(b) Solve the above system for the values of a and b for which the system has infinitely many solutions.

Solución:
(a) After some permutations of the equations, the matrices associated to the system are

A =

 1 0 −a
a 1 0
0 1 1


and

(A|B) =

 1 0 −a
0 1 1
a 1 0

∣∣∣∣∣∣
2
b
3

 7→
 1 0 −a

0 1 1
0 1 a2

∣∣∣∣∣∣
2
b

3− 2a

 7→
 1 0 −a

0 1 a2

0 0 1− a2

∣∣∣∣∣∣
2

3− 2a
b− 3 + 2a

 = C

We study the possible ranks of A and compare them with the rank of (A|B). We see that, if a 6= 1
and a 6= −1, then rank(A) = rank(A|B) = 3. In any of these cases, the system is consistent and
has a unique solution.
If a = 1 then

C =

 1 0 −1
0 1 1
0 0 0

∣∣∣∣∣∣
2
1

b− 1


and we see that if b = 1, then rankC = 2 = rankA and the system is underdetermined with one
parameter. If b 6= 1, then rankC = 3, rankA = 2 and the system is inconsistent. Finally, if a = −1,
then

C =

 1 0 1
0 1 1
0 0 0

∣∣∣∣∣∣
2
5

b− 5


and we see that if b = 5, then rankC = 2 = rankA, so the system is underdetermined with one
parameter. If b 6= 5, then rankC = 3, rankA = 2 and the system is inconsistent.

(b) The system is underdetermined when a = 1, b = 1 and when a = −1, b = 5. For these values of a
and b, the original system is equivalent to the following one{

x− az = 2
y + z = 3− 2a

whose solution is x = 2 + az, y = 3− 2a− z, z ∈ R. Therefore, for a = 1, b = 1, the solution is

x = 2 + z, y = 1− z, z ∈ R
For a = −1, b = 5, the solution is

x = 2− z, y = 5− z, z ∈ R



(2) Consider the set A = {(x, y) ∈ R2 : y ≥ −x2 + 1, y ≤ −x2 + 4, x > 0, y ≥ 0} and the function

f(x, y) = x+
y

2
.

(a) Draw the set A, its boundary and its interior. Determine, justifying your answers, whether the set
A is closed, open, bounded, compact and/or convex.

(b) Are the hypotheses of Weierstrass’ Theorem satisfied for the set A and the function f? Draw the
level curves of f indicating the direction of growth. Use the level curves to determine (if they exist)
the global maximum and/or minimum of f on A and the points at which they are attained.

Solución:
(a) The representation of the set A is the following

(0,4)

(0,1)

(1,0)

y  = 4 -  x2 

(2,0)(1,0)

y  = 1 -  x2 

The interior and the boundary of the set A may be represented as

(0,4)

(0,1)

(1,0)

y  = 4 -  x2 

(2,0)(1,0)y  = 1 -  x2 

A º

(0,4)

(0,1)

(1,0)

y  = 4 -  x2 

(2,0)(1,0)y  = 1 -  x2 

!A

The set A is neither open (since, A does not coincide with its interior) nor closed (since, A does not
contain its boundary). It is bounded, because it may be contained in the ball of center (0, 0) and
radius 5. The set A is not convex because the line segment joining the points (1, 0) and (1/2, 3/4)
is not contained in A.

(0,4)

(0,1)

(1,0)

y  = 4 -  x2 

(2,0)(1,0)

y  = 1 -  x2 

The set A is not compact, because it is not closed.
(b) The hypotheses of Weierstrass’ Theorem are not satisfied because the set A is not compact (it

is bounded but not closed). The level curves of f are the sets {(x, y) ∈ R2 : x + y/2 = c/2} =
{(x, y) ∈ R2 : y = c− 2x} with c ∈ R. Graphically, (the arrow points in the direction of growth)

(0,4)

(0,1)
y  = 4 -  x2 

(2,0)

y  = 1 -  x2 

P

(0,c)

(c/2,0)

y = c - 2x

(1,0)

We see that the maximum value is attained at the point P at which the line y = c− 2x is tangent
to the graph of y = 4 − x2. At that point, we have that −2 = −2x, that is, x = 1. And, from
the equation y = 4 − x2, we get that P = (1, 3). Therefore, the global maximum of f in A is
f(1, 3) = 1 + 3/2 = 5/2.
The minimum value of f in Ā (the closure of A) is attained at the point (0, 1) /∈ A. Graphically,
we see that f(x, y) > f(0, 1) = 1/2 for every (x, y) ∈ A. Since, (0, 1) ∈ ∂(A) \ A, the function f
takes on A any value arbitrarily close (but larger than) f(0, 1). We conclude that f does not attain
a global minimum on A.



(3) Answer the following questions.
(a) Given the function f(x, y) = y lnxy−3, compute the plane tangent to the graph of f corresponding

to the point (x, y) = (1/2, 2). Compute the derivative of f at the point (1/2, 2) according to the
vector v = (−1, 3)

(b) Given the function f above, compute the Taylor polynomial of f of order two around the point
(1/2, 2).

Solución:
(a) The gradient vector is

∇f(x, y) =
(y
x
, lnxy + 1

)
At the point (1/2, 2) we have

∇f(1/2, 2) = (4, 1)

Since, f(1/2, 2) = −3, the equation of the tangent plane is 4(x− 1/2) + (y − 2) = z + 3. That is,
4x + y − z = 7. The derivative of f at the point (1/2, 2) according to the vector v = (−1, 3) is
∇f(1/2, 2) · v = (4, 1) · (−1, 3) = −1.

(b) The gradient associated to f is

∇f(1/2) = (4, 1)

The Hessian matrix associated to f is

H f(x, y) =

(
−y/x2 1/x

1/x 1/y

)
At the point (1/2, 2) we obtain,

H f(1/2, 2) =

(
−8 2
2 1/2

)
Taylor’s second order polynomial is

P2(x, y) = −3 + 4(x− 1/2) + (y − 2)− 4(x− 1/2)2 +
1

4
(y − 2)2 + 2(x− 1/2)(y − 2)



(4) Consider the function f(x, y) = 8ax3 − 24xy + y3, where a 6= 0.
(a) Find the critical points of the function f above.
(b) Classify the critical points found above, according to the values of a.

Solución:
(a) First, we compute the critical points of the function,

∂f

∂x
= 24ax2 − 24y = 0,

∂f

∂y
= −24x+ 3y2 = 0

That is, y = ax2, y2 = 8x. The solutions are x = y = 0 and x = 2a−2/3, y = 4a−1/3.
(b) We compute the Hessian matrix associated to f :

Hf(x, y) =

(
48ax −24
−24 6y

)
And we compute the Hessian matrix at the critical points,

Hf(0, 0) =

(
0 −24
−24 0

)
Since, the determinant is D2 = −242 < 0, the associated quadratic form is non-definite and (0, 0)
is a saddle point. On the other hand,

Hf(2a−2/3, 4a−1/3) =

(
96a1/3 −24
−24 24a−1/3

)
= 24

(
4a1/3 −1
−1 a−1/3

)
and we have that D1 = 96a1/3, D2 = 3×242 = 1728 > 0. Hence, if a > 0, the point (2a−2/3, 4a−1/3)
is a local minimum. Whereas if a < 0 it is a local maximum.



(5) Consider the function
f(x, y) = x4 − y4

and the set A = {(x, y) ∈ R2 : x2 + y2 = 1}.
(a) Find the Lagrange equations that determine the extreme points of f in A and calculate the solutions

of these equations.
(b) Characterize the above solutions into local maxima and minima, using the second order conditions.

Can you tell if they are global maxima and/or minima? (Explain your answer)

Solución:
(a) Lagrange’s function is

L(x, y, λ) = x4 − y4 − λ(x2 + y2 − 1)

The Lagrange’s equations are

4x3 − 2λx = 0

−4y3 − 2λy = 0

x2 + y2 = 1

They may be simplified to

x(2x2 − λ) = 0(1)

y(2y2 + λ) = 0(2)

x2 + y2 = 1(3)

If x = 0, from the last equation we get that y = ±1. So, λ = −2y2 = −2. Hence, the points

x = 0, y = ±1; λ = −2

are solutions of Lagrange’s equations. If x 6= 0, the first equations implies that λ = 2x2. Substi-
tuting this value of λ into the second equation, we obtain that 0 = y(2y2 +λ) = y(2y2 + 2x2) = 2y.
In the last step, we have used the third equation. Therefore, y = 0 and we see that the points

x = ±1, y = 0; λ = 2

are solutions of the Lagrange equations, as well.
(b) The restriction is g(x, y) = x2 + y2 − 1 and we have that ∇g(x, y) = 2(x, y). The Hessian matrix

associated to L is

HL(x, y;λ) =

(
12x2 − 2λ 0

0 −12y2 − 2λ

)
The associated quadratic form is HL es

Q(v1, v2) = (12x2 − 2λ)v21 − (12y2 + 2λ)v22

At the points x = 0, y = ±1, λ = −2, the associated vector subspace is T = {(v1, v2) ∈ R2 :
(0, y) · (v1, v2) = 0} = {(v1, v2) ∈ R2 : v2 = 0} = {(x, y) ∈ R2 : v2 = 0}, since, y = ±1.
The associated quadratic form Q restricted to T is Q∗(v1) = 4v21 , which is positive definite. We
conclude that the points (0,±1) correspond to strict local minima of f .

At the pointss x = ±1, y = 0, λ = 2, the associated vector subspace is T = {(v1, v2) ∈ R2 :
∇g(x, 0) · (v1, v2) = 0} = {(v1, v2) ∈ R2 : xv1 = 0} = {(x, y) ∈ R2 : v1 = 0}, ya que x = ±1.
The associated quadratic form Q restricted to T is Q∗(v2) = −4v22 , which is negative definite. We
conclude that the points (±1, 0) correspond to strict local maxima of f .

The set A is compact and the function f defined above is continuous. By Weierstrass’ Theorem,
the function f attains on A a maximum and a minimum value. Since, the regularity condition
is satisfied, the points at which the extreme values are attained are solutions of of the Lagrange
equations studied above. Since, f(0,±1) = −1, f(±1, 0) = 1, the function f attains in A its global
minimum value at the points (0,±1). And the function f attains in A its global maximum value
at the points (±1, 0).


