
(1) Given the following system of linear equations,
8
<

:

ax+ (3a+ 1)y + (3a+ 4)z = 1 + a� b

x+ 2y + 3z = 1
�2ax+ (2� 2a)y + (7� 5a)z = 3� 2a� ab� 2b

where a, b 2 R are parameters.

(a) Classify the system according to the values of a and b. 1 point

Solution: The matrix associated with the system is
0

@
a 3a+ 1 3a+ 4 a� b+ 1
1 2 3 1

�2a 2� 2a 7� 5a �ba� 2a� 2b+ 3

1

A

Exchanging rows 1 and 2 we obtain
0

@
1 2 3 1
a 3a+ 1 3a+ 4 a� b+ 1

�2a 2� 2a 7� 5a �ba� 2a� 2b+ 3

1

A

Next, we perform the following operations

row 2 7! row 2� a⇥ row 1

row 3 7! row 3+ 2a⇥ row 1

And we obtain that the original system is equivalent to another one whose augmented matrix is the
following 0

@
1 2 3 1
0 a+ 1 4 1� b

0 2a+ 2 a+ 7 �ab� 2b+ 3

1

A

Now, we perform the operation row 3 7! row 3� 2⇥ row 2 and we obtain
0

@
1 2 3 1
0 a+ 1 4 1� b

0 0 a� 1 1� ab

1

A

Expanding the determinant using the last row, we obtain that the determinant of the system is
(a+ 1)(a� 1). We conclude that if a 6= 1 and a 6= �1 then the system has a unique solution.

(i) Suppose now that a = 1. The proposed system is equivalent to another one whose augmented
matrix is 0

@
1 2 3 1
0 2 4 1� b

0 0 0 1� b

1

A

(A) If b 6= 1 the system has no solutions because rank(A) = 2 < rank(A|B) = 3.
(B) If b = 1 the system is undetermined with 1 parameter, since rank(A) = rank(A|B) = 2.

(ii) Suppose now that a = �1. The proposed system is equivalent to another one whose augmented
matrix is0

@
1 2 3 1
0 0 4 1� b

0 0 �2 b+ 1

1

A 7!

0

@
1 2 3 1
0 0 �2 b+ 1
0 0 4 1� b

1

A 7!

0

@
1 2 3 1
0 0 �2 b+ 1
0 0 0 b+ 3

1

A

(A) If b 6= �3 the system has no solutions because rank(A) = 2 < rank(A|B) = 3.
(B) If b = �3 the systeme is underdetermined with 1 parameter, since rank(A) = rank(A|B) =

2.

(b) Solve the above system for the values a = �1, b = �3. 1 point

Solution: The proposed system of linear equations is equivalente to the following one
⇢

x+ 2y + 3z = 1
�2z = �2

Choosing y as the parameter, the set of solutions is {(�2� 2y, y, 1) : y 2 R}.

1



(2) Consider the set A = {(x, y) 2 R2 : 0  x, 1� x
2
 y, x� 1  y} and the function

f(x, y) =
�x� 2y

2
defined on A.
(a) Sketch the graph of the set A and justify if it is open, closed, bounded, compact or convex.

1 point

Solution: The set A is approximately as indicated in the picture. It is closed because @A ⇢ A. It
is not open because A \ @A 6= ;. It is not bounded, because no ball centered at the origin, contains
the set A. Therefore, the set A is not compact. It is not convex, because the line segment that joins
the points (1, 0) 2 A and (0, 1) 2 A is not contained in A.

(b) Determine if it is possible to apply Weierstrass’ Theorem to the function f defined on A. Using

the level curves, determine (if they exist) the extreme global points of f on the set A. 1 point

Solution: Weierstrass’ Theorem does not apply because, even though the function f is continuous
in all of R2, the set A is not compact, since it is not bounded.
In the picture we represent three level curves. Note that following the level of growing level curves
we reach a global maximun a the point (1, 0). On the other hand, the function f does not have a
global minimum on A. To see this, note that if we look at the points (0, a) 2 A, when a ! 1 we
have that f(0, a) = �2a

2 ! �1



(3) Consider the function f(x, y) = x
3 + 2x2 + 2xy � 16x+ y2

2 � 2y � 4.

(a) Determine the largest open subset of R2 where the function is strictly concave or convex. 1 point

Solution: The gradient of f is
�
3x2 + 4x+ 2y � 16, 2x+ y � 2

�

The Hessian matrix is

Hf(x, y) =

✓
6x+ 4 2

2 1

◆

We see that D1 = 6x + 4 and D2 = 6x. If x > 0, then D1 > 0, D2 > 0. We conclude that the
function f is convex on the set {(x, y) 2 R2 : x > 0}. The function is not strictly convex on any
open set because if D1 < 0 then x < �2/3 and we would have that D2 < 0.

(b) Determine the critical points of the function f (if they exist) on R2. Classify the critical points of
f on A. Determine if any of those critical points is a global extreme point. Justify your answer.

1 point

Solution: The equations defining the critical points are

0 = 3x2 + 4x+ 2y � 16

0 = 2x+ y � 2

From the second equation we obtain that y = 2 � 2x. Substituting this value of y in the first
equation, we obtain 3x2

� 12 = 0. That is, x = ±2. We conclude that the solutions are (�2, 6) and
(2,�2). Note that

H(2,�2) =

✓
16 2
2 1

◆

y

H(�2, 6) =

✓
�8 2
2 1

◆

so, (2,�2) is a local minimum and (�2, 6) is a saddle point. Finally, note that limy!1 f(x, 0) =
+1, limx!�1 f(x, 0) = �1 so there is neither a global maximum, nor a global minimum.



(4) Consider the set of equations

�u
3 + v

2 + x
2
� y

2 + 4 = 0

�2u2 + 3v4 + 2xy + y
2 + 8 = 0

(a) Prove that the above system of equations determines implicitly two di↵erentiable functions u(x, y)

and v(x, y) in a neighborhood of the point (x, y, u, v) = (2,�1, 2, 1). 0,5 points

Solution: Let f1(x, y, u, v) = �u
3 + v

2 + x
2
� y

2 + 4, f2(x, y, u, v) = �2u2 + 3v4 + 2xy + y
2 + 8.

These functions are di↵erentiable of any order. Further, f1(2,�1, 2, 1) = f2(2,�1, 2, 1) = 0. We
compute

@ (f1, f2)

@ (u, v)
=

����
�3u2 2v
�4u 12v3

���� = 8uv � 36u2
v
3

which at the point (x, y, u, v) = (2,�1, 2, 1) takes the value �128. We have checked that the
assumptions of the implicit function theorem hold. Therefore the equations f1(x, y, u, v) = 0,
f2(x, y, u, v) = 0 define implicitly di↵erentiable functions u(x, y) and v(x, y) in a neigborhood of
the point (x, y, u, v) = (2,�1, 2, 1).

(b) Compute
@u

@x
(2,�1),

@v

@x
(2,�1)

@u

@y
(2,�1),

@v

@y
(2,�1)

1 point

Solution: Di↵erentiating implicitly with respect to x,

2x� 3u2 @u

@x
+ 2v

@v

@x
= 0

2y � 4u
@u

@x
+ 12v3

@v

@x
= 0

we plug in the values (x, y, u, v) = (2,�1, 2, 1) to obtain the following

4� 12
@u

@x
+ 2

@v

@x
= 0

�2� 8
@u

@x
+ 12

@v

@x
= 0

Hence, @u
@x (2,�1) = 13

32 ,
@v
@x (2,�1) = 7

16 . Di↵erentiating implicitly with respect to y,

�2y � 3u2 @u

@y
+ 2v

@v

@y
= 0

2x+ 2y � 4u
@u

@y
+ 12v3

@v

@y
= 0

we plug in the values (x, y, u, v) = (2,�1, 2, 1) to obtain the following

2� 12
@u

@y
+ 2

@v

@y
= 0

2� 8
@u

@y
+ 12

@v

@y
= 0

Hence, @u
@y (2,�1) = 5

32 ,
@v
@y (2,�1) = �

1
16 .

(c) Using the previous part and Taylor’s polynomial of order 1 of the function u(x, y), compute ap-

proximately the value of u(1.99,�1.019). 0,5 points

Solution: Recall Taylor’s polynomial of order 1 of u(x, y) at the point (a, b)

P2(x, y) = u(a, b) +
@u

@x
(a, b)(x� a) +

@u

@y
(a, b)(y � b)

we plug in the values (a, b) = (2,�1), (x, y) = (1.99,�1.019),

P2(1.99,�1.019) = u(2,�1) +
@u

@x
(2,�1)(�0.01) +

@u

@y
(2,�1)(�0.019) = 2� 0.01⇥

13

32
� 0.019⇥

5

32
= 1.93203



(5) Consider the function f(x, y, z) = x
2 + y

2 + z
2
� 3x� 4y and the sphere of equation x

2 + y
2 + z

2 = 25.
(a) Check that the hypotheses of Lagrange’s Theorem hold. Write the Lagrange equations for f on the

sphere. compute the points that satisfy those equations and the values of the associated Lagrange

multipliers. 1 point

(b) Assuming that the sphere is closed and bounded and using part (a) above, determine the extreme
points of the function f on the sphere. Determine which of those points correspond to global

maxima or minima. Justify your answer. 1 point

Solution:
(a) The objective function f and the restriction h(x, y, z) = x

2 + y
2 + z

2
� 25 are both of class C

1 (in
fact, they are of class C

n for any n). In addition, the gradient of h, rh(x, y, z) = (2x, 2y, 2z),
vanishes only at (0, 0, 0), which is not feasible. Hence, the assumptions of the Lagrange Theorem
are fulfilled. The extreme points of f on the sphere are critical points of the Lagrangian

L(z, y, z,�) = x
2 + y

2 + z
2
� 3x� 4y � �(x2 + y

2 + z
2
� 25).

The lagrange equations are:
8
>>>><

>>>>:

@L
@x (x, y, z) = 2x� 3� 2x� = 0
@L
@y (x, y, z) = 2y � 4� 2y� = 0
@L
@z (x, y, z) = 2z � 2z� = 0
@L
@� (x, y, z) = �(x2 + y

2 + z
2
� 25) = 0.

The third equation can be written as 2z(1 � �) = 0. Note that � = 1 is in contradiction with the
first and the second equation, hence z = 0. From the the first and second equations we obtain

x =
3

2(1� �)
, y =

4

2(1� �)

Plugging these values for x, y and z = 0 into the equation of the sphere, we have

9

4(1� �)2
+

16

4(1� �)2
= 25,

and solving for (1��)2, we find (1��)2 = 25
100 = 1

4 , that is, 1�� = ±
1
2 . Plugging these two values

of 1� � into the expression of x and y above, we find two critical points

P1 = (3, 4, 0), with �1 =
1

2
and P2 = (�3,�4, 0) with�2 =

3

2
.

(b) We use the second order conditions to classify critical points. The Hessian matrix of the Lagrangian
with respect to (x, y, z) is

HLx,y,z(x, y, z) =

0

@
2(1� �) 0 0

0 2(1� �) 0
0 0 2(1� �)

1

A .

At the point P1, the Hessian matrix is positive definite, thus P1 is a local minimum of f on the
sphere. At the point P2, the Hessian matrix is negative definite, thus P2 is a local maximum of f
on the sphere.
Alternatively, we can apply Weierstrass’ Theorem , since the sphere is a compact set and the
objective function is continuous. Thus, f admits global extrema on the sphere. Since these extreme
points satisfy the Lagrange equations, we conclude that P1 corresponds to a global minimum and
P2 corresponds to a global maximum of f on the sphere.


