(1) Given the following system of linear equations,

ar + (3a+ 1)y + (3a +4)z
T+ 2y + 3z
—2ax + (2 —2a)y + (7T — 5a)z

where a,b € R are parameters.
(a) Classify the system according to the values of a and b.

Solution: The matriz associated with the system is

a 3a+1 3a+4 a—b+1
1 2 3 1
—2a 2—2a T7—5a —ba—2a—2b+3
Ezchanging rows 1 and 2 we obtain

1 2 3 1
a 3a+1 3a+4 a—b+1
—2a 2—2a 7—5a —ba—2a—2b+3

Next, we perform the following operations

1+a—->5
1
3—2a—ab—2b

row 2+ row 2— a X row 1

row 3+ row 3+ 2a X row 1
And we obtain that the original system is equivalent to another one whose augmented matriz is the
following
1 2 3 1
0 a+1 4 1-0
0 2a+2 a+7 —ab—2b+3
Now, we perform the operation row 3+ row 3 — 2 X row 2 and we obtain

1 2 3 1
0 a+1 4 1-0
0 0 a—1 1—ab

Ezpanding the determinant using the last row, we obtain that the determinant of the system is
(a+1)(a—1). We conclude that if a # 1 and a # —1 then the system has a unique solution.

(i) Suppose now that a = 1. The proposed system is equivalent to another one whose augmented
matriz s
1

1 2 3
0 2 4 1-b
0 00 1-%

(A) If b # 1 the system has no solutions because rank(A) = 2 < rank(A|B) = 3.

(B) If b =1 the system is undetermined with 1 parameter, since rank(A) = rank(A|B) = 2.

(ii) Suppose now that a = —1. The proposed system is equivalent to another one whose augmented
matrizc s
1 2 3 1 1 2 3 1 1 2 3 1
00 4 1-b |00 -2 b+1 || 00 -2 b+1
00 —2 b+1 0 0 4 1-b% 0 0 0 b+3

(A) If b # —3 the system has no solutions because rank(A) = 2 < rank(A|B) = 3.

(B) Ifb = —3 the systeme is underdetermined with 1 parameter, since rank(A) = rank(A|B) =
2.

(b) Solve the above system for the values a = —1, b = —3.
Solution: The proposed system of linear equations is equivalente to the following one

rT+2y+3z = 1
—2z = -2

Choosing y as the parameter, the set of solutions is {(—2 — 2y,y,1) : y € R}.
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(2) Consider the set A= {(x,y) € R?*:0< 2, 1 —22 <y, r —1 <y} and the function

—x — 2y

f(l’,y): 2

defined on A.

(a)

Sketch the graph of the set A and justify if it is open, closed, bounded, compact or convex.

Solution: The set A is approzimately as indicated in the picture. It is closed because 0A C A. It
is mot open because ANOA # 0. It is not bounded, because no ball centered at the origin, contains
the set A. Therefore, the set A is not compact. It is not convex, because the line segment that joins
the points (1,0) € A and (0,1) € A is not contained in A.

Determine if it is possible to apply Weierstrass’ Theorem to the function f defined on A. Using
the level curves, determine (if they exist) the extreme global points of f on the set A.

Solution: Weierstrass’ Theorem does not apply because, even though the function f is continuous
in all of R?, the set A is not compact, since it is not bounded.

In the picture we represent three level curves. Note that following the level of growing level curves
we reach a global mazimun a the point (1,0). On the other hand, the function f does not have a
global minimum on A. To see this, note that if we look at the points (0,a) € A, when a — 0o we
have that f(0,a) = =2% — —oco



(3) Consider the function f(z,y) = 2% + 222 + 22y — 16z + % —2y—4.

(a) Determine the largest open subset of R? where the function is strictly concave or convex.

Solution: The gradient of f is
(32° + 4z 42y — 16,2z + y — 2)

The Hessian matriz is

Hf(z,y) = ( 6x2+4 f >

We see that D1 = 6x + 4 and Dy = 6x. If x > 0, then Dy > 0, Dy > 0. We conclude that the
function f is convex on the set {(x,y) € R? : 2 > 0}. The function is not strictly convexr on any
open set because if D1 < 0 then v < —2/3 and we would have that Dy < 0.

(b) Determine the critical points of the function f (if they exist) on R?. Classify the critical points of
f on A. Determine if any of those critical points is a global extreme point. Justify your answer.

Solution:  The equations defining the critical points are
0 = 32°+4x+2y— 16
0 = 2x+y—2

From the second equation we obtain that y = 2 — 2x. Substituting this value of y in the first
equation, we obtain 3x? —12 = 0. That is, * = £2. We conclude that the solutions are (—2,6) and

(2,—2). Note that
16 2
son— (% 2)

H(-2,6) = ( ;8 ? )

50, (2,-2) is a local minimum and (—2,6) is a saddle point. Finally, note that lim,_, f(z,0) =
+00, lim, o f(x,0) = —oc0 so there is neither a global mazimum, nor a global minimum.



(4) Consider the set of equations

(a)

P+ —yP 44 = 0
22+ 30r + 2y + 2 +8 =

Prove that the above system of equations determines implicitly two differentiable functions u(x, y)

and v(zx,y) in a neighborhood of the point (z,y,u,v) = (2,—1,2,1). |0,5 points

Solution: Let fi(z,y,u,v) = —u® + 02 +2% —y? +4, fo(z,y,u,v) = —2u? + 3v* + 22y + y? + 8.
These functions are differentiable of any order. Further, f1(2,—-1,2,1) = f2(2,-1,2,1) = 0. We
compute

d(f1, f2) —3u?® 2 5 3

Do) | —du 1208 | Suv — 36u”v
which at the point (x,y,u,v) = (2,—1,2,1) takes the value —128. We have checked that the
assumptions of the implicit function theorem hold. Therefore the equations fi(x,y,u,v) = 0,

fo(x,y,u,v) = 0 define implicitly differentiable functions u(x,y) and v(z,y) in a neigborhood of
the point (x,y,u,v) = (2,—1,2,1).

Compute

ou v Ju Ov
%(2771)3 %(2a71) aiy(za*l)v %(2771)

Solution: Differentiating implicitly with respect to x,

ou v
27 —3u— +2v— = 0
T U oz + U@x
ou v
2y —du— +120°— = 0
L it oz
we plug in the values (z,y,u,v) = (2,—1,2,1) to obtain the following
ou v
4-12—+2— = 0
Ox + ox
ou v
28 11228 = 0
oz + ox
Hence, %(2, -1)= é—‘;’, %(27 -1)= %, Differentiating implicitly with respect to v,
ou ov
2y —3u'— +2v— = 0
Y U ay + U@y
0 0
2 + 2y — duse + 120350 = 0
dy Ay
we plug in the values (x,y,u,v) = (2,—1,2,1) to obtain the following
ou v
2—-12—+2— =0
dy * oy
Ju Ov
2—-8—+12— = 0
oy + oy
Hence, %(27—1) =2, 2—2(2, —1)=—%.

Using the previous part and Taylor’s polynomial of order 1 of the function w(z,y), compute ap-
proximately the value of u(1.99,—1.019). | 0,5 points

Solution:  Recall Taylor’s polynomial of order 1 of u(x,y) at the point (a,b)

ou ou
PZ(xa y) - U(CL, b) + %(aa b)(il? - a) + @(aa b)(y - b)
we plug in the values (a,b) = (2,-1), (z,y) = (1.99, —1.019),

ou ou 13 5

P5(1.99, —1.019) = u(2, —1) + — (2, —1)(—0.01) + a—y(z, —1)(=0.019) = 2 — 0.01 x — — 0.019 x — = 1.93203

Ox 32 32



(5) Consider the function f(x,y,2) = 22 + y? + 22 — 32 — 4y and the sphere of equation 22 + y? + 22 = 25.
(a) Check that the hypotheses of Lagrange’s Theorem hold. Write the Lagrange equations for f on the
sphere. compute the points that satisfy those equations and the values of the associated Lagrange

multipliers.

(b) Assuming that the sphere is closed and bounded and using part (a) above, determine the extreme
points of the function f on the sphere. Determine which of those points correspond to global

maxima or minima. Justify your answer. | 1 point

Solution:

(a) The objective function f and the restriction h(z,y,2) = x® + y? + 22 — 25 are both of class C (in
fact, they are of class C™ for any n). In addition, the gradient of h, Vh(x,y,z) = (2x,2y, 2z),
vanishes only at (0,0,0), which is not feasible. Hence, the assumptions of the Lagrange Theorem
are fulfilled. The extreme points of f on the sphere are critical points of the Lagrangian

L(z,y,2,A\) = 22 + y* + 2% — 32 — 4y — M2? + y* + 2° — 25).

The lagrange equations are:

az(my,) = 22—-3-2zA=0
Fe(w,y,2) = 2y—4-29A=0

9L (z,y,2) = 22—22A=0

L(z,y,2) = —(2®+y?+22-25)=0.

The third equation can be written as 2z(1 — X\) = 0. Note that A\ = 1 is in contradiction with the
first and the second equation, hence z = 0. From the the first and second equations we obtain
3 B 4
20— YT 20N
Plugging these values for x, y and z = 0 into the equation of the sphere, we have
9 16
A2 4(1 e

and solving for (1—X\)2, we find (1—X)? = 100 =1 thatis, 1— X = 1. Plugging these two values
of 1 — X into the expression of x and y above, we find two critical points

xr =

1 3
P1 = (3,4, 0), with /\1 = § and P2 = (—3, —4,0) U)ith)\z = 5

(b) We use the second order conditions to classify critical points. The Hessian matriz of the Lagrangian
with respect to (x,y,z) is
2(1 = M) 0 0
HLyy - (2,y,2) = 0 2(1-=X) 0
0 0 2(1=X)
At the point Py, the Hessian matriz is positive definite, thus Py is a local minimum of f on the
sphere. At the point P, the Hessian matriz is negative definite, thus P is a local maximum of f
on the sphere.
Alternatively, we can apply Weierstrass’ Theorem , since the sphere is a compact set and the
objective function is continuous. Thus, f admits global extrema on the sphere. Since these extreme
points satisfy the Lagrange equations, we conclude that P corresponds to a global minimum and
P, corresponds to a global maximum of f on the sphere.



