
(1) Consider the following system of linear equations with a parameter a ∈ R. ax+ y + z = b
ax+ ay + z = a
x+ ay + az = 1

Please, answer the following questions.

(a) Classify the system according to the values of a. 1 point

Solution: The augmented matrix is a 1 1 b
a a 1 a
1 a a 1


After elementary row operations we obtain 1 a a 1

a a 1 a
a 1 1 b

 7→

 1 a a 1
0 a− a2 1− a2 0
0 1− a2 1− a2 b− a

 7→

 1 a a 1
0 a− a2 1− a2 0
0 1− a 0 b− a


We see that the original system is equivalent to another system of linear equations whose associated
matrix is  1 a a 1

0 a− a2 1− a2 0
0 1− a 0 b− a


Expanding the determinant using the last row, we see that the determinant associated to the system
is (1 − a)(1 − a2) = (1 − a)2(1 + a). We conclude that if a 6= 1 and a 6= −1 then, the system is
consistent.
Suppose now that a = 1. The original system is equivalent to another system of linear equations

whose associated matrix is  1 1 1 1
0 0 0 0
0 0 0 b− 1


If b 6= 1 the system is inconsistent. Whereas, if b = 1, the system is underdetermined with 3−1 = 2
parameters.
Suppose now that a = −1. The original system is equivalent to another system of linear equations
whose associated matrix is  1 −1 −1 1

0 −2 0 0
0 2 0 b+ 1


And we see that rank(A) = 2. If b 6= −1, then rank(A|b) = 3 the system is inconsistent. Whereas,
if b = −1, then rank(A|b) = 2 the system is underdetermined with 3− 2 = 1 parameters.

(b) Solve the above system for the values a = b = −1. 1 point

Solution: The original system is equivalent to the following onw{
x− y − z = 1
2y = 0

Choosing z as a parameter, the set of solutions is {(1 + z, 0, z) : z ∈ R}.
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(2) Consider the function f(x, y) = 4x− y and the set

A = {(x, y) ∈ R2 : 0 ≤ x ≤ 3, 0 ≤ y < 9, x2 ≤ y}.

(a) Represent the set A, its boundary, closure and interior. Argue whether the function f and the et

A satisfy the conditions of Weierstrass’ Theorem. 1 point

Solution: The set A is not closed: it does not contain its boundary because the line segment
joining the points (0, 9) and (3, 9) is contained in the boundary of A, but not in A. Since A is not
compact, the assumptions of Weierstrass’ Theorem are not fulfilled.

A

(0, 0) (3, 0)

y = x2

(0, 9) (3, 9)

Fr(A)

(0, 0) (3, 0)

y = x2

(0, 9) (3, 9)

◦
A

(0, 0) (3, 0)

y = x2

(0, 9) (3, 9)

Ā

(0, 0) (3, 0)

y = x2

(0, 9) (3, 9)

(b) Represent the level curves of the function f on the set A, indicating the directions in which f
increases/decreases. Using the level curves, determine (if they exist) the global extreme points of

f on A. 1 point

Solution: The level curves are straight lines with slope 4, 4x− y = C, where C ∈ R. The gradi-
ent of f , ∇f = (4,−1), points in the direction of maximal growth of f , and −∇f = (−4, 1) points
in the direction in which f decreases the fastest. The maximum value of f on A is attained at the
point (a, b) at which the level curve of f is tangent to the graph of y = x2. The slope of the straight
line tangent to the graph of y = x2 at the point (a, b) is 2a. Hence, 2a = 4, that is a = 2. On the
other hand, b = a2 = 4 and 4a − b = C implies C = 4. We conclude that f attains its maximum
value on A at the point (a, b) = (2, 4) and the maximum value is C = 4. To discuss the existence
of minima, note that the function f decreases as its level curves move towards the upper left corner
of the set A. Thus, if the point (0, 9) would belong to A, f would attain its minimum value on A
at that point. However, since (0, 9) does not belong to A, the function f does not attain a global



minimum value on A.
(0, 0) (3, 0)

(0, 9) (3, 9)◦

∇f
−∇f

C = 10C = 4C = −2C = −9
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(3) Consider the function f(x, y) = bx2 + y3 − 6bxy with b ∈ R, b 6= 0.

(a) Determine the critical points (if they exist) of the function f on the set R2. 1 point

Solution: The gradient of f is(
2bx− 6by, 3y2 − 6bx

)
The critical points are determined by the following equations

0 = b(2x− 6y)

0 = 3y2 − 6bx

Since, b 6= 0, the solutions are (0, 0), (18b, 6b).

(b) Classify the critical points found above into (local or global) maximum, minimum and saddle

points. 1 point

Solution: The Hessian matrix is

H(x, y) =

(
2b −6b
−6b 6y

)
We see that

H(0, 0) =

(
2b −6b
−6b 0

)
Since, det(H(0, 0)) = −36b2 < 0, the point (0, 0) is a saddle point. On the other hand,

H(18b, 6b) =

(
2b −6b
−6b 36b

)
We see that D1 = 2b and D2 = 36b2 > 0. We conclude that if b > 0, the point (18b, 6b) corresponds
to a local minimum, whereas if b < 0 the point (18b, 6b) corresponds to a local maximum.
Finally, f(0, y) = y3 and we see that limy→∞ f(0, y) = +∞, limy→−∞ f(0, y) = −∞ so there are
no global maximum or minimum points.



(4) Consider the equation 3xz − 8y3 − z3 + 6z = 3.
(a) Prove that the above equation defines a differentiable function z(x, y) in a neighbourhood of the

point (2, 1, 1). 1 point

Solution: Let f(x, y, z) = 3xz − 8y3 − z3 + 6z − 3. Since,

∂f

∂z
(2, 1, 1) = 3x− 3z2 + 6

∣∣
x=2,y=1,z=1

= 9

by the implicit function Theorem, the equation 3xz− 8y3− z3 + 6z = 3 defines z as a differentiable
function of the variables x and y, in a neighbourhood of the point (2, 1).

(b) Compute Taylor’s polinomial of order 1 of the function z(x, y), computed above, at the point (2, 1).

1 point

Solution: Differentiating implicitly the equation 3xz − 8y3 − z3 + 6z = 3 with respect to the
variables x and y we obtain

3z + 3x
∂z

∂x
− 3z2

∂z

∂x
+ 6

∂z

∂x
= 0

3x
∂z

∂y
− 24y2 − 3z2

∂z

∂y
+ 6

∂z

∂y
= 0

and substituting now x = 2, y = 1, z = 1 we get the equations

3 + 9
∂z

∂x
(2, 1) = 0

9
∂z

∂y
(2, 1)− 24 = 0

from these we obtain
∂z

∂x
(2, 1) =

−1

3
,

∂z

∂y
(2, 1) =

8

3

Therefore, Taylor’s polinomial of order 1 of the function z(x, y) at the point (2, 1) is

P1(x, y) = 1− x− 2

3
+

8

3
(y − 1)



(5) Consider the function f(x, y, z) = 2x+ y2 + z2 on the set A = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 9, z = 0}
(a) Write the Lagrange equations for f on the set A. Compute the points that satisfy those equations

and the value of the corresponding Lagrange multipliers. 1 point

Solution: The Lagrange function of the problem is L(x, y, z;λ, µ) = 2x+ y2 + z2 + λ(x2 + y2 +
z2) + µz. The Lagrange equations are

∂L
∂x = 2 + 2λx = 0,

∂L
∂y = 2y + 2λy = 0,

∂L
∂z = 2z + 2λz + µ = 0,

∂L
∂λ = x2 + y2 + z2 − 9 = 0

∂L
∂µ = z = 0

.

From the fifth equation we obtain z = 0 and from the third µ = 0. Therefore the above system
reduces to 

∂L
∂x = 2 + 2λx = 0,

∂L
∂y = 2y + 2λy = 0,

∂L
∂λ = x2 + y2 − 9 = 0

.

From the second equation we obtain 2y(1 + λ) = 0. Therefore,
- either y = 0 and substituting in the fourth equation x2 + 0 + 0 = 9 we obtain x = ±3, and

we get the solutions (3, 0, 0;− 1
3 , 0) and (−3, 0, 0; 1

3 , 0).
- or λ = −1 and substituting in the first equation we get x = 1 and substituting now in the

fourth equation 1 + y2 + 0 = 9 we obtain y = ±
√

8, and we get the solutions (1,
√

8, 0;−1, 0)

y (1,−
√

8, 0;−1, 0).

(b) Knowing that the set A is closed and bounded, study the existence of global extreme points of f

on A and compute those points. 1 point

Solution: Since, A is a compact set and f being a polynomial is continuous, Weierstrass’s
Theorem guarantees that f attains a global maximum and minimum on A. These points satisfy
the Lagrange equations computed above. We compute the value of the function at those points
f(3, 0, 0) = 6, f(−3, 0, 0) = −6 f(1,

√
8, 0) = 10 y f(1,−

√
8, 0) = 10 and we see that f attains the

minimum value at the point (−3, 0, 0) and the maximum value at the third and fourth points.


