(1) Consider the following system of linear equations with a parameter a € R.

ax+y+z = b
ar+ay+z = a
r4+ay+az = 1

Please, answer the following questions.

(a) Classify the system according to the values of a.

Solution: The augmented matriz is

a 1 1 b
a a 1 a
1 a a 1

After elementary row operations we obtain

a a 1 1 a a 1 1 a a 1
a 1 a —> 0 a—a®? 1—4d? 0 — 0 a—da? 1-4? 0
1 1 b 0 1—-a?2 1—-a? b—a 0 1—a 0 b—a

We see that the original system is equivalent to another system of linear equations whose associated

matriz 1s
1 a a 1

0 a—a® 1-a? 0

0 1-a 0 b—a
Ezpanding the determinant using the last row, we see that the determinant associated to the system
is (1 —a)(1 —a?) = (1 —a)?(1 +a). We conclude that if a # 1 and a # —1 then, the system is
consistent.
Suppose now that a = 1. The original system is equivalent to another system of linear equations

whose associated matriz is
1

1 1 1
0 0 O 0
0 0 0 b—-1
If b # 1 the system is inconsistent. Whereas, if b =1, the system is underdetermined with 3—1 = 2
parameters.
Suppose now that a = —1. The original system is equivalent to another system of linear equations
whose associated matriz is
1 -1 -1 1
0 -2 0 0
0 2 0 b+1

And we see that rank(A) = 2. If b # —1, then rank(A|b) = 3 the system is inconsistent. Whereas,
if b= —1, then rank(A|b) = 2 the system is underdetermined with 3 —2 =1 parameters.

Solve the above system for the values a = b = —1.

Solution: The original system is equivalent to the following onw

r—y—2z = 1
2y = 0

Choosing z as a parameter, the set of solutions is {(1+ 2,0,z) : z € R}.



(2) Consider the function f(z,y) = 42 — y and the set
A={(z,y) €ER* : 0<2<3,0<y<9, 22 <y}

(a) Represent the set A, its boundary, closure and interior. Argue whether the function f and the et
A satisfy the conditions of Weierstrass’ Theorem.

Solution: The set A is not closed: it does not contain its boundary because the line segment
joining the points (0,9) and (3,9) is contained in the boundary of A, but not in A. Since A is not
compact, the assumptions of Weierstrass’ Theorem are not fulfilled.
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(b) Represent the level curves of the function f on the set A, indicating the directions in which f
increases/decreases. Using the level curves, determine (if they exist) the global extreme points of
Fond
Solution:  The level curves are straight lines with slope 4, 4x —y = C, where C € R. The gradi-
ent of f, Vf = (4,—1), points in the direction of mazimal growth of f, and —V f = (—4,1) points
in the direction in which f decreases the fastest. The maximum value of f on A is attained at the
point (a,b) at which the level curve of f is tangent to the graph of y = x?. The slope of the straight
line tangent to the graph of y = x* at the point (a,b) is 2a. Hence, 2a = 4, that is a = 2. On the
other hand, b = a® = 4 and 4a — b = C implies C = 4. We conclude that f attains its mazimum
value on A at the point (a,b) = (2,4) and the mazimum value is C = 4. To discuss the existence
of minima, note that the function f decreases as its level curves move towards the upper left corner
of the set A. Thus, if the point (0,9) would belong to A, f would attain its minimum value on A
at that point. However, since (0,9) does not belong to A, the function f does not attain a global



(3,0)

2

minimum value on A.



(3) Consider the function f(z,y) = bx? + y3 — 6bzy with b € R, b # 0.

(a) Determine the critical points (if they exist) of the function f on the set R2.

Solution: The gradient of f is
(Qb:v — 6by, 3y° — 6bx)
The critical points are determined by the following equations
0 = b2z —6y)
0 = 3y°>—6bx
Since, b #£ 0, the solutions are (0,0), (18b,6b).

Classify the critical points found above into (local or global) maximum, minimum and saddle

Solution: The Hessian matriz is
2b  —6b
e = (o o)

woo=( 2, )

Since, det(H(0,0)) = —36b% < 0, the point (0,0) is a saddle point. On the other hand,

26 —6b
H(18b,6b) = ( C6b 36b )

We see that Dy = 2b and Dy = 36b% > 0. We conclude that if b > 0, the point (18b,6b) corresponds
to a local minimum, whereas if b < 0 the point (18b,6b) corresponds to a local maximum.
Finally, f(0,y) = y* and we see that lim,_,o f(0,y) = 400, limy—,_o f(0,y) = —occ so there are
no global maximum or minimum points.

We see that



(4) Consider the equation 3zz — 8y® — 23 + 62 = 3.
(a) Prove that the above equation defines a differentiable function z(z,y) in a neighbourhood of the

point (2,1,1).

Solution: Let f(x,y,z) = 3vz — 8y® — 23 + 62 — 3. Since,
of

0z

by the implicit function Theorem, the equation 3xz — 8y> — 2> 4+ 6z = 3 defines z as a differentiable
function of the variables x and y, in a neighbourhood of the point (2,1).

(2,1,1) = 3z — 32 + 6| 9

r=2,y=1,z=1 =

(b) Compute Taylor’s polinomial of order 1 of the function z(x,y), computed above, at the point (2,1).

Solution:  Differentiating implicitly the equation 3xz — Sy — 23 + 62 = 3 with respect to the
variables x and y we obtain

0z 0z 0z
32432 - —32"+6— = 0
aF Tor ‘ 8w+ ox
0z 0z 0z
3r—— —24y* -3 "~ +6— = 0
x@y Y ‘ dy + y
and substituting now x = 2,y = 1,z = 1 we get the equations
0z
3+9—(2,1) = 0
+ 3:c( 1)
0z
9—(2,1)—24 = 0
ay( ) )
from these we obtain
0z -1 0z 8
Ze)="—, Z@21)=-
8:0(’) 3’8y(’) 3
Therefore, Taylor’s polinomial of order 1 of the function z(x,y) at the point (2,1) is
r—2 8
Pz, y) =1- +3-1)

3 3



(5) Consider the function f(x,y,2) = 2z +y? + 22 on the set A = {(x,9,2) e R® : 22 +y?> + 22 =9,z = 0}
(a) Write the Lagrange equations for f on the set A. Compute the points that satisfy those equations

and the value of the corresponding Lagrange multipliers.

Solution: The Lagrange function of the problem is L(x,y, z; A\, i) = 22 + y? + 2% + X2 + y* +
2%) 4+ pz. The Lagrange equations are

9L =242\ =0,

% =2y +2\y =0,

9L =242\ +pu=0,
L =2+ +22-9=0

oL _ _ _
W =2=0

From the fifth equation we obtain z = 0 and from the third p = 0. Therefore the above system
reduces to o

% =2y +2\y =0,

% =22 +42-9=0

From the second equation we obtain 2y(1 + X) = 0. Therefore,
- either y = 0 and substituting in the fourth equation 2> 4+ 0+ 0 = 9 we obtain x = £3, and
we get the solutions (3,0,0; —%,O) and (—3,0,0; %,O).
- or A = —1 and substituting in the first equation we get x = 1 and substituting now in the
fourth equation 1 +y? +0 = 9 we obtain y = +/8, and we get the solutions (1,/8,0; —1,0)

y (1,—/8,0; —1,0).

(b) Knowing that the set A is closed and bounded, study the existence of global extreme points of f
on A and compute those points.

Solution:  Since, A is a compact set and f being a polynomial is continuous, Weierstrass’s
Theorem guarantees that f attains a global mazimum and minimum on A. These points satisfy
the Lagrange equations computed above. We compute the value of the function at those points
£(3,0,0) =6, f(=3,0,0) = —6 f(1,v/8,0) =10 y f(1,—/8,0) = 10 and we see that f attains the
minimum value at the point (—3,0,0) and the mazimum value at the third and fourth points.



