(1) Consider the following system of linear equations with two parameters a,b € R

r4+y+2z = 1
2ax + (3a — 1)y + (ba — 2)z = 2+ 2a
2ax + (3a — 1)y + (5a —2+b%)z = 2a—b+2

(a) State the Rouchée-Frobenius Theorem. | 0.5 points
(b) Classify the above system according to the values of a and b.

Solution: The augmented matrixz associated to the system is

1 1 2 1
2a 3a—1 5a — 2 2a + 2
2¢ 3a—1 bV*+5a—-2 2a—b+2

After elementary row operations, we obtain

1 1 2 1 1 1 2 1 1 1 2 1
20 3a-1 oa — 2 2a 42 — 0 a—-1 a—2 2 — 0 a—1 a—2 2
2¢ 3a—1 b>+5a—2 2a—b+2 0 a—1 b¥®>+a—-2 2-0 0 0 b2 —b
and the original system of equations is equivalent to another one whose augmented matriz is
1 1 2 1

0 a—1 a—2 2
0 0 b2 —b

We compute the determinant ezpanding the last row of the matriz A and we obtain det A = b*(a—1).
We conclude that,if a # 1 and b # 0, the system has a unique solution.

Suppose now that b = 0. Then, the original system is equivalent to another system of linear
equations whose associated matriz is

1 1 2 1
0 a—1 a—2 2
0 0 0 0

And we see that, when b = 0, rank(A) = rank(A|b) = 2 and the system is undetermined with
3 — 2 =1 parameter, for every value of the parameter a. Suppose now that a = 1. The system is
equivalent to a system of linear equations whose augmented matriz is

11 2 1
0 0 -1 2
00 v —b
And we see that rank(A) = 2. Adding the second row multiplied by b* to the third row we obtain
the matriz
1 1 2 1
0 0 -1 2

0 0 0 b20-1)
We conclude that if a =1 and b € R\ {0,1/2} the system is inconsistent. Whereas if a = 1 and
b=0 orb=1/2, the system is consistent and has infinitely many solutions which can be described
by 3 —2 =1 parameter.

(¢) Solve the above system for the values a =1, b =1/2.

Solution: The system is equivalent to the following system of linear equations
{ x + and + 2z 1

—z = 2
choosing y as the parameter, the set of solutions is {(5 — y,y, —2) : y € R}.



(2) Consider the function

fla,y) = { 212 (@) #(0,0)

(a) Compute the partial derivatives

of of
et 4 2L
D (0,0) an By (0,0)
and the gradient of the function f at the point (0,0).|1 point

Solution: Since, for z,y # 0, f(x,0) = f(0,y) = £(0,0) = 0 we have that

t—0 t - t—0
We conclude that of of

~+
=
1

o

~+

and V £(0,0) = (0,0).

(b) Compute the directional derivative of the function f according to the vector v = (1, 1) at the point

p = (0,0). Determine if the function f is differentiable at the point (0, 0).

Solution:  Fort # 0 we have that

3
Fp+tv) = f((0,0) + (1, 1) = f(t,1) = ;T - %
Therefore,
D, (p) = lim w = liHl1 = !
t—0 t t—0 2
Since,

Dy(p) # V f(0,0) - v
the function f is not differentiable at the point (0,0).



(3) Consider the function f(z,y) = y> — z3 + 322 + 3y

(a) Compute and classify the critical points (if any) of the function f in the set R2.

Solution: The gradient of f is
(633 — 322, 3y% + Gy)
The equations that define the critical points are
0 = 6z— 327
0 = 3y°>+6y
The solutions are (0,0), (0,—2), (2,—2) and (2,0). the Hessian matriz of the function f is

6-6c 0
H(x’y):< 0 6y+6>

We see that
H(0,0)<g g) H(O,Q)(g _06> H(2,2)<—06 _06) H(2,0)(—06 g)

Using the second order conditions, we conclude that at the point (0,0) the function attains a local
minimum, at (2,—2) it attains a local mazimum and (2,0) and (0,—2) are saddle points Finally,
F(0,y) =y + 3y? and we see that lim,_, f(0,y) = 400, lim,_, o f(0,y) = —oco. So, there are
no global mazima or minima in the set R2.

(b) Find the largest open subset S C R? where the function f is convex. Compute and classify the
critical points (if any) of the function f in the set S.

Solution: The Hessian matriz of the function f is
6 — 6x 0

Dy =6(1—z), Dy=36(1—2x)(1+y)
Thus, D1 > 0 if and only if x < 1. Assuming that x < 1, we see that Ds > 0 if and only if y > —1.
Therefore,

We see that

S={(z,y) eR?*: 2z <1,y > —1}
We see that the only critical point in S is (0,0) € S. By the local-global Theorem, (0,0) corresponds
to global minimum of f on S.



(4) Consider the function f(z,y) = 2% Iny.
(a) Compute the plane tangent to the graph of the function f at the point p = (1,1, 0).

Solution: Since, f(1,1) = 0, the point p is in the graph of the function f. On the other hand,
Vf(1,1) = (0,1). The equation of the tangent plane is z = f(1,1) + Vf(1,1) - (x = 1,y — 1) =
0+ (0,1)- (z — 1,y — 1), that 1s,

z=y—1

(b) Compute the Taylor polynomial of order 2 of the function f at the point p = (1,1).

Solution: The Hessian matriz of f is

2lny %I
Hf(CC,y): 2z z2

o=y 2

The Taylor polynomial of order 2 is

Py(z,y) = f(1,1)+Vf(1,1)~(x—l,y—l)—i—%(x—l y—l)Hf(Ll)(ch:i)

and

g1+ 20 - Dy —1) - 5y~ 1)?



(5) Let f(x,y,2) = x + 2z and consider the sphere with equation 22 + 3% + 22 = 1.

(a)

Verify that the assumptions of Lagrange’s Theorem hold. Write the Lagrange equations and obtain

the solutions of those equations.

Solution: The objetive function f and the restriction h(z,y,z) = x? +y? + 22 — 1 are both
of class C* in R3 (if fact, they are of class C", for any n). In addition, the gradient of h is
Vh(z,y,z) = (2x,2y,2z), does not vanish at any point of the sphere. Hence, the assumptions of
the Lagrange multiplier Theorem are fulfilled. And the extreme points of f on the sphere are also
critical points of Lagrange’s function:
La(z,y,2) =2+ 2+ Ma® + 9% + 22 — 1),
for some A € R. Hence, the possible extreme points of f in the sphere satisfy the following equations:
BL (x y,2) =14+2zA=0

G(@y.2) =2A=0
aL*(x y,2) =1422A=0
22+t +22 =1

This is a system of four non-linear equations with four unknowns. First, note that A # 0. Oth-
erwise the first and third equation would yield a contradiction. Now, from the second equation we
obtain y = 0. On the other hand, from the first and third equation we get that x = z. And plugging

these last two equalities in the last equation we conclude that © = z = i%. Hence, the critical

points are P, = (%,O, %), for A\ =—1/v/2 and P, = ( \/57 — ) for A =1/V/2.

Determine the extreme points of f on the sphere. Determine if those points are local or global
extreme points. Justify the answer.

Solution:  We use the second order conditions to classify the critical points. The Hessian matriz
of the Lagrangian is

20 0 0
HLy\(z,y,2) = 0 2\ 0
0 0 2

At the point Py the Hessian matriz is negative definite. Hence, the function [ attains a local mazx-
imum at the point Py. At the point Py the Hessian matrix is positive definite. Hence, the function
f attains a local minimum at the point Ps.

On the other hand, we note that the objective function is continuous on the sphere, which is a
compact set. Therefore Weierstras’ Theorem garanties that f attains a maximum and a minimum
value on the sphere. Since these extreme points satisfy the Lagrange equations, we conclude that
Py corresponds to a global maximum and P corresponds to a global minimum of f on the sphere.



