
(1) Consider the following system of linear equations with two parameters a, b ∈ R x+ y + 2z = 1
2ax+ (3a− 1)y + (5a− 2)z = 2 + 2a
2ax+ (3a− 1)y + (5a− 2 + b2)z = 2a− b+ 2

(a) State the Rouchée–Frobenius Theorem. 0.5 points

(b) Classify the above system according to the values of a and b. 1 point

Solution: The augmented matrix associated to the system is 1 1 2 1
2a 3a− 1 5a− 2 2a+ 2
2a 3a− 1 b2 + 5a− 2 2a− b+ 2


After elementary row operations, we obtain 1 1 2 1

2a 3a− 1 5a− 2 2a+ 2
2a 3a− 1 b2 + 5a− 2 2a− b+ 2

 7→

 1 1 2 1
0 a− 1 a− 2 2
0 a− 1 b2 + a− 2 2− b

 7→

 1 1 2 1
0 a− 1 a− 2 2
0 0 b2 −b


and the original system of equations is equivalent to another one whose augmented matrix is 1 1 2 1

0 a− 1 a− 2 2
0 0 b2 −b


We compute the determinant expanding the last row of the matrix A and we obtain detA = b2(a−1).
We conclude that,if a 6= 1 and b 6= 0, the system has a unique solution.
Suppose now that b = 0. Then, the original system is equivalent to another system of linear
equations whose associated matrix is 1 1 2 1

0 a− 1 a− 2 2
0 0 0 0


And we see that, when b = 0, rank(A) = rank(A|b) = 2 and the system is undetermined with
3 − 2 = 1 parameter, for every value of the parameter a. Suppose now that a = 1. The system is
equivalent to a system of linear equations whose augmented matrix is 1 1 2 1

0 0 −1 2
0 0 b2 −b


And we see that rank(A) = 2. Adding the second row multiplied by b2 to the third row we obtain
the matrix  1 1 2 1

0 0 −1 2
0 0 0 b(2b− 1)


We conclude that if a = 1 and b ∈ R \ {0, 1/2} the system is inconsistent. Whereas if a = 1 and
b = 0 or b = 1/2, the system is consistent and has infinitely many solutions which can be described
by 3− 2 = 1 parameter.

(c) Solve the above system for the values a = 1, b = 1/2. 0.5 points

Solution: The system is equivalent to the following system of linear equations{
x+ and+ 2z = 1
−z = 2

choosing y as the parameter, the set of solutions is {(5− y, y,−2) : y ∈ R}.
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(2) Consider the function

f(x, y) =

{
x2y
x2+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0)

(a) Compute the partial derivatives

∂f

∂x
(0, 0) and

∂f

∂y
(0, 0)

and the gradient of the function f at the point (0, 0). 1 point

Solution: Since, for x, y 6= 0, f(x, 0) = f(0, y) = f(0, 0) = 0 we have that

lim
t→0

f(t, 0)− f(0, 0)

t
= lim
t→0

f(0, t)− f(0, 0)

t
= lim
t→0

0

t
= 0

We conclude that
∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0

and ∇f(0, 0) = (0, 0).

(b) Compute the directional derivative of the function f according to the vector v = (1, 1) at the point

p = (0, 0). Determine if the function f is differentiable at the point (0, 0). 1 point

Solution: For t 6= 0 we have that

f(p+ tv) = f((0, 0) + t(1, 1)) = f(t, t) =
t3

2t2
=
t

2
Therefore,

Dv(p) = lim
t→0

f(p+ tv)− f(p)

t
= lim
t→0

1

2
=

1

2
Since,

Dv(p) 6= ∇f(0, 0) · v
the function f is not differentiable at the point (0, 0).



(3) Consider the function f(x, y) = y3 − x3 + 3x2 + 3y2.

(a) Compute and classify the critical points (if any) of the function f in the set R2. 1 point

Solution: The gradient of f is(
6x− 3x2, 3y2 + 6y

)
The equations that define the critical points are

0 = 6x− 3x2

0 = 3y2 + 6y

The solutions are (0, 0), (0,−2), (2,−2) and (2, 0). the Hessian matrix of the function f is

H(x, y) =

(
6− 6x 0

0 6y + 6

)
We see that

H(0, 0) =

(
6 0
0 6

)
, H(0,−2) =

(
6 0
0 −6

)
, H(2,−2) =

(
−6 0
0 −6

)
, H(2, 0) =

(
−6 0
0 6

)
Using the second order conditions, we conclude that at the point (0, 0) the function attains a local
minimum, at (2,−2) it attains a local maximum and (2, 0) and (0,−2) are saddle points Finally,
f(0, y) = y3 + 3y2 and we see that limy→∞ f(0, y) = +∞, limy→−∞ f(0, y) = −∞. So, there are
no global maxima or minima in the set R2.

(b) Find the largest open subset S ⊂ R2 where the function f is convex. Compute and classify the

critical points (if any) of the function f in the set S. 1 point

Solution: The Hessian matrix of the function f is

Hf(x, y) =

(
6− 6x 0

0 6y + 6

)
We see that

D1 = 6(1− x), D2 = 36(1− x)(1 + y)

Thus, D1 > 0 if and only if x < 1. Assuming that x < 1, we see that D2 > 0 if and only if y > −1.
Therefore,

S = {(x, y) ∈ R2 : x < 1, y > −1}
We see that the only critical point in S is (0, 0) ∈ S. By the local-global Theorem, (0, 0) corresponds
to global minimum of f on S.



(4) Consider the function f(x, y) = x2 ln y.

(a) Compute the plane tangent to the graph of the function f at the point p = (1, 1, 0). 1 point

Solution: Since, f(1, 1) = 0, the point p is in the graph of the function f . On the other hand,
∇f(1, 1) = (0, 1). The equation of the tangent plane is z = f(1, 1) + ∇f(1, 1) · (x − 1, y − 1) =
0 + (0, 1) · (x− 1, y − 1), that is,

z = y − 1

(b) Compute the Taylor polynomial of order 2 of the function f at the point p = (1, 1). 1 point

Solution: The Hessian matrix of f is

Hf(x, y) =

(
2 ln y 2x

y
2x
y −x

2

y2

)
and

Hf(1, 1) =

(
0 2
2 −1

)
The Taylor polynomial of order 2 is

P2(x, y) = f(1, 1) +∇f(1, 1) · (x− 1, y − 1) +
1

2

(
x− 1 y − 1

)
Hf(1, 1)

(
x− 1
y − 1

)
= y − 1 + 2(x− 1)(y − 1)− 1

2
(y − 1)2



(5) Let f(x, y, z) = x+ z and consider the sphere with equation x2 + y2 + z2 = 1.
(a) Verify that the assumptions of Lagrange’s Theorem hold. Write the Lagrange equations and obtain

the solutions of those equations. 1 point

Solution: The objetive function f and the restriction h(x, y, z) = x2 + y2 + z2 − 1 are both
of class C1 in R3 (if fact, they are of class Cn, for any n). In addition, the gradient of h is
∇h(x, y, z) = (2x, 2y, 2z), does not vanish at any point of the sphere. Hence, the assumptions of
the Lagrange multiplier Theorem are fulfilled. And the extreme points of f on the sphere are also
critical points of Lagrange’s function:

Lλ(x, y, z) = x+ z + λ(x2 + y2 + z2 − 1),

for some λ ∈ R. Hence, the possible extreme points of f in the sphere satisfy the following equations:
∂Lλ

∂x (x, y, z) = 1 + 2xλ = 0
∂Lλ

∂y (x, y, z) = 2yλ = 0
∂Lλ

∂z (x, y, z) = 1 + 2zλ = 0
x2 + y2 + z2 = 1

This is a system of four non-linear equations with four unknowns. First, note that λ 6= 0. Oth-
erwise the first and third equation would yield a contradiction. Now, from the second equation we
obtain y = 0. On the other hand, from the first and third equation we get that x = z. And plugging
these last two equalities in the last equation we conclude that x = z = ± 1√

2
. Hence, the critical

points are P1 =
(

1√
2
, 0, 1√

2

)
, for λ = −1/

√
2 and P2 =

(
− 1√

2
, 0,− 1√

2

)
for λ = 1/

√
2.

(b) Determine the extreme points of f on the sphere. Determine if those points are local or global

extreme points. Justify the answer. 1 point

Solution: We use the second order conditions to classify the critical points. The Hessian matrix
of the Lagrangian is

HLλ(x, y, z) =

 2λ 0 0
0 2λ 0
0 0 2λ


At the point P1 the Hessian matrix is negative definite. Hence, the function f attains a local max-
imum at the point P1. At the point P2 the Hessian matrix is positive definite. Hence, the function
f attains a local minimum at the point P2.
On the other hand, we note that the objective function is continuous on the sphere, which is a
compact set. Therefore Weierstras’ Theorem garanties that f attains a maximum and a minimum
value on the sphere. Since these extreme points satisfy the Lagrange equations, we conclude that
P1 corresponds to a global maximum and P2 corresponds to a global minimum of f on the sphere.


