(1) Given the following system of linear equations with a parameter $a \in \mathbb{R}$

 $\begin{cases} ax+y+z = 1\\ x+ay+z = a\\ x+y+az = a^2 \end{cases}$

(a) Classify the system according to the values of a. **1 point**

(b) Solve the above system for the value of the parameter a = 1. **1 point**

(2)

(a) Show that the following system of equations

 $y^{2} + z^{2} - x^{2} + 2 = 0$ yz + xz - xy - 1 = 0

defines two functions y = y(x), z = z(x) in a neighborhood of the point (x, y, z) = (2, 1, 1). Compute y'(2), z'(2). **1 point**

- (b) Consider the functions $F(x, y, z) = xz y^2$ and G(x) = F(x, y(x), z(x)). Compute G'(2). **1 point**
- (3) Consider the function f(x, y) = x²/y + ay² with a ∈ ℝ defined on the open set D = {(x, y) ∈ ℝ² : y > 0}.
 (a) Study the convexity of the function f in the set A, depending on the values of the parameter a.
 1 point
 - (b) Compute the Taylor polynomial of degree 2 of the function f at the point p = (0, 1). 1 point
- (4) Consider the function f(x, y, z) = x y + z and the set $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 9, x + z = 4\}$.
 - (a) Compute the Lagrange equations that determine the extreme points of the function f in the set A. Compute the points that satisfy the Lagrange equations and the values of the corresponding Lagrange multipliers at each of the points. **1 point**
 - (b) Using the second order conditions, classify the solutions found in the previous part into maxima, minima and local points. Can you say if any of the local maxima and/or maxima is a global extreme point on the set A? Justify adequately your answers. 1 point
- (5) Consider the function $f(x, y) = x^4 + y^3 2a^2x^2 3y$ with $a \in \mathbb{R}, a \neq 0$.
 - (a) Determine the critical points of the function f in the set \mathbb{R}^2 . **1 point**
 - (b) Classify the critical points of the previous part into (local and/or global) maxima and saddle points.

 1 point

 1