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(1) Given the following system of linear equations with a parameter a € R

(a)

ar+y+z = 1
r+ay+z = a
r+yt+az = ada?

Classify the system according to the values of a.
Solution: Using Gauss’ method, the row elementary operations, we have obtained the following
augmented matrix of a linear system of equations equivalent to the given system:

1 1 a a?
0 a—1 1—a a—a?
0 0 —a’?—a+2 —-d*—a’+a+1

Firstly, if a # 1 and a # —2 the linear system is consistent and determined, with only one solution.
Secondly, suppose that a = 1, the linear system is equivalent to another one whose augmented
matrix is

( 11 11 )
Then the system is consistent and underdetermined and the solution needs 2 different parameters.
Thirdly, if a = —2 the linear system is equivalent to another one whose augmented matrix is

1 1 -2 4

0 -3 3 -6

o 0 0 3

and the linear system is inconsistent, it has no solution.

Solve the above system for the value of the parameter a = 1.

Solution: As we said above, in this case the linear system is equivalent to
r+y+z=1

If we choose z,y as the real parameters the solution will be {(z,y,1 —z —vy) : z,y € R}.

Show that the following system of equations
Y422 —224+2 = 0
yz+axz—a2zy—1 = 0
defines two functions y = y(z), z = z(x) in a neighborhood of the point (x,y,2z) = (2,1,1).

Compute y'(2), 2/(2).

Solution: Defining the functions fi(x,y,2) = y? + 22 — 22+ 2, fo(x,y,2) = yz + vz — a2y — 1. We
calculate

I(f1, f2) % % 2y 2z
—_— z = :2 —
0yoz %—% % z—x x+vy (@+y—2)(y+2)

and we obtain J(f1, f2)(2,1,1) = 8, using the implicit function theorem we know that there are
two implicit functions y = y(z), z = z(z) defined by the system of equations on a neighborhood
of the point (z,y,z) = (2,1,1). Now if we differentiate implicitly the system with respect to x we
obtain:

2y(z)y () + 22(z)' (x) =22 = 0

y'r)z(x) +y(@)e (z) + 2(z) + 22'(x) —y(z) —ay/(x) = 0

Evaluating these equations at the values x = 2, y(2) =1, 2(2) = 1 we get
2y (2)+22'(2)—4 = 0
32(2)—y'(2) = 0
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Consider the functions F(x,y, 2) = zz2—y? and G(z) = F(z,y(z), 2(z)). Compute G’ (2).
Solution: Differentiating the new function implicitly we obtain G'(z) = —2y(x)y'(z) + 2/ (z) +
z(x). Therefore, G(2) = —2y(2)y'(2) + 22'(2) + 2(2) = —1.

and solving the linear system, our solutions are y/(2) = 2, 2/(2) =




(3) Consider the function f(z,y) = %2 + ay? with a € R defined on the open set D = {(x,y) € R? : y > 0}.
(a) Study the convexity of the function f in the set A, depending on the values of the parameter a.
Solution: We need the hessian matrix in order to calculate the sign of quadratic form related to

it. Firstly we calculate the gradient vector of the function:

0 0 r  —2
Vi(z,y) = ( a—i(m,y) %(w,y) > = < % ?—&-Qay >

and secondly, calculating the second order derivatives we get the hessian

Mo Loy 2
az2 Y Oydzx oY Y y?
Hf(z,y) o o = vy 9y
—2X xr
_— — 4+ 2
axay(xvy) ayg (‘T?y) y2 y3 +2a

2 2 (222
Using the leading minors method to calculate its sign: Dy = — and Dy = — <I3 + Qa) —
Y y\y

—22\* 4
(;) - and we get: V(z,y) € A and Va > 0 D; > 0 and Dy > 0 then Hf is positive
Y Y

definite or positive semidefinite, that means f is convex. V(z,y) € A and Va < 0 D; > 0 and
Dy < 0 then, Hf is indefinite and f is neither convex nor concave.

(b) Compute the Taylor polynomial of degree 2 of the function f at the point p = (0, 1).
Solution: The second order Taylor’s Polynomial is

paey) = FO1)+ VO @y -1+ (@ y—l)Hf(OJ)(yfl)

= a+2a(y—1)+2* +ay—1)>2

onsider the runction f(z,y,2) = r—y+z an e se =1r,y,z) € Ytz =9, c+z=4;.
4) Consider the functi d the set A R3:224+y?+22=9 4

(a) Compute the Lagrange equations that determine the extreme points of the function f in the set

A. Compute the points that satisfy the Lagrange equations and the values of the corresponding

Lagrange multipliers at each of the points.

Solution: The Lagragian function of the problemis L=x—y+2z— A (x2 +y? 422 - 9) —pu(x+

z —4). So, Lagrange equations are:

=2\ —p=0, —1-2\y=0, 1-22z2—p=0, z4+2=4 2>+¢y>+22=9

Whose solutions are
x:z:Z,y:—l,/\:%,u:fl

and L
x:z=2,y:1,/\=—§,u=3

(b) Using the second order conditions, classify the solutions found in the previous part into maxima,
minima and local points. Can you say if any of the local maxima and/or maxima is a global
extreme point on the set A? Justify adequately your answers.

Solution: The Hessian matrix is

—-2Xx 0 0
H(x,y,z;\, p) = 0 —2x 0
0 0 —2X
On the one hand, at the point t = 2z=2,y = -1, A = %,u = —1, we obtain
-1 0 0
H(2,-1,2;1/2,-1) = 0 -1 0
o 0 -1
and its sign is negative definite. Thus, the point x = z = 2,y = —1 is a local minimum. On the
other hand, at the point x =2 =2,y =1, = —%,,u =3, we get
1 00
H(2,1,2,;1/2,3)=[ 0 1 0
0 0 1



that is positive definite. So, the point z = z = 2,y = 1 is a local minimum. Since the set of points
A is regular, compact and the function f is continuous, then applying Weierstrass’ theorem we can
state that the calculated critical points are indeed the global extreme points of f on A.

(5) Consider the function f(x,y) = z* + y3 — 24?22 — 3y with a € R, a # 0.

(a) Determine the critical points of the function f in the set R2.

Solution: The gradient vector of f is
(—4z(a —2)(a+2),3 (y* — 1))
and the critical points are defined by these equations:
0 = z(a—2x)(a+2)
0 = ¢y*—-1

The solutions of this system are: (0, £1), (+a,£1).
(b) Classify the critical points of the previous part into (local and/or global) maximum and/or mini-

mum points and saddle points.

Solution: The Hessian matrix is

1222 —4a® 0
H(z,y) = ( 0 6y >

And we obtain for all of those points,

H(0,—1) = ( *L(l)az —06 ), H(-a,—1) = ( 882 —06 ), H(a,-1) = ( 882 —06 )

H(O,l):( ) —(882 2), H<@71):(882 2)

Therefore, the point ( is a local minimum, all the points (£a, 1) are local minima and the
points (—a, —1), (a, ) (0 1) are saddle points. Furthermore, we can see that f(x,0) = 2% —2a%x?
Then lim,_, o f(a:,O) = +oo and there is no global maximum. Also, we observe that f(0,y) =
y> — 3y. Then lim,_, o, f(0,y) = —co and there is no global minimum.



