(1) Given the following system of linear equations,

3r—y+2z = 1
r+4dy+z = b
20 -5y +(a+1)z = 0

where a,b € R are parameters.

(a) Classify the system according to the values of a and b.

Solution: The matriz associated with the system is

3 -1 2 1

1 4 1 b

2 =5 a+1 O
Exchanging rows 1 and 2 we obtain

1 4 1 b

3 -1 2 1

2 =5 a+1 0

Next, we perform the following operations
row 2+ row 2— 3 X row 1

row 8+ row 8— 2 X row 1

And we obtain that the original system is equivalent to another one whose augmented matriz is the
following

1 4 1 b

0 —-13 -1 1-3b

0 —-13 a—1 -=2b
Now, we perform the operation row 8 — row 8 — row 2 and we obtain

1 4 1 b
0 —-13 -1 1-3b
0 0 a b-1
We see that
(i) if a # 0, then rank A = rank(A|b) = 3. The system is consistent with a unique solution.

(ii) If a = 0 the system is consistent if and only if b = 1. In the latter case, rank A = rank(A|b) =
2. The system is underdetermined with one parameter.

Solve the above system for all the values a and b for which the system is consistent.

Solution: Suppose first that a # 0. The proposed system of linear equations is equivalent to the
following one

r+dy+z = b
—18y—2 = 1—-3b
az = b-1
The solution is
alb+4)—9b+9 3ab—a—-b+1 b—1
- 13a Y= 1Ba  ° a
Suppose now that a = 0, b = 1. The proposed system of linear equations is equivalent to the
following one
r+4y+z = 1
{ -By—2 = -2

The solution is
r=9y—-1, 2z=2-13y, yelR



(2) Consider the set A= {(z,y) €ER?:0<2<1,0<y<1,(z—1)2+ (y—1)? <1} and the function

fl,y) =z —y

defined on A.

(a) Sketch the graph of the set A, its boundary and its interior and justify if it is open, closed, bounded,

compact or convex. | 5 points

Solution: The set A is approximately as indicated (in blue) in the picture.
Y -
@12+ (y-12=1
/// r=1 v
\
L1
A )
X

The interior and the boundary are

S

~<d

The set A closed because DA C A. It is not open because AN OA # (. It is bounded. Therefore,
the set A is compact. It is convex because the set A is the intersection of three sets A= BNCND
with
B={(z,y) eR*: (z 1)+ (y-1)* <1}

C={(z,y) eR*: 2 <1}
and

D={(x,y) eR?:y <1}
The function g(x) = (x — 1) + (y — 1)? is convex. Therefore B is convex. The sets C' and D are
half-planes and, hence, also convex. Since A is the intersection of convex sets, it is also conver.

State Weierstrass’ Theorem. Determine if it is possible to apply Weierstrass’ Theorem to the func-
tion f defined on A. Using the level curves, determine (if they exist) the extreme global points of

f on the set A.

Solution: The function f(x,y) = © —y is continuous and the set A is compact. Weierstrass’
Theorem may be applied. The function f attains a global mazimum and a global minimum on A.
The level curves are of the form y = x — ¢, ¢ € R. In the picture we represent the level curves in
red color. The arrow represents the direction of growth of the function f

Y
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Graphically, we see that the mazimum value is attained at the point (1,0) and the minimum value
is attained at the point (0,1).



(3) Consider the function f(z,y) = ax® + ay?® — 22y where a € R is a parameter and a > 0.

(a)

Compute the gradient and the Hessian matrix of the function f. Compute the Taylor polynomial

of degree 2 of f, centered at the point x = 0, y = 1. Compute the critical points of f.

Solution: The gradient of the function is
Vi(x,y) = (3ax2 — 2y, 2ay — 2z)
We obtain now the Hessian matrix
Hf(x,y) ( - )
Note that f(0,1) = a. The gradient evaluated at the point x =0, y =1 is
Vf(0,1) = (-2,2a)

The Hessian matriz evaluated at the point x =0, y =1 is

Hf(0,1) = ( —02 ;j )

and Taylor’s polynomial of degree 2 of f centered at the point x =0, y =1 s
1
Po=a—-2x+2a(y—1)+ 5(2a(y —1)? —da(y — 1)) = ay® — 22y
The critical points satisfy the equations
3az? —2y=0, ay—xz=0

The solutions are

and

R

Determine the largest open set of R? where the function f is concave or convex, depending on the
values of the parameter a.

Solution:  The principal dominant minors of the Hessian matriz are
D1 =6azx, Dy = 126z — 4
If & > L5, then Dy, Dy > 0. Therefore, the function is strictly convex in the set

3a27
{(z y)GR2:m>i
’ 3a2
On the other hand, f cannot be concave, because D1 < 0 if and only if © < 0. But, then Dy < 0
and the associated quadratic form is indefinite.



(4) Consider the set of equations

(a)

ch+zy2 =
z+y—z2 = 0

Prove that the above system of equations determines implicitly two differentiable functions y(x)
and z(x) in a neighborhood of the point (z,y,z) = (0,1, 1).

Solution:  We first remark that (z,y,z) = (0,1,1) is a solution of the system of equations. The
functions fi(x,y,2) = xy + zy? and fo(z,y,2) = +y — 2z are of class C*°. We compute

9 o
Y2 vJj2 — —
9 92 l(z,y,2)=(0,1,1) ! Heyo=o1n 11

By the implicit function theorem, the above system of equations determines implicitly two differen-
tiable functions y(x) and z(xz) in a neighborhood of the point (x,y,z) = (0,1,1).

Compute
y'(0),2'(0)
and the first order Taylor polynomial of y(x) and z(x) at the point o = 0.

Solution: Differentiating implicitly with respect to x,
y+ay + 2y +2zyy = 0
1+y -2 =

We plug in the values (z,y,z) = (0,1,1) to obtain the following
1+2(0)+24(0) = 0
1+4(0)=2(0) = 0

So,
1 2
") = = ") = — =
J0=5 Y0 =
Thus, Taylor’s polynomial of order 1 of the function y(x) at the point xg =0 is
2
Pi(e) = 3(0) +9/(0)r =1~ 2
and Taylor’s polynomial of order 1 of the function z(x) at the point xo = 0 is

Q1(z) = 2(0) + 2'(0)z =1+ %x



(5) Consider the function
flay) =y —a® -y’

(a) Determine the extreme points of f in the set R2.
(b) Classify the extreme points of f in the set R? and justify if they are local or global extreme points.

Solution:  The function f is of class C™ in R?. We compute the gradient of f
Vi(z,y) = (y — 3%z - 2y)
The critical points are the solutions of the system of equations
y—32°=0, x—2y=0

11
(0,0) and (6, 12)

Hf(w,y) = ( o )

0 1
So, Dy = —1 < 0. The associated quadratic form is indefinite. The point (0,0) is a saddle point.
At the point (1 1 ) we obtain
11 -1 1
H _, — =
f(6’12> ( 1 2)
1

6212
So, D1 = —1 < 0, Dy =1 > 0, which is negative definite. Hence, the point (é, 12) corresponds to a
local mazimum. Since,

The solutions are
The Hessian matriz is

At the point (0,0) we obtain

lim f(z,0) = —o0, lim f(z,0) =00

T—00 Tr—r—00

the point (%, %) does not correspond to global mazimum.
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(6) Consider the function

fl@y,2) = (& =1+ (y—2)* + (z — 3)?
and the set

S ={(@.y.2) o +y+z=1}

(a) Write the Lagrangian function and the Lagrange equations.
(b) Using the Lagrangian method, find the minima of f(z,y, z) on the set S.

Solution: The candidates for the global extreme points must satisfy the first-order necessary
conditions. The Lagrangian is

Llz,y,z)= (=1 +(y—2°+ (-3 - ANa+y+2-1)
The first-order necessary conditions are:

Lo(z,y,2) = A+2(z—1)=0
Ly(z,y,2) = A+2(y—2)=0
L.(r,y,z) = A+2(z2—-3)=0
r+y+z=1
The solution is
2 1 4 3 10
xr=—— = — Zz = — [ gp—
37 YTy 3’ 3
Note that the Lagrangian associated with the Hessian is
2 0 0
HL(z,y,z;A) = 0 2 0
0 0 2

which is positive definite. Hence, the critical point corresponds to a local and global minimum.



