University Carlos III of Madrid

Department of Economics Mathematics II. Final Exam. September 2005.

IMPORTANT:

- DURATION OF THE EXAM: 2h. 30min.
- Calculators are **NOT** allowed.
- Hand in this booklet. Do not hand in scratch paper. Only the answers written on this booklet will be graded.
- You must show a valid ID to the professor.
- Each part of the exam counts 0'5 points.

Last Name: Name:

DNI: Group:

(1) Consider the following system of linear equations

$$x + by + z = 1$$
$$y + az = b$$
$$x + (b - 1)y + 2z = 1$$

where a and b are parameters.

- (a) Determine, according to the values of a and b, whether the system is compatible, incompatible, determinate or indeterminate.
- (b) Solve the system for the values of a and b for which the system is compatible indeterminate.
- (2) Given the matrix

$$A = \begin{pmatrix} 2 & a & a+1 \\ 0 & 2 & 0 \\ 0 & a & 1 \end{pmatrix}$$

- (a) Compute the characteristic polynomial and the eigenvalues.
- (b) For the value a = 0, check that the matrix A is diagonalizable and find the matrix change of basis.
- (c) Study for which values of $a \neq 0$, the matrix A is diagonalizable.
- (3) Given the vectors $\{(-1,2,1,-3),(3,-1,1,-2),(2,1,2,-5),(2,-4,-2,6)\}$ in \mathbb{R}^4 .
 - (a) Compute the dimension of the linear subspace generated by them.
 - (b) Obtain the linear equations that determine the linear subspace generated by them.
- (4) Let $A = \{(x, y) \in \mathbb{R}^2 : x \ge 0, x + |y| \le 1\}.$
 - (a) Draw the set A.
 - (b) Draw the boundary, the interior and the closure of the set A. Is A closed, open, convex, bounded or compact?
 - (c) Consider the function

$$f(x,y) = \begin{cases} \frac{x^2 + y^2}{(1-x)^2} & \text{If } x \neq 1, \\ 0 & \text{If } x = 1. \end{cases}$$

Determine if the function f attains a maximum or a minimum in the set A.

(5) Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = \begin{cases} \frac{y^2 - x^3 y}{x^2 + y^2} & \text{if } (x,y) = (0,0), \\ 0 & \text{if } (x,y) \neq (0,0). \end{cases}$$

- (a) Study if the function f is continuous at the point (0,0)
- (b) Determine whether the partial derivatives of f at the point (0,0) exist.
- (c) Study if the function f is differentiable at the point (0,0).
- (6) Consider the function $f(x, y) = x^4 + x^2y^2 + y^4 3x 8y$,
 - (a) Compute the Taylor polynomial of order two of f around the point (0,0).
 - (b) Determine if the function f is concave or convex in \mathbb{R}^2
- (7) Given the function $f(x,y) = y^2x ay^2 ax^2$

- (a) Show that (0,0) is a critical point of f for any value of a and study its type of critical, according to the values of the parameter a.
- (b) For a = 1 find all the critical points of f.
- (c) For a = 1 classify the critical points of f obtained part b).
- (8) Consider the function f(x, y, z) = x + y + z defined on the set $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + 2y^2 + 4z^2 = 1\}$.
 - (a) Find the Lagrange equations that determine the extreme points of f on A.
 - (b) Determine the points that satisfy the Lagrange equations and classify all the extreme points of f on A.