University Carlos III of Madrid

Department of Economics Mathematics II. Final Exam. June 2006.

IMPORTANT:

- DURATION OF THE EXAM: 2h. 30min.
- Calculators are **NOT** allowed.
- Hand in this booklet. Do not hand in scrap paper. Only the answers written on this booklet will be graded.
- You must show a valid ID to the professor.
- Each part of the exam counts 0'5 points.

Last Name: Name:

DNI: Group:

(1) Consider the following system of linear equations,

$$ax + y + z = 1$$

$$x + ay + z = 0$$

$$x + y + az = -1$$

where $a \in \mathbb{R}$ is a parameter.

- (a) Classify the system according to the values of a.
- (b) Solve the above system for the values of a for which the system is compatible indeterminate.
- (2) Given the matrix

$$A = \left(\begin{array}{ccc} 3 & 0 & \beta \\ 2 & -1 & -4 \\ 0 & 0 & \alpha \end{array}\right)$$

where $\alpha, \beta \in \mathbb{R}$ are parameters,

- (a) Find the characteristic polynomial and the eigenvalues.
- (b) Determine for which values of the parameters $\alpha, \beta \in \mathbb{R}$, the matrix is diagonalizable.
- (c) For the values of the parameters $\alpha=-1$ and $\beta=-8$, find the corresponding diagonal matrix and the matrix change of basis.
- (3) Given the linear mapping $f: \mathbb{R}^4 \to \mathbb{R}^3$,

$$f(x, y, z, t) = (-x - y - z, x - y - t, -3x - 3y - 3z)$$

- (a) Compute the dimensions of the kernel and the image and a set of equations for these subspaces.
- (b) Find a basis of the image of f and a basis of the kernel of f.
- (4) Given the set

$$S = \{(x, y) \in \mathbb{R}^2 : x \le 1, y \ge 0, y \le x^3\}$$

- (a) Draw the set S, its boundary and interior and discuss whether the set S is open, closed, bounded, compact and/or convex. You must explain your answer.
- (b) Show that the function $f(x,y) = (x-1)^2 + (y-1)^2$ has a maximum and a minimum on the set S.
- (c) Draw the level curves of f(x,y) and determine where the maxima and the minima of f on S.
- (5) Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = \begin{cases} \frac{3x^2y^2}{x^4+y^4} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) Study if the function f is continuous at the point (0,0).
- (b) Compute the partial derivatives of f at the point (0,0).
- (c) Determine at which points of \mathbb{R}^2 the partial derivatives of f are continuous.
- (6) Consider the function

$$f(x, y, z) = x^2 + ay^2 + z^2 + 2axy + 2xz - 2yz$$

1

(a) Find the Hessian matrix of f.

- (b) Study for which values of parameter a, the function f is strictly concave or strictly convex.
- (7) Consider the function $f(x, y) = 8x^3 + 2xy 3x^2 + y^2 + 1$.
 - (a) Find the critical points of f.
 - (b) Classify the critical points of f that you found in the previous part.
 - (c) Determine whether f has any global extreme points on the set

$$A = \{(x, y) \in \mathbb{R}^2 : \frac{1}{4} < x\}$$

Hint: Study the concavity or convexity of f on the set A.

(8) Consider the function

$$f(x,y) = \frac{x^3}{3} + \frac{y^3}{3} + 2x^2$$

and the set

$$A = \{(x, y) : x^2 + y^2 = 3\}$$

- (a) Find the Lagrange equations that determine the extreme points of f in the set A.
- (b) Determine the points that satisfy the Lagrange equations and find the extreme points of f in A, specifying whether they are maxima or minima.