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EXERCISES (SOLUTIONS )

CHAPTER 4: Higher order derivatives

4-1. Let u : R? — R be defined by u(x,y) = e“siny. Find all the second partial derivatives D?*u, and verify
Schwarz’s Theorem.

Solution: The partial derivatives of the function u(z,y) = e*siny are
ou

— = e”siny, — =e"cosy

Ox oy
e’siny e®cosy
e’ cosy —e’siny

4-2. Consider the quadratic function Q : R3 — R defined by Q(x,y,2) = 2% + 5y? + 4wy — 2yz. Compute the
Hessian matriz D*Q).

Therefore the Hessian is

Solution: The gradient of @ is
V(z? + 5y + dzy — 2yz) = (2 + 4y, 10y + 4z — 22, —2y)

The Hessian matrix of @) is

2 4 0
4 10 -2
0 -2 0

4-3. Let f(x,y,2z) = e* + % +xzeY, for x # 0. Compute
0% f 0% f 0% f 0% f

822" 9xzdy’  Oydz’  Oy?

Solution: The partial derivatives of the function f(z,y,z) =e* + % + ze Y are

0?f(x,y,2) 2
02 a3
82f(x,y,z) — eV

Jdxdy

Pf@y.z) oy
dyox

2
& fg;y) Z) =xe Y

4-4. Let z = f(x,y), * = at, y = bt where a and b are constant. Consider z as a function of t. Compute ‘31275 mn

terms of a, b and the second partial derivatives of f: frow, fyy and fzy.

Solution: Since the function is of class C?, we may apply Schwarz’s Theorem.

%(f(at7 bt)) =afs (at,bt) + bf, (at, bt)
j—;( f(at,bt)) =a®f.. (at,bt) + 2abfy, (at,bt) + b*f,, (at,bt)



4-5.

Let f(x,y) = 322y + 423y* — 72%y*. Compute the Hessian matriz D?Q..
Solution: The gradient of f is
Vi(x,y) = (ny + 1222y — 6323y, 322 4+ 1623y° — 28x9y3)
The Hessian matrix of f is
6y + 24xy* — 50427y 6 + 4822y — 252283
H(z,y) = ( 6x + 48x%y> — 25228y3 48x3y? — T4x%y? >
. Let f,g: R?2 — R be two functions whose partial derivatives are continuous on all of R? and such that there
is a function n h : R? — R such that (f,g) = Vh, that is,
fla,y) = %(x,y) g(x,y) = %(:ﬂ,y)
at every point (z,y) € R2. What equation do
of 99
a—y and Pz
satisfy?

Solution: On the one hand, we have that
of 9(8) o
oy Oy  0x0y

On the other hand, we see that
o ( 2k 2
@ B oy . 0“h
or  Ox  Oyox
Since the functions f and g have continuous partial derivatives on all of R?, the function h is of class C?. By
Schwartz’s Theorem, we conclude that

0%h B 0%h
oxdy m
That is,
of _ g
dy Oz

. The demand function of a consumer by a system of equations of the form

ou

P —— = )\

Ox P1

ou

P — = )\

ay D2
piT+py = m

where u(x,y) is the utility function of the agent, p1 and py are th prices of the consumption bundles, m is
income and A € R. Assuming that this system determines x, y and X\ as functions of the other parameters,
determine

oz
op1
Solution: First we write the system as
fi = % —Ap1 =0
f2 = %Z —Ap2 =0
fs = pmr+tpy—m=0
and compute
Pu Pu
O(fr.forfs) _| o8, 5 _p1 _Pu,  Pu +@2
A (x,y, \) dzdy  Iy? P2 a2 P2 8x8yp1p2 Oy? P

P1 D2 0



We suppose that this determinant does not vanish and that we may apply the mean value Theorem. Differ-
entiating with respect to p; (but assuming now that z, y, A depend on the other parameters) we obtain
0%u Oz 0%u Oy oA
02 9p1  O0xdy Op1 6p1p
O%u Or  O%u Oy oA

_—t - — = 0
D20y Ops | O Opi Opr "
or Jdy
x+ +p2—=0
n op1 b2 op1
which may be written as
0%u Oz 0%u Oy o\
S b 5~ opL = A
0x? Op1 0xdy dp1  Op;
0%u Ox 0%u Oy oA
— + 248  a P2=
0x0y Op; 0y? 0p1  Op
o oy
b1 opr b2 op1
The unknowns of the above system are
o oy 0
op1” Op1’ Om
We see that the determinant of the system is
91, fa, f5)
9 (z,y,)
Using Cramer’s rule we see that,
82
A Bzzgy —h
27u
0 y? P 2 9*u 8%u
oxr ) 0 B A3 + Mgaepe — Mg sp1

T 92u,2 92u 92u, 2 92u, 2 92u 92u, 2
om 0z2P2 — proyP1P2 + ay2 P1 022 P2 — 3z, P1P2 + ay2 P1

. Consider the system of equations

224t — xy =
2t+2? = y2
(a) Prove that it determines z and t as functions of x, y near the point (1,0,1,—1).
(b) Compute the partial derivatives of z and t with respect to x, y at (1,0).
c)
d)

(¢) Without solving the system, swhat is approzimate value of z(1'001,0’002)
(d) Compute

0%z
Oxdy

(1,0)

Solution:
(a) First we write the system as

f 2 4t—ay=0
fao = z2t+2>—9y>=0
and compute

8(f1,f2) _ 2z 1 2222—t
0 (z,t) t z
which does not vanish for z = 1, t = —1. Therefore, we may apply the implicit function Theorem.
Differentiating the above system with respect to = we obtain
0z Ot
22—+ — — = 0
o + oz
0] 0
Phtad +z—+2x = 0



Now we plug in the values z =1,y =0, z=1,¢t = —1 and obtain

0z ot
2£(1,0) + %(170) =0
0z ot
—a(l,O) + %(170) = -2
SO
0z 2 ot 4

0 =2 Z-_Z
ax( '0) 37 Oz 3
Differentiating the above system with respect to y we obtain

0z Ot
22—+ — — =0
Z@y + oy T
0z ot
t— — =2y =0
oy —l—zay Y
Now we plug in the values z =1,y =0, 2z =1, ¢t = —1 and obtain
0z ot
2— (1,0 —(1,0) = 1
G0+ 5(1,0)
0z ot
—— (1,00 + —(1,0) = 0
To(1.0)+ 5(1.0)
SO
0z 1 0Ot 1
—(1,0)=-, —(1,0)=-
ay( k) ) 3’ ay( ) ) 3
We use Taylor’s first order approximation about the point (1,0)
0z

Pi(z,y) = 2(1,0) + 5=

(1,0)(x — 1) + 2—2(1,0)y =1+ ;(x— 1)+

wle

and we obtain that

0’002 0002
+

2(1'001,0'002) ~ P(1'001,0'002) = 1 + 3 =1'00133
Differentiating implicitly the system 1 with respect to z,
0z Oz 0%z 0%t
2— — 4+ 22— -1 =0
oz Oy + Zaxay * Jzxdy
ot 6Z—|—t 0%z +3z ot N 0%t 0
et e AT —
oz Oy 0xdy  Ox Jy 0xdy
Now we plug in the values
0z 2 Ot 4 0Oz 1 ot
=1 =0 =1, t=-1, —(1,0) == —=—-——=, —(1,0) == —
X ) y 9 z ) ) ax( ) ) 37 ax 3 ) ay( ) ) 37 ay

so the system becomes

0%z 0%t 5
2 1 1 = =
6x8y( 0) + 8x8y( 0) 9
0%z 0%t 2
- 1 1 = =
axay( 0) 8m8y( »0) 9
and solving it we obtain that
1

0%t 3 0%z
1 = - 1 = —
8x0y( 0) 9’ Bxay( '0) 9

4-9. Consider the system of equations

P +z—y> = 0
4zt = x—4

(a) Prove that it determines z and t as functions of x, y near the point (0,1,1,—1).

) Compute the partial derivatives of z and t with respect to x, y at (0,1).

(¢) Without solving the system, gwhat is approzimate value of z(0'001,1002)



(d) Compute
0z
Oxdy

(0,1)

Solution:
(a) First we write the system as

fi = a2t2+2—y>=0
fo = 4d2t—24+4=0
and compute
8 (fl, f2) 1 3(Et2 . 3
which does not vanish for x = 0,y = 1,z = 1,t = —1. Therefore, we may apply the implicit function
Theorem.
Differentiating the above system with respect to = we obtain
ot 0z
B +3tP —+ = = 0
+or or + ox
0z ot
dt—+4z2— -1 = 0
oz + “or
Now we plug in the values =0,y = 1,z = 1, = —1 and obtain
0z
—-1+—(0,1) = 0
+ ax( ) )
0z ot
—4—(0,1)+4—(0,1)—1 = 0
8:c< 1)+ 8x( 1)
SO 5 5
z t 5
Z0,1)=1, —(0,1)=-
&T( 1) ’ Bx( 1) 4
Differentiating the above system with respect to y we obtain
at 0z
3rt? —+ ~—2y = 0
T oy + oy Y
taz n ot 0
el
dy Oy
Now we plug in the values z =0,y =1,z = 1,£ = —1 and obtain
0z
—(0,1)—2 = 0
S0
0z ot
——(0,1)+ —(0,1) = 0
So0.0)+ 2(0.)
SO 5 5
z t
Z0,1)=2, =(0,1)=2
S0 =2 0.
(b) We use Taylor’s first order approximation about the point (0, 1),
0 9]
Pile,y) = 2(0,1) + 5 (0. + 6—2(0, Dy -1)=z+2y—1

and we obtain that
2(0'001,1'002) ~ P(0'001,1'002) = 0'001 + 2’004 — 1 = 1’005
(c) Differentiating implicitly the system 2 with respect to x,
ot ot ot 0%t 9%z

32— 4+ 6xt—— + 3t —— + —— = 0
dy +or Ox Jy o 0xdy + 0xdy
ot 0z 0%z 0z Ot 0%t
4—— 44t 4——+14 = 0
oz dy + 0xdy + Ox Oy + Zazﬁy
Now we plug in the values
0z ot 5 0z ot
= =1lz=1t=-1, —(0,1)=1, —(0,1)=-, —(0,1)=2, —(0,1)=2
€ O7y 7Z ) Y am (0? ) ? 81} (07 ) 47 ay (07 ) ? ay (07 )



so the system becomes
02z
dxdy
0%z 0%t

18 — 4 4 =
8 Oxdy + 0x0y

6+

(0,1) = 0

and solving it we obtain that
0%t 21 0%z
0,1)=—— 0,1)=—6

4-10. Find the second order Taylor polinomial for the following functions about the given point.
(a) f(z,y) =In(1+ z+ 2y) about the point (2,1).

(b) f(z,y) = 23 + 32%y + 62y® — 522 + 3zy? about the point (1,2).
(c) f(x,y) = e*TY about the point (0,0).

(d) f(z,y) = sin(xy) + cos(xy) about the point (0,0).

(e) f(z,y,2) = x —y* + xz about the point (1,0,3).

Solution: The Taylor polynomial of order 2 of f around the point z is

Pw) = f(m0) + Vf(z0) - (2 = 20) + o5 (2 — 20)" H f(z0) (& — o)

(a) f(z,y) =log(l+ x4+ 2y) in (2,1). Since,

1 2
2,1) =
VizD <1+x+2y’1+x+2y>

_ 1 _ 2
< (1+x;—2y)2 (1+x2—2y)2 >

T (tat2y)? T (ta+2y)?

the Hessian is

r=2,y=1

and
f(2,1) =1nb

we have that Taylor’s polynomial is

Pye) =I5t S =)+ 2y — 1)~ (e =2~ o (o= 2y 1) — oy~ 1)

() f(x,y) = 2° + 322y + 62y* — 522 + 32y? in (1,2). Since,

V£(1,2) = (32% + 6yx + 9y — 10z, 32 + 18yz)| _, oo = (41,39)
the Hessian is
6z + 6y — 10 6z + 18y _ 8 42
6z + 18y 18z e T\ 42 18
r=1,y=2

and
f(1,2) =38

we have that Taylor’s polynomial is
Py(x) =38 +41(x —1) +39(y — 2) + 4(x — 1)* +42(z — 1)(y — 2) + 9(y — 2)?
(¢) f(z,y) = e"t¥ at the point (0,0). We have that f(0,0) = 1. The gradient is
Vf(ov 0) - (eIerv eery) ’1:0,1}:0 - (607 60)]

( e:chy 6z+y ) ( 60 60

z+y z+y = 0 0

e e 2=0,y=0 e e
1

Thus, Taylor’s polynomial is
_ 1.9 2y _ 1, 19
Py(z)=1+1z+ 1y + 2'(193 +2zy +y )—1+z+y+2x +yx + 5Y

and the Hessian is




(d) f(z,y) =sin(ay) + cos(xy) at the point (0,0). First, f(0,0) = 1. The gradient is
Vf(0,0) = ((cosyz)y — (sinyx) y, (cosyz) x — (sinyz) )| ,_¢ ,—o = (0,0)

The second derivatives are

0? .

( 8;;2 = —y? sin(y) — g cos(ya)

o f . .

900y = —yxsin(yx) + cos(yx) — yx cos(yzx) — sin(yx)
2

(zyj); = 2?2 — 2% cos(yx)

and Hessian at the point (0,0) is
0 1
1 0
Py(z,y) = 1 +yx

(e) f(x,y,2) =2 —y?+ xz at the point (1,0,3). First, f(1,0,3) = 4. The gradient is
VI(1,0,3) = (1+ 2 -2y,2)|,y yg.—3 = (4,0,1)

Hence, Taylor’s polynomial is

and the Hessian is

0 0 1
0 -2 0
1 0 0

Hence, Taylor’s polynomial is

Py(z,y,2)=4+4(x— 1)+ (2 —3) + %(—23}2 +2(z—1)(z = 3))

4-11. For what values of the parameter a is the quadratic form Q (z,vy,2) = x? —2axy — 22z +1y* +4yz + 522 positive
definite?

Solution: Q(x,vy,z) = 22 — 2axy — 2wz + y? + dyz + 522
It will be positive definite if D; > 0, Dy > 0, D3 > 0. Let us compute these.

D; =1

Dgz‘la —1(1 =1-a? >0 if and only if |a| < 1.
1 —a -1

Dy=| —a 1 2 |=-5d>+4a=a(4—>5a)>0if and only if a € (0,4/5).
-1 2 )

Therefore, the quadratic form is positive definite if a € (0,4/5). When a = 0 or a = 4/5, we have that
Dy >0, Dy > 0, D3 = 0. So, the quadratic form is positive semidefinite, but not positive definite. When
a € (—o0,0)U (%, +00) we see that Dy > 0, D3 < 0 so the quadratic form is indefinite.

4-12. Study the signature of the following quadratic forms.
(a) Q1 (w,y,2) =22+ Ty? + 822 — 6xy + 42 — 10yz.
(b) Q2 (z,y,2) = —2y* — 22 + 22y + 222 + dy=.

1 -3 2
Solution: a) The matrix associated to @1 is -3 7 —5 |. Let us compute D; =1 >0, Dy =
2 -5 8
1 _3 1 -3 2
‘ 3 7 ’ =—2and D3=| =3 7 —5 | = —9. Therefore, the quadratic form is indefinite. (Note that
2 -5 8
it was not necessary to compute D3)
0 1 1
b) The matrix associated to Q2 is 1 -2 2 . We see that D; = 0. Can we still apply the method
1 2 -1

of principal minors? To do so we perform the following change of variables: T = z, Z = . We see that

Q2 (%,y,2) = —2y° — 2% + 22y + 227 + 4yT



-1 2 1 1

whose associated matrix is 2 =2 1 |. The principal minors are D1 = —1, Dy = ‘ 9 _9 ‘ = -2
1 1 0
Therefore, the quadratic form is indefinite.
1 1
Here is another way to do this exercise. Since, D3 =| 1 -2 2 |=7%0. But, D; =0, Dy = —1, so
1 2 -1

by Proposition 3.13, the quadratic form is indefinite.

4-13. Study for what values of a the quadratic form Q (z,y,2) = ax? + 4ay? + 4az® + 4xy + 2axz + 4yz is
(a) positive definite.
(b) negative definite.

Solution: The matrix associated to the quadratic form Q(z,vy, z) = ax? + day? + 4a2* + dzvy + 2axz + 4yz
is

a 2 a
2 4a 2
a 2 4da

(a) We study conditions under which the principal minors satisfy the following

(1) D1 =a>0.
(ii) Dy = ' ; 42a = 4a* — 4 = 4(a® — 1) > 0. This condition is satisfied if and only if |a| > 1
a 2 a
(iii) D3=| 2 4a 2 |=12a%—-12a =12a(a®* —1) > 0.
a 2 4a

Assuming a > 0, the condition a(a®? — 1) > 0 simplifies to (a® — 1) > 0 which is satisfied if and only if
la| > 1. Therefore, @ es positive definite if a > 1.
(b) We study conditions under which the principal minors satisfy the following
(1) D1 =a<0.
.. a 2
(ii) Ds = ’ 9 a
Assuming, a < 0, the equation 4(a? — 1) > 0 implies that a < —1. In the previous part we have seen
that D3 = 12a(a®? — 1) < 0 if a < —1. Therefore, @ is definite negative if a < —1.
The above remarks show that @ is indefinite if a € (—1,0) U (0,1). If a = 0, the quadratic form is
Q(z,y,2) = 4zy + 4yz and we see that Q(1,1,0) =4 >0, Q(1,—1,0) = —4 < 0, so @ is indefinite.
To study the cases a = £1 we do the following change of variables

= 4a® — 4 = 4(a® — 1) > 0 This condition is satisfied if and only if |a| > 1.

r=z, Y=vy, zZ=2
and we obtain the quadratic form
Q(Z,7,2) = az® + 4aj® + 4az* + 427 + 20Z% + 4YT = 4aT? + 4ay® + aZ* + 4Ty + 20ZT + 4y

whose associated matrix is

4da 2 a
2 4da 2
a 2 a

For this matrix we see that that
Dy =4a,Dy = 16a® — 4, D3 =12a(a® —1)
And, for a = 1 we obtain that
Dy =4,Dy =8, D3=0
so () is positive semidefinite. Finally, for « = —1 we obtain that
Dy =—-4,Dy=8, D3=0

so (Q is negative semidefinite.



4-14. Classify the following quadratic forms, depending on the parameters.
a) Q(x,y,2) = 922 + 3y + 2% + 2azz
b) Q(z1, T2, x3) = 22 + 43 + bx% + 2ax1%9 + 2w013

9 0 a
Solution: a) The matrix associated to Q(x,vy,2) = 922 +3y? + 2% +2axzis | 0 3 0 |. The principal
a 0 1
. 9 0 9 . .
minors are D1 =9, Dy = 0 3 = 27 — 3a“. Therefore, the quadratic form is

9 0 a
=2TyD3s=]0 3 0
a 0 1
) definite positive if 27 — 3a? > 0 that is if, -3 < a < 3.
) cannot be negative definite since D; =9 > 0.

) cannot be negative semidefinite either.

) is positive semidefinite if 27 — 3a® = 0. That is, if a = —3 a = 3.
) is indefinite if 27 — 3a® < 0. That is, if |a| > 3.

1 a O
b) The matrix associated to Q(z1,2,73) = 23 + 423 + bx3 + 2az179 + 23273 is a 4 1 The
0 1 b
1 a O
. . 1 a 9 9 9
principal minors are D1 =1 > 0, Dy = 0 4 =4—a*yDs=|a 4 1 |=4b—-1-0a*b=0b(4-0a*)—-1.
0 1 b
Hence,
(a) the quadratic form is positive definite if
4—a’>>0
4b—-1-a’b>0 }

From the first inequality we obtain the condition —2 < a < 2. De la segunda b > 4% That is, if

a2’

—2<a<?2
b>
(b) the quadratic form cannot be negative definite or semidefinite because D; =1 >0

(c) fa € (—2,2) y b= =, then D3 = 4b — 1 — a*b = 0 so the quadratic form is positive semidefinite.

—a2?’
(d) If |a] > 2 (so, 4 — a®> < 0), then the quadratic form is indefinite.
1 a O
(e) Finally, if |a| = 2, we get that | a 4 1 ]. The principal minors are
0 1 b

D=1, Dy=4—-a*>=0, Ds=4b—1—a’h=—-1

and the quadratic form is indefinite.

4-15. Let u : R™ — R be a concave function so that for
every vy, v2 € R™ and X € [0,1], we have that u( vy +
(I = X)wv2) > Au(v1) + (1 — Nu(ve). Show that S =
{veR": u(v) >k} is a convex set. For a concave
u : R? — R, the figure represents its graph S =
{(z,9) € R : ulz,y) > k}

Solution: Let S = {x € R" : u(z) > k}. Let z,y € S, so u(z) > k and also u(y) > k. Given a convex
combination of these two points, . = Az + (1 — \)y we have that

u(@e) =u(Az + (1 = A)y)
> du(z) + (1= Nu(y) since u is concave
>X+1-Nk=k

Therefore, x. € S and S is convex.



4-16. State the previous problem for a convex function u: R™ — R.

Solution: Let u : R" — R be a convex function. Then, the set S = {x € R" : u(x) < k} is convex.

4-17. Determine the domains of the plane where the following functions are convexr or concave.

)

(b) g(x,y) = % —dzy + 12z + y°.
)=e T +e Y.
)

First, note that if « = 0 then f(0,y) = 1 is constant. Hence, f is concave and convex in the set
{(0,y) : y € R}. The Hessian matrix of f(z,y) = (z — 1)? + zy? is

2 2y
2y 2z

We see that D; = 2 > 0, Dy = 4(x — y2). Since, D; > 0 the function is not concave in any non-
empty subset of R2. We see that Dy > 0 if and only if # > y2?. The function is convex in the set
{(z,y) e R? : x > y?}.

(b) The Hessian matrix of
3

flz,y) = % —dzy + 12z 4 y°

2 —4
(%5

We see that Dy = 22, Dy = 4z — 16. The function is concave in the convex sets in which D; < 0 (so
x < 0) and Dy > 0 (that is, z > 4). Since, both conditions are not compatible, the function is not
concave in any non-empty set of R2.

If 2 >0y ax>4then D; >0y Dy >0 and we see that the function is convex in the set {(x,y) € R? :
x > 4}.

(¢) The Hessian matrix of h(z,y) = e * +e ¥ is

e * 0
0 e Y

Both second derivatives are positive. Hence, the function is convex in R2.
(d) The Hessian matrix of k(x,y) = e™¥ is

v y? zy +1
zy + 1 x2
Since, e¥® > 0 for every (x,y) € R2, the signature of the above matrix is the same as the signature of

the following one
y2 zy+1
zy+1 x2

For this matrix we obtain that D; = y2 > 0, Dy = —1 — 2zy. The function is convex if Dy > 0. That
is, if 2zy < —1. Therefore, the function is convex in the set

A={(z,y) eR?:zy < —1/2,2 > 0}

is

and also in the set
B={(z,y) eR?: 2y < —1/2,2 < 0}
The union A U B is not a convex set. Finally, in the convex sets C = {(z,y) € R? : = 0} and

D = {(x,y) € R? : y = 0} the function is constant and hence, both concave and convex.
(e) The Hessian matrix of

B [ f(nz+ny), if 2,y > 0;
Hz,y) = In(vay) = { Hin(—2) + In(—y)), ifzy <0:

1k
2\ 0 -

Clearly, this matrix is negative definite and, therefore, function is concave in Rﬁ_ 4 and in R2 _.

is
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4-18. Determine the values of the parameters a and b so that the following functions are convex in their domains.
(a) f(z,y,2) = az® +y* + 22° — daxy + 2yz
(b) g(z,y) = dax® + 8wy + by

Solution:
(a) The Hessian of f(z,y, z) = ax? + y? + 22% — dawy + 2yz is
20 —4a 0
—4a 2 2
0 2 4
Note that
D1 =2a
| 2a —4a | 2 _
Dy —’ 4y 9 | Tda—16a = 4a(1 — 4a)
2a —4a 0
D3=| —4a 2 2 |=8a—64a® = 8a(l — 8a)
0 2 4

Thus, D; > 0 is equivalent to a > 0. Assuming this, the condition D3 > 0 is equivalent to a < 1/8.
Furthermore, if 0 < a < 1/8 then Dy > 0, so the function is strictly convex if 0 < a < 1/8. On the
other hand, if @ = 0 or @ = 1/8, the Hessian positive semidefinite. Therefore, the function is convex if
0<a<1/8.

(b) The Hessian of g(x,y) = 4azx? + 8zy + by? is

8a 8
8 2b

8a 8
8 2b

Note that
D1 =8a

Dy =

’ = 16(ab — 4)

The function is convex if @ > 0 and ab > 4. This is equivalent to a > 0 and b > 4/a.

If a = 0, then D; = 0, Dy = —64 # 0. Hence, Hh(x,y) is indefinite for every (z,y) € R? and the
function is not convex in R2.

If a < 0, then Dy < 0, so Hh(x,y) cannot be positive definite or positive semidefinite at any (x,y) € R?
and the function is not convex in R2.

4-19. Discuss the concavity and convexity of the function f(z,y) = —62% + (2a + 4)zy — y? + 4ay according to the
values of a.

Solution: The Hessian of f(x,y) = —622 + (2a + 4)xy — y? + day is

—12 2a + 4
2a + 4 -2

We have that

D =-12<0
| 12 2a+4 | 9
D2_‘2a—|—4 _9 ‘—8—4a—16a

Since Dy < 0 the function cannot be convex. It would be concave if Dy = 8 — 4a? — 16a > 0. The roots of
8 —4a® — 16a = 0 are —2 + /6. Thus, Dy > 0 is equivalent to —2 — v/6 < a < —2 + /6. Therefore f is
concave if a € [-2 — /6, —2 + V/6].
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4-20. Find the largest convex set of the plane where the function f(x,y) = 2? — y? — xy — 23 is concave.

Solution: The Hessian of f(z,y) = 2% — y? — vy — 23 is

2—-6x -1
-1 -2
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We have that
D1 =2 — 6x
Dy =122 —5

The condition Do > 0 is equivalent to & > 5/12. Since 5/12 > 1/3, the previous inequality also guarantees
that D; < 0. Therefore, the largest set of the plane in which f is concave is the set {(z,y) € R? : x > 5/12}.



