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CHAPTER 4: Higher order derivatives

4-1. Let u : R2 → R be defined by u(x, y) = ex sin y. Find all the second partial derivatives D2u, and verify
Schwarz’s Theorem.

Solution: The partial derivatives of the function u(x, y) = ex sin y are

∂u

∂x
= ex sin y,

∂u

∂y
= ex cos y

Therefore the Hessian is (
ex sin y ex cos y
ex cos y −ex sin y

)

4-2. Consider the quadratic function Q : R3 → R defined by Q(x, y, z) = x2 + 5y2 + 4xy − 2yz. Compute the
Hessian matrix D2Q.

Solution: The gradient of Q is

∇(x2 + 5y2 + 4xy − 2yz) = (2x+ 4y, 10y + 4x− 2z,−2y)

The Hessian matrix of Q is  2 4 0
4 10 −2
0 −2 0


4-3. Let f(x, y, z) = ez + 1

x + xe−y, for x ̸= 0. Compute

∂2f

∂x2
,

∂2f

∂x∂y
,

∂2f

∂y∂x
,

∂2f

∂y2

Solution: The partial derivatives of the function f(x, y, z) = ez + 1
x + xe−y are

∂2f(x, y, z)

∂x2
=

2

x3

∂2f(x, y, z)

∂x∂y
=− e−y

∂2f(x, y, z)

∂y∂x
=− e−y

∂2f(x, y, z)

∂y2
=xe−y

4-4. Let z = f(x, y), x = at, y = bt where a and b are constant. Consider z as a function of t. Compute d2z
dt2 in

terms of a, b and the second partial derivatives of f: fxx, fyy and fxy.

Solution: Since the function is of class C2, we may apply Schwarz’s Theorem.

d

dt
(f(at, bt)) =afx (at, bt) + bfy (at, bt)

d2

dt2
(f(at, bt)) =a2fxx (at, bt) + 2abfxy (at, bt) + b2fyy (at, bt)

1
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4-5. Let f(x, y) = 3x2y + 4x3y4 − 7x9y4. Compute the Hessian matrix D2Q..

Solution: The gradient of f is

∇f(x, y) =
(
6xy + 12x2y4 − 63x8y4, 3x2 + 16x3y3 − 28x9y3

)
The Hessian matrix of f is

H(x, y) =

(
6y + 24xy4 − 504x7y4 6x+ 48x2y3 − 252x8y3

6x+ 48x2y3 − 252x8y3 48x3y2 − 74x9y2

)

4-6. Let f, g : R2 → R be two functions whose partial derivatives are continuous on all of R2 and such that there
is a function n h : R2 → R such that (f, g) = ∇h, that is,

f(x, y) =
∂h

∂x
(x, y) g(x, y) =

∂h

∂y
(x, y)

at every point (x, y) ∈ R2. What equation do

∂f

∂y
and

∂g

∂x

satisfy?

Solution: On the one hand, we have that

∂f

∂y
=

∂
(
∂h
∂x

)
∂y

=
∂2h

∂x∂y

On the other hand, we see that

∂g

∂x
=

∂
(

∂h
∂y

)
∂x

=
∂2h

∂y∂x

Since the functions f and g have continuous partial derivatives on all of R2, the function h is of class C2. By
Schwartz’s Theorem, we conclude that

∂2h

∂x∂y
=

∂2h

∂y∂x

That is,
∂f

∂y
=

∂g

∂x

4-7. The demand function of a consumer by a system of equations of the form

∂u

∂x
= λp1

∂u

∂y
= λp2

p1x+ p2y = m

where u(x, y) is the utility function of the agent, p1 and p2 are th prices of the consumption bundles, m is
income and λ ∈ R. Assuming that this system determines x, y and λ as functions of the other parameters,
determine

∂x

∂p1
Solution: First we write the system as

f1 ≡ ∂u

∂x
− λp1 = 0

f2 ≡ ∂u

∂y
− λp2 = 0

f3 ≡ p1x+ p2y −m = 0

and compute

∂ (f1, f2, f3)

∂ (x, y, λ)
=

∣∣∣∣∣∣∣
∂2u
∂x2

∂2u
∂x∂y −p1

∂2u
∂x∂y

∂2u
∂y2 −p2

p1 p2 0

∣∣∣∣∣∣∣ =
∂2u

∂x2
p22 −

∂2u

∂x∂y
p1p2 +

∂2u

∂y2
p21
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We suppose that this determinant does not vanish and that we may apply the mean value Theorem. Differ-
entiating with respect to p1 (but assuming now that x, y, λ depend on the other parameters) we obtain

∂2u

∂x2

∂x

∂p1
+

∂2u

∂x∂y

∂y

∂p1
− ∂λ

∂p1
p1 − λ = 0

∂2u

∂x∂y

∂x

∂p1
+

∂2u

∂y2
∂y

∂p1
− ∂λ

∂p1
p2 = 0

x+ p1
∂x

∂p1
+ p2

∂y

∂p1
= 0

which may be written as

∂2u

∂x2

∂x

∂p1
+

∂2u

∂x∂y

∂y

∂p1
− ∂λ

∂p1
p1 = λ

∂2u

∂x∂y

∂x

∂p1
+

∂2u

∂y2
∂y

∂p1
− ∂λ

∂p1
p2 = 0

p1
∂x

∂p1
+ p2

∂y

∂p1
= −x

The unknowns of the above system are

∂x

∂p1
,

∂y

∂p1
,

∂λ

∂p1

We see that the determinant of the system is

∂ (f1, f2, f3)

∂ (x, y, λ)

Using Cramer’s rule we see that,

∂x

∂p1
=

∣∣∣∣∣∣∣
λ ∂2u

∂x∂y −p1

0 ∂2u
∂y2 −p2

−x p2 0

∣∣∣∣∣∣∣
∂2u
∂x2 p22 − ∂2u

∂x∂yp1p2 +
∂2u
∂y2 p21

=
λp22 +m ∂2u

∂x∂yp2 −m∂2u
∂y2 p1

∂2u
∂x2 p22 − ∂2u

∂x∂yp1p2 +
∂2u
∂y2 p21

4-8. Consider the system of equations

z2 + t− xy = 0

zt+ x2 = y2

(a) Prove that it determines z and t as functions of x, y near the point (1, 0, 1,−1).
(b) Compute the partial derivatives of z and t with respect to x, y at (1, 0).
(c) Without solving the system, ¿what is approximate value of z(1′001, 0′002)
(d) Compute

∂2z

∂x∂y
(1, 0)

Solution:
(a) First we write the system as

f1 ≡ z2 + t− xy = 0

f2 ≡ zt+ x2 − y2 = 0

and compute
∂ (f1, f2)

∂ (z, t)
=

∣∣∣∣ 2z 1
t z

∣∣∣∣ = 2z2 − t

which does not vanish for z = 1, t = −1. Therefore, we may apply the implicit function Theorem.
Differentiating the above system with respect to x we obtain

2z
∂z

∂x
+

∂t

∂x
− y = 0

t
∂z

∂x
+ z

∂t

∂x
+ 2x = 0
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Now we plug in the values x = 1, y = 0, z = 1 , t = −1 and obtain

2
∂z

∂x
(1, 0) +

∂t

∂x
(1, 0) = 0

−∂z

∂x
(1, 0) +

∂t

∂x
(1, 0) = −2

so
∂z

∂x
(1, 0) =

2

3
,

∂t

∂x
= −4

3
Differentiating the above system with respect to y we obtain

2z
∂z

∂y
+

∂t

∂y
− x = 0(1)

t
∂z

∂y
+ z

∂t

∂y
− 2y = 0

Now we plug in the values x = 1, y = 0, z = 1 , t = −1 and obtain

2
∂z

∂y
(1, 0) +

∂t

∂y
(1, 0) = 1

−∂z

∂y
(1, 0) +

∂t

∂y
(1, 0) = 0

so
∂z

∂y
(1, 0) =

1

3
,

∂t

∂y
(1, 0) =

1

3

(b) We use Taylor’s first order approximation about the point (1, 0)

P1(x, y) = z(1, 0) +
∂z

∂x
(1, 0)(x− 1) +

∂z

∂y
(1, 0)y = 1 +

2

3
(x− 1) +

y

3

and we obtain that

z(1′001, 0′002) ≈ P (1′001, 0′002) = 1 +
0′002

3
+

0′002

3
= 1′00133

(c) Differentiating implicitly the system 1 with respect to x,

2
∂z

∂x

∂z

∂y
+ 2z

∂2z

∂x∂y
+

∂2t

∂x∂y
− 1 = 0

∂t

∂x

∂z

∂y
+ t

∂2z

∂x∂y
+

∂z

∂x

∂t

∂y
+ z

∂2t

∂x∂y
= 0

Now we plug in the values

x = 1, y = 0, z = 1, t = −1,
∂z

∂x
(1, 0) =

2

3
,

∂t

∂x
= −4

3
,

∂z

∂y
(1, 0) =

1

3
,

∂t

∂y
=

1

3

so the system becomes

2
∂2z

∂x∂y
(1, 0) +

∂2t

∂x∂y
(1, 0) =

5

9

− ∂2z

∂x∂y
(1, 0)

∂2t

∂x∂y
(1, 0) =

2

9

and solving it we obtain that

∂2t

∂x∂y
(1, 0) =

3

9
,

∂2z

∂x∂y
(1, 0) =

1

9

4-9. Consider the system of equations

xt3 + z − y2 = 0

4zt = x− 4

(a) Prove that it determines z and t as functions of x, y near the point (0, 1, 1,−1).
(b) Compute the partial derivatives of z and t with respect to x, y at (0, 1).
(c) Without solving the system, ¿what is approximate value of z(0′001, 1′002)
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(d) Compute

∂2z

∂x∂y
(0, 1)

Solution:
(a) First we write the system as

f1 ≡ xt3 + z − y2 = 0

f2 ≡ 4zt− x+ 4 = 0

and compute
∂ (f1, f2)

∂ (z, t)
=

∣∣∣∣ 1 3xt2

4t 4z

∣∣∣∣ = 4z − 12xt3

which does not vanish for x = 0, y = 1, z = 1, t = −1. Therefore, we may apply the implicit function
Theorem.
Differentiating the above system with respect to x we obtain

t3 + 3xt2
∂t

∂x
+

∂z

∂x
= 0

4t
∂z

∂x
+ 4z

∂t

∂x
− 1 = 0

Now we plug in the values x = 0, y = 1, z = 1, t = −1 and obtain

−1 +
∂z

∂x
(0, 1) = 0

−4
∂z

∂x
(0, 1) + 4

∂t

∂x
(0, 1)− 1 = 0

so
∂z

∂x
(0, 1) = 1,

∂t

∂x
(0, 1) =

5

4
Differentiating the above system with respect to y we obtain

3xt2
∂t

∂y
+

∂z

∂y
− 2y = 0(2)

t
∂z

∂y
+ z

∂t

∂y
= 0

Now we plug in the values x = 0, y = 1, z = 1, t = −1 and obtain

∂z

∂y
(0, 1)− 2 = 0

−∂z

∂y
(0, 1) +

∂t

∂y
(0, 1) = 0

so
∂z

∂y
(0, 1) = 2,

∂t

∂y
(0, 1) = 2

(b) We use Taylor’s first order approximation about the point (0, 1),

P1(x, y) = z(0, 1) +
∂z

∂x
(0, 1)x+

∂z

∂y
(0, 1)(y − 1) = x+ 2y − 1

and we obtain that

z(0′001, 1′002) ≈ P (0′001, 1′002) = 0′001 + 2′004− 1 = 1′005

(c) Differentiating implicitly the system 2 with respect to x,

3t2
∂t

∂y
+ 6xt

∂t

∂x

∂t

∂y
+ 3xt2

∂2t

∂x∂y
+

∂2z

∂x∂y
= 0

4
∂t

∂x

∂z

∂y
+ 4t

∂2z

∂x∂y
+ 4

∂z

∂x

∂t

∂y
+ 4z

∂2t

∂x∂y
= 0

Now we plug in the values

x = 0, y = 1, z = 1, t = −1,
∂z

∂x
(0, 1) = 1,

∂t

∂x
(0, 1) =

5

4
,

∂z

∂y
(0, 1) = 2,

∂t

∂y
(0, 1) = 2
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so the system becomes

6 +
∂2z

∂x∂y
(0, 1) = 0

18− 4
∂2z

∂x∂y
+ 4

∂2t

∂x∂y
= 0

and solving it we obtain that

∂2t

∂x∂y
(0, 1) = −21

2
,

∂2z

∂x∂y
(0, 1) = −6

4-10. Find the second order Taylor polinomial for the following functions about the given point.
(a) f(x, y) = ln(1 + x+ 2y) about the point (2, 1).
(b) f(x, y) = x3 + 3x2y + 6xy2 − 5x2 + 3xy2 about the point (1, 2).
(c) f(x, y) = ex+y about the point (0, 0).
(d) f(x, y) = sin(xy) + cos(xy) about the point (0, 0).
(e) f(x, y, z) = x− y2 + xz about the point (1, 0, 3).

Solution: The Taylor polynomial of order 2 of f around the point x0 is

P2(x) = f(x0) +∇f(x0) · (x− x0) +
1

2!
(x− x0)

tHf(x0)(x− x0)

(a) f(x, y) = log(1 + x+ 2y) in (2, 1). Since,

∇f(2, 1) =

(
1

1 + x+ 2y
,

2

1 + x+ 2y

)∣∣∣∣
x=2,y=1

=

(
1

5
,
2

5

)
the Hessian is (

− 1
(1+x+2y)2

− 2
(1+x+2y)2

− 2
(1+x+2y)2

− 4
(1+x+2y)2

)∣∣∣∣∣
x=2,y=1

=

(
− 1

25 − 2
25

− 2
25 − 4

25

)
and

f(2, 1) = ln 5

we have that Taylor’s polynomial is

P2(x) = ln 5 +
1

5
(x− 2) +

2

5
(y − 1) +− 1

50
(x− 2)2 − 2

25
(x− 2)(y − 1)− 2

25
(y − 1)2

(b) f(x, y) = x3 + 3x2y + 6xy2 − 5x2 + 3xy2 in (1, 2). Since,

∇f(1, 2) =
(
3x2 + 6yx+ 9y2 − 10x, 3x2 + 18yx

)∣∣
x=1,y=2

= (41, 39)

the Hessian is (
6x+ 6y − 10 6x+ 18y
6x+ 18y 18x

)∣∣∣∣
x=1,y=2

=

(
8 42
42 18

)
and

f(1, 2) = 38

we have that Taylor’s polynomial is

P2(x) = 38 + 41(x− 1) + 39(y − 2) + 4(x− 1)2 + 42(x− 1)(y − 2) + 9(y − 2)2

(c) f(x, y) = ex+y at the point (0, 0). We have that f(0, 0) = 1. The gradient is

∇f(0, 0) =
(
ex+y, ex+y

)∣∣
x=0,y=0

= (e0, e0)]

and the Hessian is (
ex+y ex+y

ex+y ex+y

)∣∣∣∣
x=0,y=0

=

(
e0 e0

e0 e0

)
Thus, Taylor’s polynomial is

P2(x) = 1 + 1x+ 1y +
1

2!
(1x2 + 2xy + y2) = 1 + x+ y +

1

2
x2 + yx+

1

2
y2
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(d) f(x, y) = sin(xy) + cos(xy) at the point (0, 0). First, f(0, 0) = 1. The gradient is

∇f(0, 0) = ((cos yx) y − (sin yx) y, (cos yx)x− (sin yx)x)|x=0,y=0 = (0, 0)

The second derivatives are

∂2f

(∂x)
2 = −y2 sin(yx)− y2 cos(yx)

∂2f

∂x∂y
= −yx sin(yx) + cos(yx)− yx cos(yx)− sin(yx)

∂2f

(∂y)
2 = x2 − x2 cos(yx)

and Hessian at the point (0, 0) is (
0 1
1 0

)
Hence, Taylor’s polynomial is

P2(x, y) = 1 + yx

(e) f(x, y, z) = x− y2 + xz at the point (1, 0, 3). First, f(1, 0, 3) = 4. The gradient is

∇f(1, 0, 3) = (1 + z,−2y, x)|x=1,y=0,z=3 = (4, 0, 1)

and the Hessian is  0 0 1
0 −2 0
1 0 0


Hence, Taylor’s polynomial is

P2(x, y, z) = 4 + 4(x− 1) + (z − 3) +
1

2!
(−2y2 + 2(x− 1)(z − 3))

4-11. For what values of the parameter a is the quadratic form Q (x, y, z) = x2−2axy−2xz+y2+4yz+5z2 positive
definite?

Solution: Q(x, y, z) = x2 − 2axy − 2xz + y2 + 4yz + 5z2

It will be positive definite if D1 > 0, D2 > 0, D3 > 0. Let us compute these.
D1 = 1

D2 =

∣∣∣∣ 1 −a
−a 1

∣∣∣∣ = 1− a2 > 0 if and only if |a| < 1.

D3 =

∣∣∣∣∣∣
1 −a −1
−a 1 2
−1 2 5

∣∣∣∣∣∣ = −5a2 + 4a = a(4− 5a) > 0 if and only if a ∈ (0, 4/5).

Therefore, the quadratic form is positive definite if a ∈ (0, 4/5). When a = 0 or a = 4/5, we have that
D1 > 0, D2 > 0, D3 = 0. So, the quadratic form is positive semidefinite, but not positive definite. When
a ∈ (−∞, 0) ∪ ( 45 ,+∞) we see that D1 > 0, D3 < 0 so the quadratic form is indefinite.

4-12. Study the signature of the following quadratic forms.
(a) Q1 (x, y, z) = x2 + 7y2 + 8z2 − 6xy + 4xz − 10yz.
(b) Q2 (x, y, z) = −2y2 − z2 + 2xy + 2xz + 4yz.

Solution: a) The matrix associated to Q1 is

 1 −3 2
−3 7 −5
2 −5 8

. Let us compute D1 = 1 > 0, D2 =

∣∣∣∣ 1 −3
−3 7

∣∣∣∣ = −2 and D3 =

∣∣∣∣∣∣
1 −3 2
−3 7 −5
2 −5 8

∣∣∣∣∣∣ = −9. Therefore, the quadratic form is indefinite. (Note that

it was not necessary to compute D3)

b) The matrix associated to Q2 is

 0 1 1
1 −2 2
1 2 −1

. We see that D1 = 0. Can we still apply the method

of principal minors? To do so we perform the following change of variables: x̄ = z, z̄ = x. We see that

Q2 (x̄, y, z̄) = −2y2 − x̄2 + 2z̄y + 2x̄z̄ + 4yx̄
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whose associated matrix is

 −1 2 1
2 −2 1
1 1 0

. The principal minors are D1 = −1, D2 =

∣∣∣∣ −1 2
2 −2

∣∣∣∣ = −2.

Therefore, the quadratic form is indefinite.

Here is another way to do this exercise. Since, D3 =

∣∣∣∣∣∣
0 1 1
1 −2 2
1 2 −1

∣∣∣∣∣∣ = 7 ̸= 0. But, D1 = 0, D2 = −1, so

by Proposition 3.13, the quadratic form is indefinite.

4-13. Study for what values of a the quadratic form Q (x, y, z) = ax2 + 4ay2 + 4az2 + 4xy + 2axz + 4yz is
(a) positive definite.
(b) negative definite.

Solution: The matrix associated to the quadratic form Q(x, y, z) = ax2+4ay2+4az2+4xy+2axz+4yz
is  a 2 a

2 4a 2
a 2 4a


(a) We study conditions under which the principal minors satisfy the following

(i) D1 = a > 0.

(ii) D2 =

∣∣∣∣ a 2
2 4a

∣∣∣∣ = 4a2 − 4 = 4(a2 − 1) > 0. This condition is satisfied if and only if |a| > 1

(iii) D3 =

∣∣∣∣∣∣
a 2 a
2 4a 2
a 2 4a

∣∣∣∣∣∣ = 12a3 − 12a = 12a(a2 − 1) > 0.

Assuming a > 0, the condition a(a2 − 1) > 0 simplifies to (a2 − 1) > 0 which is satisfied if and only if
|a| > 1. Therefore, Q es positive definite if a > 1.

(b) We study conditions under which the principal minors satisfy the following
(i) D1 = a < 0.

(ii) D2 =

∣∣∣∣ a 2
2 4a

∣∣∣∣ = 4a2 − 4 = 4(a2 − 1) > 0 This condition is satisfied if and only if |a| > 1.

Assuming, a < 0, the equation 4(a2 − 1) > 0 implies that a < −1. In the previous part we have seen
that D3 = 12a(a2 − 1) < 0 if a < −1. Therefore, Q is definite negative if a < −1.
The above remarks show that Q is indefinite if a ∈ (−1, 0) ∪ (0, 1). If a = 0, the quadratic form is
Q(x, y, z) = 4xy + 4yz and we see that Q(1, 1, 0) = 4 > 0, Q(1,−1, 0) = −4 < 0, so Q is indefinite.
To study the cases a = ±1 we do the following change of variables

x̄ = z, ȳ = y, z̄ = x

and we obtain the quadratic form

Q(x̄, ȳ, z̄) = az̄2 + 4aȳ2 + 4ax̄2 + 4z̄ȳ + 2az̄x̄+ 4ȳx̄ = 4ax̄2 + 4aȳ2 + az̄2 + 4x̄ȳ + 2az̄x̄+ 4ȳx̄

whose associated matrix is  4a 2 a
2 4a 2
a 2 a


For this matrix we see that that

D1 = 4a,D2 = 16a2 − 4, D3 = 12a(a2 − 1)

And, for a = 1 we obtain that

D1 = 4, D2 = 8, D3 = 0

so Q is positive semidefinite. Finally, for a = −1 we obtain that

D1 = −4, D2 = 8, D3 = 0

so Q is negative semidefinite.
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4-14. Classify the following quadratic forms, depending on the parameters.

a) Q(x, y, z) = 9x2 + 3y2 + z2 + 2axz

b) Q(x1, x2, x3) = x2
1 + 4x2

2 + bx2
3 + 2ax1x2 + 2x2x3

Solution: a) The matrix associated to Q(x, y, z) = 9x2 +3y2 + z2 +2axz is

 9 0 a
0 3 0
a 0 1

. The principal

minors are D1 = 9, D2 =

∣∣∣∣ 9 0
0 3

∣∣∣∣ = 27 y D3 =

∣∣∣∣∣∣
9 0 a
0 3 0
a 0 1

∣∣∣∣∣∣ = 27− 3a2. Therefore, the quadratic form is

(a) definite positive if 27− 3a2 > 0 that is if, −3 < a < 3.
(b) cannot be negative definite since D1 = 9 > 0.
(c) cannot be negative semidefinite either.
(d) is positive semidefinite if 27− 3a2 = 0. That is, if a = −3 a = 3.
(e) is indefinite if 27− 3a2 < 0. That is, if |a| > 3.

b) The matrix associated to Q(x1, x2, x3) = x2
1 + 4x2

2 + bx2
3 + 2ax1x2 + 2x2x3 is

 1 a 0
a 4 1
0 1 b

. The

principal minors are D1 = 1 > 0, D2 =

∣∣∣∣ 1 a
a 4

∣∣∣∣ = 4− a2 y D3 =

∣∣∣∣∣∣
1 a 0
a 4 1
0 1 b

∣∣∣∣∣∣ = 4b− 1− a2b = b(4− a2)− 1.

Hence,
(a) the quadratic form is positive definite if

4− a2 > 0
4b− 1− a2b > 0

}
From the first inequality we obtain the condition −2 < a < 2. De la segunda b > 1

4−a2 . That is, if

−2 < a < 2
b > 1

4−a2

}
(b) the quadratic form cannot be negative definite or semidefinite because D1 = 1 > 0
(c) If a ∈ (−2, 2) y b = 1

4−a2 , then D3 = 4b− 1− a2b = 0 so the quadratic form is positive semidefinite.

(d) If |a| > 2 (so, 4− a2 < 0), then the quadratic form is indefinite.

(e) Finally, if |a| = 2, we get that

 1 a 0
a 4 1
0 1 b

. The principal minors are

D1 = 1, D2 = 4− a2 = 0, D3 = 4b− 1− a2b = −1

and the quadratic form is indefinite.

4-15. Let u : Rn → R be a concave function so that for
every v1, v2 ∈ Rn and λ ∈ [0, 1], we have that u(λv1+
(1 − λ)v2) ≥ λu(v1) + (1 − λ)u(v2). Show that S =
{v ∈ Rn : u(v) ≥ k} is a convex set. For a concave
u : R2 → R, the figure represents its graph S =
{(x, y) ∈ R2 : u(x, y) ≥ k}

u(x, y) ≥ k

Solution: Let S = {x ∈ Rn : u(x) ≥ k}. Let x, y ∈ S, so u(x) ≥ k and also u(y) ≥ k. Given a convex
combination of these two points, xc = λx+ (1− λ)y we have that

u(xc) =u(λx+ (1− λ)y)

≥ λu(x) + (1− λ)u(y) since u is concave

≥ λk + (1− λ)k = k

Therefore, xc ∈ S and S is convex.
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4-16. State the previous problem for a convex function u : Rn → R.

Solution: Let u : Rn → R be a convex function. Then, the set S = {x ∈ Rn : u(x) ≤ k} is convex.

4-17. Determine the domains of the plane where the following functions are convex or concave.
(a) f(x, y) = (x− 1)2 + xy2.

(b) g(x, y) = x3

3 − 4xy + 12x+ y2.
(c) h(x, y) = e−x + e−y.
(d) k(x, y) = exy.
(e) l(x, y) = ln

√
xy.

Solution:
(a) First, note that if x = 0 then f(0, y) = 1 is constant. Hence, f is concave and convex in the set

{(0, y) : y ∈ R}. The Hessian matrix of f(x, y) = (x− 1)2 + xy2 is(
2 2y
2y 2x

)
We see that D1 = 2 > 0, D2 = 4(x − y2). Since, D1 > 0 the function is not concave in any non-
empty subset of R2. We see that D2 ≥ 0 if and only if x ≥ y2. The function is convex in the set
{(x, y) ∈ R2 : x ≥ y2}.

(b) The Hessian matrix of

f(x, y) =
x3

3
− 4xy + 12x+ y2

is (
2x −4
−4 2

)
We see that D1 = 2x, D2 = 4x − 16. The function is concave in the convex sets in which D1 < 0 (so
x < 0) and D2 ≥ 0 (that is, x ≥ 4). Since, both conditions are not compatible, the function is not
concave in any non-empty set of R2.
If x > 0 y x ≥ 4 then D1 > 0 y D2 ≥ 0 and we see that the function is convex in the set {(x, y) ∈ R2 :
x ≥ 4}.

(c) The Hessian matrix of h(x, y) = e−x + e−y is(
e−x 0
0 e−y

)
Both second derivatives are positive. Hence, the function is convex in R2.

(d) The Hessian matrix of k(x, y) = exy is

eyx
(

y2 xy + 1
xy + 1 x2

)
Since, eyx > 0 for every (x, y) ∈ R2, the signature of the above matrix is the same as the signature of
the following one (

y2 xy + 1
xy + 1 x2

)
For this matrix we obtain that D1 = y2 ≥ 0, D2 = −1 − 2xy. The function is convex if D2 > 0. That
is, if 2xy < −1. Therefore, the function is convex in the set

A = {(x, y) ∈ R2 : xy < −1/2, x > 0}
and also in the set

B = {(x, y) ∈ R2 : xy < −1/2, x < 0}
The union A ∪ B is not a convex set. Finally, in the convex sets C = {(x, y) ∈ R2 : x = 0} and
D = {(x, y) ∈ R2 : y = 0} the function is constant and hence, both concave and convex.

(e) The Hessian matrix of

l(x, y) = ln(
√
xy) =

{
1
2 (lnx+ ln y), if x, y > 0;
1
2 (ln(−x) + ln(−y)), if x, y < 0;

is
1

2

(
− 1

x2 0
0 − 1

y2

)
Clearly, this matrix is negative definite and, therefore, function is concave in R2

++ and in R2
−−.
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4-18. Determine the values of the parameters a and b so that the following functions are convex in their domains.
(a) f(x, y, z) = ax2 + y2 + 2z2 − 4axy + 2yz
(b) g(x, y) = 4ax2 + 8xy + by2

Solution:
(a) The Hessian of f(x, y, z) = ax2 + y2 + 2z2 − 4axy + 2yz is 2a −4a 0

−4a 2 2
0 2 4


Note that

D1 =2a

D2 =

∣∣∣∣ 2a −4a
−4a 2

∣∣∣∣ = 4a− 16a2 = 4a(1− 4a)

D3 =

∣∣∣∣∣∣
2a −4a 0
−4a 2 2
0 2 4

∣∣∣∣∣∣ = 8a− 64a2 = 8a(1− 8a)

Thus, D1 > 0 is equivalent to a > 0. Assuming this, the condition D3 > 0 is equivalent to a < 1/8.
Furthermore, if 0 < a < 1/8 then D2 > 0, so the function is strictly convex if 0 < a < 1/8. On the
other hand, if a = 0 or a = 1/8, the Hessian positive semidefinite. Therefore, the function is convex if
0 ≤ a ≤ 1/8.

(b) The Hessian of g(x, y) = 4ax2 + 8xy + by2 is(
8a 8
8 2b

)
Note that

D1 =8a

D2 =

∣∣∣∣ 8a 8
8 2b

∣∣∣∣ = 16(ab− 4)

The function is convex if a > 0 and ab ≥ 4. This is equivalent to a > 0 and b ≥ 4/a.
If a = 0, then D1 = 0, D2 = −64 ̸= 0. Hence, Hh(x, y) is indefinite for every (x, y) ∈ R2 and the
function is not convex in R2.
If a < 0, then D1 < 0, so Hh(x, y) cannot be positive definite or positive semidefinite at any (x, y) ∈ R2

and the function is not convex in R2.

4-19. Discuss the concavity and convexity of the function f(x, y) = −6x2 + (2a+ 4)xy − y2 + 4ay according to the
values of a.

Solution: The Hessian of f(x, y) = −6x2 + (2a+ 4)xy − y2 + 4ay is(
−12 2a+ 4
2a+ 4 −2

)
We have that

D1 =− 12 < 0

D2 =

∣∣∣∣ −12 2a+ 4
2a+ 4 −2

∣∣∣∣ = 8− 4a2 − 16a

Since D1 < 0 the function cannot be convex. It would be concave if D2 = 8 − 4a2 − 16a ≥ 0. The roots of
8 − 4a2 − 16a = 0 are −2 ±

√
6. Thus, D2 ≥ 0 is equivalent to −2 −

√
6 ≤ a ≤ −2 +

√
6. Therefore f is

concave if a ∈ [−2−
√
6,−2 +

√
6].

4-20. Find the largest convex set of the plane where the function f(x, y) = x2 − y2 − xy − x3 is concave.

Solution: The Hessian of f(x, y) = x2 − y2 − xy − x3 is(
2− 6x −1
−1 −2

)
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We have that

D1 =2− 6x

D2 =12x− 5

The condition D2 ≥ 0 is equivalent to x ≥ 5/12. Since 5/12 > 1/3, the previous inequality also guarantees
that D1 < 0. Therefore, the largest set of the plane in which f is concave is the set {(x, y) ∈ R2 : x ≥ 5/12}.


