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(1) Given the following system of linear equations, 2x+ 3y + az = 2a− 1
x+ 2y + z = 1

5x+ 6y + (4a− 3)z = b

where a, b ∈ R.
(a) (10 points) Classify the system according to the values of a and b.

Solution: The matrix associated with the system is 2 3 a 2a− 1
1 2 1 1
5 6 4a− 3 b


Exchange rows 1 and 2. We obtain 1 2 1 1

2 3 a 2a− 1
5 6 4a− 3 b


Next, we perform the following operations

row 2 7→ row 2− 2× row 1

row 3 7→ row 3− 5× row 1

And we obtain that the original system is equivalent to another one whose augmented matrix is the
following  1 2 1 1

0 −1 a− 2 2a− 3
0 −4 4(a− 2) b− 5


Now, we perform the operation row 3 7→ row 3− 4row 2 and we obtain 1 2 1 1

0 −1 a− 2 2a− 3
0 0 0 −8a+ b+ 7


We see that

(i) if b 6= 8a− 7, then rankA = 2 < rank(A|b) = 3. The system is not consistent.

(ii) If b = 8a − 7, then rankA = rank(A|b) = 2. The system is consistent with 3 − 2 = 1
parameters.

(b) (5 points) Solve the above system for the values of a and b for which it is consistent.
Solution: We need b = 8a − 7. The proposed system of linear equations is equivalent to the
following one {

x+ 2y + z = 1
−y + (a− 2)z = 2a− 3

The solution is

z ∈ R, x = −5 + 4a+ (3− 2a)z, y = 3− 2a+ (a− 2)z
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(2) Consider the set

A = {(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 9, y ≥ 0}

and the function

f(x, y) =
1

5− x+ y

(a) (10 points) Sketch the graph of the set A, its boundary and its interior and justify if it is open,
closed, bounded, compact or convex.
Solution: The set A is approximately as indicated (in blue) in the picture.

−3 3−1 1

3

x

y

The interior and the boundary are

◦
A ∂A

The functions h1(x, y) = x2 + y2 and h2(x, y) = y are continuous and A = {(x, y) ∈ R2 : 1 ≤
h1(x, y) ≤ 9, h2(x, y) ≥ 0}. Hence, the set A closed (Note also that ∂A ⊂ A). It is not open
because A ∩ ∂A 6= ∅.
We see that if (x, y) ∈ A, then ‖(x, y)‖ ≤ 9. Hence the set A is bounded. Therefore, the set A is
compact.
It is NOT convex because the points (−1, 0), (1, 0) ∈ A. But, the line segment that joins them is
not contained in A.

(b) (10 points) Determine if it is possible to apply Weierstrass’ Theorem to the function f defined
on A.
Solution: The set A is compact. The function

f(x, y) =
1

5− x+ y

is continuous in its domain of definition D(f) = {(x, y) ∈ R2 : y − x 6= 5}. Note that the line
y = x− 5 does not intersect the set A. Graphically,
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−3 3−1 1

3

x

y

y = x− 5

−5

5

Hence, the function f is continuous in all of A. Weierstrass Theorem applies and the function
attains a global maximum and a global minimum on A.

(c) (5 points) Draw the level curves of f , indicating the direction of growth of the function.
Solution: The level curves

f(x, y) =
1

5− x+ y
= D

are straight lines of the form

y = x+
1

D
− 5

Graphically,

−3 3−1 1

3

x

y

In the picture we represent the level curves in blue color. The red arrow represents the direction of
growth of the function f .

(d) (5 points) Using the level curves of f , determine (if they exist) the extreme global points of f on
the set A.
Solution: Graphically, we see that the maximum value is attained at the point (3, 0). The
maximum value is f(3, 0) = 1/2.
The minimum value is attained at the point (a, b) where the line y = x + 1

D − 5 is tangent to the

graph of the function y(x) defined implicitly by x2 + y2 = 9. At this point we have 2x+ 2yy′ = 0.
So, y′(x) = −x/y(t, x). At the point x = a, y(a) = b, we have y′(a) = −a/b. On the other, hand
the slope of the line y = x+ 1

D −5 is m = 1. hence a = −b and we must have 2a2 = 9 or a = − 3√
2

.

The minimum value is

f

(
− 3√

2
,

3√
2

)
=

1

5 + 2 3√
2
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(3) Consider the function f(x, y) = 2x3 − 6a2x+ 3y2 − 2y3 − 1, with a ∈ R, a 6= 0.
(a) (10 points) Determine the critical points of the function f in the set R2.

Solution: The gradient vector of the function f is

~∇f(x, y) =
(
6x2 − 6a2, 6y − 6y2

)
The equations that define the critical points are

6x2 = 6a2

6y = 6y2

The solutions are (a, 0), (−a, 0), (a, 1) and (−a, 1).

(b) (10 points) Classify the critical points of the previous part into (local and/or global) maxima and
saddle points.
Solution: The hessian matrix is

H(x, y) =

(
12x 0
0 6− 12y

)
We calculate the value of the matrix at the critical points

H(a, 0) =

(
12a 0
0 6

)
, H(−a, 0) =

(
−12a 0

0 6

)
,

H(a, 1) =

(
12a 0
0 −6

)
, H(−a, 1) =

(
−12a 0

0 −6

)
Therefore,
• The point (a, 0) corresponds to a local minimimum if a > 0 and saddle point if a < 0;
• The point(−a, 0) is a saddle point if a > 0 and corresponds to a local minimum if a < 0;
• The point (a, 1) is a saddle point if a > 0 and corresponds to a local maximum if a < 0;
• The point (−a, 1) corresponds to a local maximum if a > 0 and saddle point if a < 0.

On the other hand, we can see that f(0, y) = 3y2 − 2y3 − 1. Then limy→∞ f(0, y) = −∞ and
limy→−∞ f(0, y) = +∞. Hence there are no global extreme points.

(c) (5 points) Find the greatest open set of points in R2 where the function f is convex.
Solution: We need to find the greatest open and convex set of points in R2 where the hessian
matrix is positive definite or semidefinite for every point. This happens if D1 = 12x ≥ 0 and
D2 = 12x(6− 12y) ≥ 0 and the solution is

S = int

(
{(x, y) ∈ R2 : x ≥ 0;

1

2
≥ y}

)
= {(x, y) ∈ R2 : x > 0, y <

1

2
}

(d) (5 points) Determine all the local/global solutions of the following problem

max /min g(x, y) = 2x3 − 24x+ 3y2 − 2y3 − 1

in the set A = {(x, y) ∈ R2 : x > 1, y < 1
4}

Solution: Note that the set A is convex. The function g is obtained from the function f by
taking a = 2. From part (a) the critical points are (2, 0), (−2, 0), (2, 1) and (−2, 1). Only the point
(2, 0) satisfies the constraints x > 1, y < 1

4 . On the other hand, by part (c) the function g is convex

in the set S = {(x, y) ∈ R2 : x > 0; y < 1
2}. Since,

A = {(x, y) ∈ R2 : x > 1, y <
1

4
} ⊂ S = {(x, y) ∈ R2 : x > 0, y <

1

2
}

we see that the function g is convex in the set A. And we conclude that the critical point (2, 0)
corresponds to a global minimum of the problem.
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(4) Consider the set of equations

t+ xz2 − 2y = −5

t3 + x+ y2 − z = 4

(a) (5 points) Prove that the above system of equations determines implicitly two differentiable
functions y(t, x) and z(t, x) in a neighborhood of the point (t0, x0, y0, z0) = (−1, 1, 2, 0).
Solution: We first remark that (t0, x0, y0, z0) = (−1, 1, 2, 0). is a solution of the system of
equations. The functions f1(t, x, y, z) = t + xz2 − 2y − 5 and f2(x, y, z) = t3 + x + y2 − z − 4 are
of class C∞. We compute∣∣∣∣∣∂f1∂y

∂f1
∂z

∂f2
∂y

∂f2
∂z

∣∣∣∣∣
(t,x,y,z)=(−1,1,2,0)

=

∣∣∣∣ −2 2xz
2y −1

∣∣∣∣
(t,x,y,z)=(−1,1,2,0)

=

∣∣∣∣ −2 0
4 −1

∣∣∣∣ = 2

By the implicit function theorem, the above system of equations determines implicitly two differen-
tiable functions y(t, x) and z(t, x) in a neighborhood of the point (t0, x0, y0, z0) = (−1, 1, 2, 0).

(b) (10 points) Compute
∂y

∂t
,

∂y

∂x
,

∂z

∂t
,

∂z

∂x
,

at the point (−1, 1).
Solution: Differentiating implicitly with respect to x,

−2
∂y

∂x
(t, x) + 2x

∂z

∂x
(t, x)z(t, x) + z(t, x)2 = 0

2y(t, x)
∂y

∂x
(t, x)− ∂z

∂x
(t, x) + 1 = 0

We plug in the values (t, x) = (−1, 1), (y(−1, 1), z(−1, 1)) = (2, 0) to obtain the following

−2
∂y

∂x
(−1, 1) = 0

4
∂y

∂x
(−1, 1)− ∂z

∂x
(−1, 1) + 1 = 0

So,
∂y

∂x
(−1, 1) = 0,

∂z

∂x
(−1, 1) = 1

Differentiating now implicitly with respect to t,

−2
∂y

∂t
(t, x) + 2xz(t, x)

∂z

∂t
(t, x) + 1 = 0

2y(t, x)
∂y

∂t
(t, x)− ∂z

∂t
(t, x) + 3t2 = 0

We plug in the values (t, x) = (−1, 1), (y(−1, 1), z(−1, 1)) = (2, 0) to obtain the following

1− 2
∂y

∂t
(−1, 1) = 0

4
∂y

∂t
(−1, 1)− ∂z

∂t
(−1, 1) + 3 = 0

So,
∂y

∂t
(−1, 1) =

1

2
,

∂z

∂t
(−1, 1) = 5

(c) (5 points) Compute Taylor’s polynomial of order 1 of the function z(t, x) at the point (t0, x0) =
(−1, 1).
Solution: Taylor’s polynomial of order 1 of the function z(t, x) at the point (t0, x0) is

P1(t, x) = z(−1, 1) +
∂z

∂t
(−1, 1)(t− t0) +

∂z

∂x
(−1, 1)(x− x0)
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That is,
P1(t, x) = 0 + 5(t+ 1) + (x− 1) = 5(t+ 1) + x− 1

(d) (5 points) Use Taylor’s polynomial of order 1 of the function z(t, x) at the point (t0, x0) = (−1, 1)
to estimate the value of z(−0.9, 1.1).
Solution: z(−0.9, 1.1) ≈ P1(−0.9, 1.1) = 5× 0.1 + 0.1 = 0.6.



8

(5) Consider the extreme points of the function

f(x, y) = xy − 3x− 6y

in the set
S = {(x, y) : x+ 2y = 20}

(a) (10 points) Write the Lagrangian function and the Lagrange equations.
Solution: The Lagrangian is

L(x, y) = xy − 3x− 6y + λ(20− x− 2y)

The Lagrange equations are

y − 3− λ = 0

x− 6− 2λ = 0

20− 2x− 2y = 0

(b) (5 points) Compute the solution(s) of the Lagrange equations .
Solution: Multiplying the first equation by 2 and comparing with the second equation we obtain
x = 2y. Subsituting x = 2y into the third equation, we obtain 2x = 4y = 20. Hence the solution is

x = 10, y = 5, λ = 2

(c) (10 points) Use the second order conditions to determine if the solution(s) of the Lagrange
equations correspond to a (local) maximum or minimum value of f on S.
Solution: The Hessian matrix associated with the Lagrangian is

HL(x, y;λ) =

(
0 1
1 0

)
which is indefinite. The associated quadratic form is

Q(x, y) = 2xy

We compute the space T(10,5)S. Let g(x, y) = x+ 2y− 20. We have, ∇g(x, y) = (1, 2), ∇g(10, 5) =
(1, 2). Hence,

T(10,5)S = {(x, y) ∈ R2 : x+ 2y = 0} = {(−2y, y) : y ∈ R}
Substituting x = −2y in Q(x, y), we obtain Q̄(y) = Q(−2y, y) = −4y2 < 0 if y 6= 0. Hence Q̄(y) is
negative definite and the point (10, 5) corresponds to a local maximum of f on S.

(d) (5 points) Does any of the solutions of the Lagrange equations correspond to a global maximum
or minimum value of f on S?
Solution: The set S is not compact. Therefore, Weiestrass’ Theorem does not apply. However,
substituting the restriction x = 20−2y into the function, we obtain f(20−2y, y) = −2y2+20y−60.
This is a concave function with a unique global maximum. Furthermore, since limy→∞ f(20 −
2y, y) = −∞, the function f(20 − 2y, y) does not have a global minimum. We conclude that the
point (10, 5) corresponds to a global maximum of f on S.


